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Abstract: We examine anti-windup architectures for linear systems containing what might be broadly
called “non-standard actuators” - actuators which may not be easily approximated by simply a saturation
or rate-limit, but which are a more complex interconnection between linear elements and sector-bounded
nonlinearities. An “LFT” type approach is taken to modelling such actuators and a fairly generic anti-
windup approach is developed, allowing for a wide class of nonlinear actuators, including, but not limited
to, actuator models with rate, amplitude or deadzone limitations. We also consider the synthesis for this
class of actuators using the coprime factor approach, and it is shown that, in some circumstances, the
IMC approach to anti-windup compensation yields desirable closed-loop robust stability properties.
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1. INTRODUCTION

For many years, anti-windup techniques have been used in
industry to address problems caused by actuator saturation
in control systems. However, until about 20 years ago, the
research community largely ignored the process of anti-windup
compensator design, and the literature contains few papers on
the subject until the late 1980s. Since then, a steady increase
in papers addressing anti-windup analysis and design have
emerged and, although it is impossible to review all techniques
here, summaries may be found in the papers Tarbouriech et al.
(2007); Tarbouriech and Turner (2009); Galeani et al. (2009). It
suffices to say that major improvements in the theory behind
anti-windup have been made and the control engineer faced
with problems involving actuator constraints now is better
equipped for dealing with them.

The majority of the anti-windup literature has focussed atten-
tion on actuators which can be modelled as simple saturation
elements i.e. static nonlinear maps which model the limits
commonly found in actuators. There is also a significant body
of work devoted to systems containing rate-limited actuators
(Galeani et al. (2008); Biannic and Tarbouriech (2009)) in
which simple models are used to represent the effect of the
limited rate-of-change of actuator behaviour. The advantage of
these approaches to modelling actuators are (i) such models are
often realistic approximations of the actuators they represent,
and are normally sufficient for anti-windup analysis and de-
sign purposes; (ii) the relatively simple structure of the models
eases the associated mathematical analysis; and (iii) actuator
behaviour is often not precisely modelled, so relatively crude
limits on magnitude and rate may be all that is available to the
control system designer.

Despite the clear advantages of representing actuators with rel-
atively simple mathematical models, in certain circumstances it
may be inappropriate to do so. Typically, actuators are elec-
tromechanical, hydraulic or pneumatic devices which means
that representing their behaviour as simple magnitude or rate-
limited devices can sometimes be a gross simplification. For
example, in electromechanical actuators for high bandwidth
applications, it may be necessary (or useful) to take into account
the electrical/mechanical dynamics of the actuators. Similarly
in aircraft control surfaces, the gearing in the control surface
can cause deadzones or backlash to obstruct ideal behaviour, in
addition to the position and rate-limits present. While it might
be possible to include the actuator dynamics as “uncertainty”
and to design a robust anti-windup compensator (Turner et al.
(2007); Galeani and Teel (2006); Kerr et al. (2010); Bruckner

and del Re (2010)), and while it might be possible to treat phe-
nomena such as deadzones and backlash with other corrective
strategies (Turner (2006); Tarbouriech and Prieur (2007)), there
is also merit to considering more detailed actuator models and
to modify the anti-windup approach accordingly.

This paper proposes a modified anti-windup scheme for sys-
tems with what might be broadly called non-standard actuators.
The actuators considered are those that can be represented as
interconnections between linear elements and sector bounded
nonlinearities. The latter restriction could be considerably re-
laxed (i.e. using slope-restrictions (Turner et al. (2009))) and,
while the form initially appears somewhat restrictive, it can
be used to model a broad class of common nonlinear actua-
tors. Thus, the work presented here surpasses, in a reasonably
straightforward manner, the usually considered actuator limita-
tions and models by permitting a generic actuator model in the
analysis. This allows other nonlinearities such as deadzones,
backlashes and such like to be incoroporated into the anti-
windup framework. The work also includes that reported in
Tarbouriech et al. (2006), where a specially structured class
of actuators was considered, as a special case. For simplic-
ity, the anti-windup scheme proposed is based on the coprime
factorisation technique advocated in Turner et al. (2007) (see
also Weston and Postlethwaite (2000); Kothare et al. (1994);
Miyamoto and Vinnicombe (1996); Herrmann et al. (2008)) but
in principle the technique could be extended to static and low
order types of anti-windup compensation. The so-called Inter-
nal Model Control (IMC) compensator, noted for its robustness
properties (Turner et al. (2007)), emerges as a special case and
is examined carefully.

The paper follows a simple structure. The next section intro-
duces the systems under consideration. Following this, a tech-
nique for synthesising anti-windup compensators for both sta-
ble and unstable systems is proposed. The special case of IMC
anti-windup is then examined and some example simulation
results follow. Finally, some interim conclusions are proposed.
Notation in the paper is standard throughout. Bold text is used
to represent linear operators, or their transfer functions; other
matrices and vectors are indicated by standard text.

2. SYSTEMS UNDER CONSIDERATION

2.1 System structure

We consider the system depicted in Figure 1 where K =
[K1 K2] represents the linear controller, and G = [G1 G2]
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the linear plant. 1 A(.) : Rm 7→ R
m represents the “imperfect”

(nonlinear, possibly dynamic) actuator. It is assumed, as nor-
mal, that if A ≡ I , then the linear interconnection of K and G
according to Figure 1 is stable and well-posed. The reference
is r ∈ R

nr , the disturbance d ∈ R
nd , the commanded control

signal u ∈ R
m, the actual control signal um ∈ R

m and the
output measurement, y ∈ R

p. The anti-windup compensator,

Θ = [Θ1
′

Θ2
′]′ emits two signals, θ1, to the controller output

and θ2, to the controller input. Although such a configuration is
not the most general, it is sufficient for our purposes (e.g. We-
ston and Postlethwaite (2000) showed the general character of
such representation). The anti-windup compensator is driven by
the difference between the commanded control signal and the
actual control signal, and thus it is assumed that um is available
for measurement. Note that in standard anti-windup A ≡ sat(.)
where sat(.) represents the saturation function. In this case,
whenever saturation does not occur, um = u and hence the
anti-windup compensator is not active unless a saturation event
occurs. In the more general case, when A may have dynamics, it
may be rare for um = u and thus the anti-windup compensator
will be active much of the time; in this sense the anti-windup
compensation is of the “weakened form” (Galeani et al. (2005))
although as the anti-windup compensator is a linear system, for
small differences in um and u, the effect of Θ on the closed loop
will be minor. The actuator, A(.) : Rm 7→ R

m is described by

−+

−

+

+

+

K G

Θ

A(.)
r

d

θ1

θ2

u um y

Fig. 1. System under consideration

the following state-space equations

A ∼







ẋa = Aaxa +Ba1u+Ba2ũ
um = Ca1xa +Da11u+Da12ũ
û = Ca2xa +Da21u+Da22ũ
ũ = N (û)

(1)

where û, ũ ∈ R
q and q 6= m in general. The actuator

nonlinearities are represented by the static nonlinear operator
N (.) : R

q 7→ R
q . It is assumed (although this assumption

can be relaxed) that the nonlinearity N (.) is sector bounded
and, furthermore, appropriate scaling and loop-transformation
(Khalil (1996)) has been performed such that N ∈ Sector[0, I].

A

ũ û

u um

N
Fig. 2. “LFT” representation of actuator

It is easy to see equation (1) can be arranged in “LFT” form, as
indicated by Figure 2. In this diagram A represents the linear
actuator dynamics, partitioned as

[

um

û

]

=
[

A11 A12
A21 A22

] [

u
ũ

]

(2)

1 Note that the plant is not limited to be stable, as local stability is considered
in the anti-windup analysis and synthesis.

where
[

A11 A12
A21 A22

]

∼
[

Aa Ba1 Ba2
Ca1 Da11 Da12
Ca2 Da21 Da22

]

. (3)

2.2 A decoupled structure

−

−

K G

N

M − I

I−A(.)

r

d

ylin

ulin

u

uaw

y

yd

ud

Fig. 3. System under consideration

Weston and Postlethwaite (2000) noticed that useful observa-
tions about an anti-windup compensator’s properties could be
obtained by assigning it a certain structure. In particular, it
was shown that anti-windup could be interpreted in a manner
in which the dynamics of the nominal linear system (i.e. that
without anti-windup) could be decoupled from a nonlinear part.
This decoupled nonlinear component represented the modifi-
cation of this behaviour during and after saturation. A similar
observation was made in Teel and Kapoor (1997). Several de-
velopments in anti-windup have adopted this framework; this
section generalises the approach to systems with more general
nonlinear actuators, A.002a9ee4107566a3068a500311fc0aa0

Letting, Θ1 = M − I and Θ2 = N where G2 = NM
−1 is a

coprime factorisation of the nominal plant, G2, it is possible,
using simple algebra, to re-draw Figure 1 as Figure 3. It is
stressed that the coprime factorisation approach is not the only
way of tackling this problem, but due to space constraints,
attention is focussed on this. From Figure 3, note that the
deviation from linear behaviour is governed by the nonlinear
mapping Tp : ulin 7→ yd (for convenience re-drawn in Figure
4) and that, as N ∈ RH∞, and as the nominal linear system is
assumed to be well-posed, the system in Figure 3 will be stable
2 if the nonlinear loop is asymptotically stable.

−

N

M − I

I −A(.)ulin

u

uaw
yd

ud

Fig. 4. Operator Tp : ulin 7→ yd

3. ANTI-WINDUP SYNTHESIS

3.1 Preliminary results

It was argued in the previous section that the performance and
stability of the operator Tp is central to the performance of the
(nonlinear) closed-loop system’s performance. Tp is intimately

2 More detail on exactly what is meant by “stable” will be given later
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





QÃ′

0 + Ã0Q+ L̃B̃′

0 + B̃0L̃ B̃2U −QC̃ ′

02 − L̃D̃′

02 + Z ′ B̃1 QC̃ ′

01 + L̃′D̃′

01

⋆ −2U − D̃22U − UD̃′

22 −D̃21 UD̃′

12

⋆ ⋆ −γI D̃′

11
⋆ ⋆ ⋆ −γI






< 0 (12)

[

σū2
i Zi

⋆ Q

]

≥ 0 ∀i ∈ {1, . . . ,m} (13)







QÃ′

0 + Ã0Q+QF̃ ′B̃′

0 + B̃0F̃Q B̃2U −QC̃ ′

02 −QF̃ ′D̃′

02 + Z ′ B̃1 QC̃ ′

01 +QF̃ ′D̃′

01

⋆ −2U − D̃22U − UD̃′

22 −D̃21 UD̃′

12

⋆ ⋆ −γI D̃′

11
⋆ ⋆ ⋆ −γI






< 0 (14)

[

σū2
i Zi

⋆ Q

]

≥ 0 ∀i ∈ {1, . . . ,m} (15)

related to the choice coprime factors, N ,M ∈ RH∞, given
by the state-space realisation

[

M

N

]

∼
[

Ap +BpF Bp

F I
Cp +DpF Dp

]

(4)

where G2 ∼ (Ap, Bp, Cp, Dp) and F is a design parameter

such that (Ap + BpF ) is Hurwitz. This realisation can be
combined with that of the actuator, (1), to obtain a state-space
model of the nonlinear operator Tp as

Tp ∼















[

˙̃x
yd
û

]

=





Ã0 + B̃0F̃ B̃1 B̃2

C̃01 + D̃01F̃ D̃11 D̃12

C̃02 + D̃02F̃ D̃21 D̃22





[

x̃
ulin

ũ

]

ũ = N (û)

(5)

where F̃ = [F 0] and




Ã0 B̃0 B̃1 B̃2

C̃01 D̃01 D̃11 D̃12

C̃02 D̃02 D̃21 D̃22



 =







Ap −BpCa1 BpDa11 Bp(I −Da11) −BpDa12
0 Aa −Ba1 Ba1 Ba2

Cp −DpCa1 DpDa11 Dp(I −Da11) −DpDa12
0 Ca2 −Da21 Da21 Da22






(6)

Thus our goal becomes one of ensuring that Tp is at least
locally stable and for sufficiently small ulin ∈ L2 is such
that ‖yd‖2 < γ‖ulin‖2 for some, preferably small, γ >
0. There are many similar ways of proving such properties
for Tp, but for conciseness we invoke Proposition 1 of Hu
et al. (2008) which enables global and local (or regional)
results to be inferred. Roughly speaking, the result combines
standard Circle Criterion type results (Khalil (1996)) with L2
gain conditions and a modified sector bound of Gomes da Silva
Jr. and Tarbouriech (2005).

Proposition 1. (Hu et al. (2008)). Consider the state-space sys-
tem

ẋ = Ax+Bφ+Bww
y = Cx+Dφ+Dww
z = Czx+Dzφ+Dzww
φ = Dz(y)

(7)

If there exist matrices Q > 0, diagonal U > 0 and Z, and
scalars γ > 0 and σ > 0, such that the following matrix
inequalities hold







QA′ +AQ BU +QC ′ + Z ′ Bw QC ′

z

⋆ −2U +DU + UD′ Dw UD′

z

⋆ ⋆ −γI D′

zw
⋆ ⋆ ⋆ −γI






< 0 (8)

[

σū2
i Zi

⋆ Q

]

≥ 0 ∀i ∈ {1, . . . ,m} (9)

then

• If x(0) = 0 and ‖w‖2 ≤ 1/
√
σ

‖z‖2 < γ‖w‖2
• If w ≡ 0, the ellipsoid

E = {x ∈ R
n : x′Px < 1/σ}

is contained within the region of attraction.

The above result assumes that the nonlinearity N (.) = Dz(.) is
a deadzone where

Dz(u) = [Dz1(u1), . . . ,Dzm(um)]′ (10)

Dzi(ui) = sign(ui)max {|ui| − ūi, 0} (11)

As most actuators will have limits modelled as saturation non-
linearities, which can be decomposed as sat(u) = u − Dz(u),
we shall thus limit discussion to actuators in which the non-
linearity N (.) is of the deadzone type. This is actually not
necessary, but makes for a much easier presentation.

3.2 Main results

The main results in the paper are effectively an application of
Proposition 1 to the state-space system given in the realisation
(5). Equating terms in the generic state-space system (7) with
those in the realisation (5), the following Corollary is obtained.

Corollary 2. Assume there exist structured matrices:

0 < Q =
[

Q1 0
0 Q2

]

∈ R
(np+na)×(np+na)

and
L̃ = [L1 0 ] ∈ R

m×(np+na)

where Q1 ∈ R
np×np , Q2 ∈ R

na×na , L1 ∈ R
m×np , Z ∈

R
(np+na)×m and scalars γ > 0, σ > 0 are such that the

linear matrix inequalities (12) and (13) are satisfied. Then with

F̃ = L̃Q̃−1 = [L1Q
−1
1 0] and N (.) = Dz(.) it follows that

• If the initial state of operator Tp, x̃(0) = 0 and ‖ulin‖2 <
1/
√
σ, then ‖yd‖2 < γ‖ulin‖2

• If ulin = 0, the ellipsoid

Ẽ :=
{

x̃ ∈ R
np+na : x̃′Q−1x̃ ≤ 1/σ

}

is contained within the basin of attraction of the origin of
Tp.

Proof: It is easy to match terms in the generic state-space
system (7) with those in the realisation (5), viz:

[

A B Bw

C D Dw

Cz Dz Dzw

]

=





Ã0 + B̃0F̃ B̃2 B̃1

−C̃02 − D̃02F̃ −D̃22 −D̃21

C̃01 + D̃01F̃ D̃12 D̃11




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Substituting these expressions directly into inequalities (8) and
(9) then gives the nonlinear inequalities (14) and (15). The

product, F̃Q, is eliminated by defining L̃ = F̃Q which then

yields the LMIs in the theorem. In order to recover F̃ =
[F 0] = L̃Q−1 we structure L̃ and Q as indicated in the
theorem. The remainder of the corollary follows Proposition 1.
��

The above result represents a convenient way for obtaining
coprime-factor based compensators which ensure stability and
performance, in some form, for the nonlinear operator Tp, and
hence for the overall nonlinear closed-loop. If the matrices
Ap or Aa are unstable 3 the corollary allows one either: to
optimise the size of the region of attraction, by maximising σ; to
minimise the small-signal L2 gain of the system, by minimising
γ; or to do some weighted combination of the two. If both Ap

and Aa are Hurwitz, then it is possible to let Z ≡ 0 and to
optimise the standard L2 gain of the system, while ensuring
global exponential stability (Grimm et al. (2003)).

3.3 Special case: IMC

+

−
G2

A

A(.)

ulin uaw
yd

Fig. 5. Operator Tp : ulin 7→ yd: the IMC case

The so-called IMC anti-windup compensator is obtained by
setting M = I and N = G2 in the architecture of Fig-
ure 1. Although the compensator was introduced some time
ago (Zheng and Morari (1994)), it is still intriguing to anti-
windup researchers thanks to some of its rather odd properties.
For stable systems, G ∈ RH∞ it provides a simple globally
stabilising anti-windup compensator which minimises (with-
out calculation!) certain L2 gain maps associated with anti-
windup performance (Turner et al. (2007)). Conversely, it is
also associated with very poor transient performance if the plant
has lightly damped modes or other troublesome characteristics.
However, it is also known to be “optimally” robust to norm-
bounded additive uncertainties and, although this feature does
not always carry over to more general types of uncertainty
(Morales et al. (2008); Kerr et al. (2010)) this remarkable prop-
erty makes it worthy of further examination.

When M = I and N = G2, the nonlinear loop depicted
in Figure 4 becomes that depicted in Figure 5. In this case,
the only feedback loop which occurs is that internal to the
actuators. Thus, providing that A(.) is itself stable, the map
ulin 7→ yd is stable once G2 ∈ RH∞ is assumed. Thus, when
using IMC anti-windup compensation, to establish stability of
the nonlinear system it is only necessary to establish stability of
the actuator sub-system given in equation (1); in most practical
applications, this is likely to be asymptotically stable.

In addition, the actuator model (1) may well include uncer-
tainty. Thus, providing the actuator sub-system is stable (in
some sense) in the face of these uncertainties, the mapping
ulin 7→ yd would be stable. So, while the IMC scheme might
lead to very poor transient behaviour, providing the actuator
sub-system is stable, it guarantees robustness to a very large
class of actuators, including those which may have uncertainty
in their parameters. Therefore IMC anti-windup can be used in
systems for which nothing (apart from stability) is known about

3 It is unlikely that the actuator dynamics will be exponentially unstable, but
they could be polynomially unstable to a rough approximation

the actuators: stability will be preserved provided the plant
model is known reasonably accurately, but no further analysis
is required.

4. EXAMPLE

In Kahveci et al. (2008) an adaptive anti-windup scheme was
applied to a glider soaring problem. We use an LTI version
of this problem as an example. The nominal plant has the
following matrices

Ap =







−0.0803 0.4472 0 −0.5600 0.00005
−2.3014 −6.8759 0.8436 0.0402 0.00141
0.00002 −32.5884 −7.8062 −0.00007 0

0 0 1 0 0
−0.04997 −0.6972 0 0.6972 0







Bp =







0.01158
−0.69954
−37.47948

0
0






Cp = I5 Dp = 05×1

The nominal linear controller is taken as a linear state-feedback
controller with integral action as described in Kahveci et al.
(2008). Assuming perfect actuator dynamics (i.e. the actua-
tors are purely linear), the controller gives satisfactory time-
responses, as depicted in Figure 6.
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Fig. 6. Glider response: no constraints

4.1 Magnitude and rate-limited actuators

Several different models have been proposed in the literature
for magnitude and rate-limited actuators, perhaps linked to the
actuators from different applications (Galeani et al. (2008);
Biannic and Tarbouriech (2009); Tarbouriech et al. (2007)) -
a good summary can be found in Biannic and Roos (2008). In
many aerospace applications, one of the actuator model is given
by a series interconnection of a saturation, gain and limited in-
tegrator with unity gain feedback. The limited integrator is not
convenient for analysis however, and thus can be approximated
as described in Biannic and Tarbouriech (2009). A mathemati-
cal model of such a magnitude and rate-limited actuator, in the
form of equation (1), can be derived as

Amr ∼

































ẋa

um

û1
û2






=







−H H H − λI −I
I 0 −I 0
I 0 0 0

−H H H 0













xa

u
ũ1
ũ2







[

ũ1
ũ2

]

=

[

Dz(û1)
Dz(û2)

]

(16)
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Fig. 7. Glider response: simple actuator (magnitude and rate
saturation)

where H is a diagonal positive definite matrix and λ is a large
scalar. In this case, the saturation limit ū1 = 46, rate-limit
ū2 = 6ū1, H = 50 and λ = 100. With this actuator model and
with these limits imposed, the response of the system to a 79
degree pulse demand is that depicted in Figure 7: stability is lost
and the systems enter a large magnitude limit cycle. Note that
the control signal is both magnitude and rate-limited. To obtain
improved behaviour during periods of both magnitude and rate-
saturation, Corollary 1 is used to design a suitable coprime
factor based anti-windup compensator. Similar to Turner et al.
(2007); Herrmann et al. (2008), the anti-windup compensator
is designed with the aid of a performance weight i.e. the L2

gain between ulin and
√

Wpyd is minimised. This performance

weight is given by:

Wp = diag(10−3, 1, 10−6, 0.0006, 10−6)Cp (17)

In addition, we set σ = 0.1 and minimised γ in the LMI
optimisation problem defined by the matrix inequalities in
Corollary 2. The solution of these matrix inequalities yielded

γ = 5.00 F = [0.030 − 0.045 0.033 0.291 0] (18)

This value of F was then inserted into equation (4) in order
to obtain the anti-windup compensator. The results with this
compensator are shown in Figure 8. Anti-windup compensation
is initially activated by rate-saturation of the control signal,
but this is then followed by short periods of magnitude satu-
ration. The output obtained during this constrained behaviour
using anti-windup is clearly much better than that without anti-
windup: tracking performance is retained, although the speed
of response is somewhat slower due to the presence of the rate
and magnitude constraints.

It is also interesting to investigate the behaviour of the system
when using IMC anti-windup compensation. Although it is not
evident at first, it transpires that the actuator model Amr is
actually globally asymptotically stable (proof omitted due to
space constraints). Therefore, as G ∈ RH∞, this implies that
the system with IMC anti-windup will be globally asymptoti-
cally stable. The response with IMC anti-windup is shown in
Figure 9: again rate-saturation occurs first, activating the anti-
windup compensator, followed by short periods of magnitude
saturation. The IMC anti-windup compensator does not lead
to a particularly attractive response, but it is clearly an im-
provement on the response with no anti-windup. The IMC anti-
windup compensator is also globally stabilising, whereas the
coprime factor compensator (18) only guarantees stability for
sufficiently small initial states.

4.2 A more complex actuator

In this section, we consider the same plant but assume that the
actuator is somewhat more complex. In particular, it is assumed

0 10 20 30 40 50 60 70 80
−100

0

100

200

H
o

ri
z
o

n
ta

l 
v
e

lo
c
it
y
 [

ft
/s

]

0 10 20 30 40 50 60 70 80
−50

0

50

E
le

v
a

to
r 

d
e

fl
e

c
ti
o

n
 [

d
e

g
]

Time [sec]

19 20 21 22 23 24 25
−50

−40

−30

−20

−10

0

10

20

30

40

50

E
le

v
a

to
r 

d
e

fl
e

c
ti
o

n
 [

d
e

g
]

Time [sec]

Fig. 8. Glider response: simple actuator & coprime factor anti-
windup
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Fig. 9. Glider response: simple actuator & IMC anti-windup

that the actuator has second order dynamics and also has a
deadzone, representing gearing nonlinearity, at its output. The
state-space realisation of such an actuator is

Ac ∼
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ẋa2

um

û1
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(19)
where H1 = 50, H2 = 70, λ = 100, ǫ = 10−3, ū1 = 46,
ū2 = 6ū1 and ū3 = 10. With such an actuator in place,
and without magnitude and rate-limits (ū1 = ū2 = ∞) and
without the deadzone at the actuator output (ū3 = 0), the linear
closed-loop response is almost identical to that shown in Figure
6. However, instability again ensues when the constraints and
deadzone are re-introduced.

Carrying out an anti-windup design according to Corollary 2,
using σ = 10 and the complex actuator model in (19), produces
the following values of F and γ
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γ = 209.68 F = 10−4 × [0.006 0.031 − 0.014 − 0.107 0]
(20)

These can be used to construct an anti-windup compensator as
given in (4). The response of the glider using the more complex
actuator and the accompanying anti-windup compensator is
given in Figure 10: stability is maintained but performance is
worse than when the simpler actuator is used. In fact, as F
given by (20) is so small, the coprime compensator is very close
to the IMC compensator, and, indeed, the responses are almost
identical (Figure 9). As suggested in Section 3.3, this points
to an inherent robustness of the IMC compensator to actuators
with different levels of complexity and dynamics.
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Fig. 10. Glider response: complex actuator & anti-windup
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Fig. 11. Glider response: complex actuator & IMC anti-windup

5. CONCLUSION

This paper has examined a possible architecture for systems
containing imperfect actuators which take a reasonably generic
form. The anti-windup compensator is assumed to have access
to the actuator input and output but it does not require knowl-
edge of any signal internal to the actuator, as is sometimes
assumed (Sofrony et al. (2010)). A simple method of construct-
ing anti-windup compensators based on coprime factors was
introduced and the method demonstrated on simple examples.
In common with anti-windup strategies for systems where the
actuator is only assumed to be magnitude or rate-limited, the
IMC anti-windup compensator again emerges as a special case

and, when the plant under consideration is asymptotically sta-
ble, the IMC compensator is seen to be “robust” to a large class
of actuator structures.
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