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Abstract: This paper considers the optimal operation of an oil and gas production network by
formulating it as an economic nonlinear model predictive control (NMPC) problem. Solving the
associated nonlinear program (NLP) can be computationally expensive and time consuming. To
avoid a long delay between obtaining updated measurement information and injecting the new
inputs in the plant, we apply a sensitivity-based predictor-corrector path-following algorithm
in an advanced-step NMPC framework. We demonstrate the proposed method on a gas-lift
optimization case study, and compare the performance of the path-following economic NMPC
to a standard economic NMPC formulation.

Keywords: Sensitivity-based NMPC, Path-following algorithm, Dynamic optimization,
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1. INTRODUCTION

Operation of an oil and gas production network involves
making daily control decisions in order to maximize the
revenue while satisfying process and operating constraints.
This is known as short-term production optimization or
daily production optimization (DPO). Mathematical tools
are increasingly used in production optimization to com-
pute the optimal decision variables based on a digital
representation of the system. The use of mathematical op-
timization for daily production optimization has enabled
production increases in the range of 1-4% (Stenhouse et al.,
2010). A comprehensive survey of optimization tools used
for production optimization can be found in Bieker et al.
(2007). DPO problems may be formulated as either static
optimization problems or dynamic optimization problems.
Useful discussions on the static and dynamic formulations
for DPO are provided in Foss et al. (2017), where the
authors note that DPO applications may benefit from
dynamic formulations in some cases, particularly when the
profit is strongly affected by short-term control decisions.

In this paper, we consider such a dynamic production
optimization problem, where the control and optimization
layers are tightly integrated. In this case, the production
optimization problem is formulated as an economic non-
linear model predictive control (ENMPC) problem. The
key idea in ENMPC is to use a single dynamic optimiza-
tion problem to control the process, and to optimize the
economic performance simultaneously. By doing so, the
economic cost is optimized also during transient operation
of the system. In the face of volatile oil prices and competi-
tive markets, optimizing the transients to maximize profits
has become more and more desirable.
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For large-scale production networks, the economic NMPC
problem formulation may become rather large with several
hundred decision variables. For example, the production
optimization of the Troll oil field in the Norwegian conti-
nental shelf includes more than one hundred subsea wells
(Hauge et al., 2005). This leads to optimization problems
that are computationally very intensive. Moreover, non-
linear models are typically used for economic optimiza-
tion, which further adds to the computational complexity.
Computational cost has been a prohibitive factor for the
widespread implementation of dynamic optimization in
the oil and gas industry, despite being a promising ap-
proach, as noted in Forbes et al. (2015). Solving the large-
scale nonlinear programming (NLP) problem may take a
significant amount of time and this computational delay
can lead to performance degradation or even to closed-loop
instabilities (Findeisen and Allgöwer, 2004). Hence there
is a clear need for numerical methods that make it possible
to obtain updated solutions to the large-scale NLP in very
short time.

In this paper we address this issue by applying a
sensitivity-based path-following algorithm in an advanced-
step NMPC framework (Suwartadi et al., 2017) to a gas-
lift optimization problem. The algorithm has the advan-
tage that it can handle large parameter changes, and still
give an accurate approximation of the solution. Several
sensitivity-based approaches have been proposed to ad-
dress the issue of computation time. See e.g. Diehl et al.
(2005), Zavala and Biegler (2009), Jäschke et al. (2014).
A review article on fast NMPC schemes is given by Wolf
and Marquardt (2016).

At each sample time, the NMPC optimization problems
are identical, except for one time varying parameter,
namely, the initial state. All the fast sensitivity approaches
capitalize on this property. When new measurements of
the states become available, these approaches use the
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sensitivity of the optimal solution that was computed at
a previous time step to obtain fast approximate solutions
to the new resulting nonlinear optimization problem. Such
approximations enable fast implementation of the optimal
input in the plant in a minimal delay.

The remainder of the paper is organized as follows. The
daily production optimization problem for a gas lifted
well network is introduced in Section 2. The sensitivity-
based economic NMPC with the path-following approach
is presented in Section 3. Simulation results from a gas-lift
optimization case study are presented in Section 4, before
concluding the paper in Section 5.

2. PROBLEM FORMULATION

An offshore oil and gas production network typically con-
sists of several wells that produce to a common processing
facility. The reservoir fluid enters through the well bore of
each well and is produced to a topside processing facility
via a common production manifold as shown in Fig.1. In
some wells, the reservoir pressure may not be sufficient to
lift the fluids to the surface. In such cases, artificial lift
methods are employed to boost the production from the
wells. In this paper, we consider the gas lift method, which
is a commonly used artificial lift technology. In gas lifted
wells, compressed gas is injected into the well tubing via
the annulus to reduce the mixture density. This results
in reduced hydrostatic pressure, and hence boosted pro-
duction. However, higher gas injection rates also increase
the frictional pressure drop. The oil production starts
to decline if the effect of the frictional pressure drop is
dominant over the effect of the hydrostatic pressure drop.

Production from a cluster of N = {1, . . . , nw} gas lifted
wells can be modelled as a semi-explicit index-1 DAE
system of the form,

ẋ = f(x, z,u), (1a)

0 = g(x, z,u), (1b)

where f(x, z,u) is the set of differential equations and
g(x, z,u) is the set of algebraic equations. The dynamics
arise in the model due to the mass balances for oil and gas
phases in each well and the riser. Algebraic equations are
used to describe the densities, pressures and flow rates
for each well and the riser, as described in detail by
Krishnamoorthy et al. (2016).

The inlet separator in the topside processing facility sets
the downstream boundary conditions which are typically
kept at a constant pressure by tight regulatory control.
The upstream boundary conditions are set by the reservoir
inflow conditions. The DPO problem is concerned with
the production network exposed to these upstream and
downstream conditions, and hence the reservoir model
and topside processing facilities are not included in the
production optimization problem.

Gas lifted wells are often controlled by adjusting the gas
lift injection rate of each well. The production network
is also subject to process and operating constraints. For
example, the total gas processing capacity in the topside
facilities may be constrained, or the rate of compressed
gas injection may be limited. The optimization problem
then involves computing the optimal gas lift injection rates
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Fig. 1. Schematic representation of a gas lifted production
network with nw wells producing to a common topside
processing facility.

for each well such that the operating profits are maxi-
mized subject to the network processing and operating
constraints.

Before this can be formulated as an economic NMPC
problem, the infinite dimensional problem is discretized
into finite horizon optimal control problem using direct
collocation method. The discretized system dynamics at
any time instant l can be expressed as,

F
(
χl+1,χl, ζl,νl

)
= 0. (2)

A detailed explanation on how the system is discretized
into a nonlinear programming problem using direct collo-
cation can be found in Krishnamoorthy et al. (2016).

The economic NMPC problem can then be formulated as

PN (xk) : min
χl,ζl,νl

Ψ
(
χk+N , ζk+N

)
+

k+N−1∑
l=k

ψ (χl, ζl,νl)

s.t. F
(
χl+1,χl, ζl,νl

)
= 0, ∀l ∈ N

G (χl, ζl,νl) ≤ 0, ∀l ∈ N (3)

(χl, ζl,νl) ∈ Z, ∀l ∈ N(
χk+N , ζk+N

)
∈ Xf

χ0 = xk.

Here χl ∈ Rnχ , νl ∈ Rnν , and ζl ∈ Rnζ represent the pre-
dicted state, control input, and algebraic at time instance
l, respectively for all l belonging to N = {k, . . . , k + N}.
The constraints include the system dynamics as equality
constraint, nonlinear inequality constraints G, and the
equality constraint of the initial predicted state χ0 equal
to the actual state xk ∈ Rnχ obtained from measurement
data. The path constraint confines the predicted state,
algebraic, and control inside the set Z, and the final state
and algebraic variables

(
χk+N , ζk+N

)
are constrained to

lie in the set Xf . The objective function comprises the final
cost Ψ

(
χk+N , ζk+N

)
∈ C2 : Rnχ×Rnζ → R and the stage

cost ψ (χl, ζl,νl) ∈ C2 : Rnχ × Rnζ × Rnν → R.

In the gas lifted well problem, the stage cost is defined as

ψ (χl, ζl,νl) :=

nw∑
i=1

(−rowpo,i + rglwgl,i) , (4)

where ro is the oil price, rgl is the cost for gas lift
injection, and nw denotes the number of production wells.
The nonlinear inequality constraints enforce the total gas
capacity constraints,
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G (χl, ζl,νl) :=

nw∑
i=1

(wpg,i)− wmaxg . (5)

The path constraints are in the form of bound constraints
for the state, control inputs as well as the algebraic
variables χζ

ν

 ≤ (χlζl
νl

)
≤

χζ
ν

 . (6)

The notations · and · represent the upper and lower bound
for the corresponding variable. It is easily possible to limit
the state variables with the bound constraints since the
system dynamics are transcribed using direct collocation,
in which the state, algebraic, and control are treated as
optimization variables.

Once the economic NMPC problem is formulated, it can
be solved in a receding horizon fashion. At each sample
time k, the state measurement or estimate xk is assigned
as the initial state for the optimization problem (3). The
optimization problem is solved to compute the optimal
input trajectory ν∗[l,l+N ] over the prediction horizon. The

first step of the optimal control sequence is implemented
in the plant, i.e. u∗k = ν∗1 . At the next time step k + 1,
new measurements of the state xk+1 are obtained and the
optimization procedure is repeated, hence enabling closed-
loop implementation.

We consider a full-state feedback control structure. The
measurements from the plant are used for estimating the
states. The estimated states are then used for full state
feedback for the economic NMPC, which computes the
optimal inputs for the plant. The state estimation is
performed online by an extended Kalman filter (EKF).
The EKF is implemented in discrete time as described
in Krishnamoorthy et al. (2017). Commonly available
measurements such as annulus pressure, wellhead pressure
and down hole pressure for each well along with the riser
head pressure, manifold pressure and total oil and gas
production rates are used as measurements for the EKF.

In an ideal case, the optimization problem (3) would
be solved instantly and the optimal input would be im-
plemented in the plant without time delay. In practice,
however, there is always some delay between the state
measurement/estimation and the implementation of the
optimal control input. This is mainly because of the com-
putational time required to solve the optimization problem
(3). For many linear MPC applications, the computational
delay is rather small and can be neglected. However, for
large-scale nonlinear systems, as the number of optimiza-
tion variable increases, solving the optimization problem
requires more time, and the computational delay may no
longer be neglected.

3. FAST ECONOMIC NMPC

To address the issue of computational delay, fast sensitivity-
based NMPC approaches have been developed. One such
approached is the advanced-step NMPC (asNMPC) intro-
duced by Zavala and Biegler (2009), where at time k, the
NMPC problem is solved with the predicted state value of
time k + 1 instead of using the measured/estimated state
xk. An approximation of the NLP solution is then com-
puted using a single sensitivity step (Zavala and Biegler,

2009), or a path-following approach (Jäschke et al., 2014;
Suwartadi et al., 2017) as soon as the measurement xk+1

is available at time k+1. In this work we use the predictor-
corrector path-following algorithm based on Suwartadi
et al. (2017), described below.

Since the optimization problem (3) differs only in the
initial state variable, which is denoted as the equality
constraint χ0 = xk, from one NMPC iteration to another,
the problem can be cast as the following parametric NLP
problem

min
X

J (X,p) (7)

s.t. ci (X,p) = 0, i ∈ E ,
ci (X,p) ≤ 0, i ∈ I,

where X ∈ RnX is the primal variable, p ∈ Rnp is the
parameter, and the objective function J : RnX ×Rnp −→
R. The equality and inequality constraints c : RnX ×
Rnp −→ Rnc are represented by the sets E = {1, . . . ,m}
and I = {m+ 1, . . . , nc}, respectively.

We define Lagrangian of the problem (7) as

L (X,λ,p) := J (X,p) + λT c (X,p) , (8)

where λ is the dual variable or Lagrange multiplier.
The first-order optimality (Karush-Kuhn-Tucker (KKT))
conditions are

∇XL(X,λ,p) = 0,

ci (X,p) = 0, i ∈ E , (9)

ci (X,p)≤ 0, i ∈ I,
λTi ci (X,p) = 0, i ∈ I,

λi ≥ 0, i ∈ I.

Active inequality constraints are denoted by the set
A (X,p) = {ci (X,p) = 0, i ∈ I}. For a given multiplier
λ and X that satisfies the KKT conditions (9), the active
inequality setA (X,p) has two subsets, which are a weakly
active set A0 (X,λ,p) = {i ∈ A (X,p) | λi = 0} and a
strong active set A+ (X,λ,p) = {i ∈ A (X,p) | λi > 0}.
Furthermore, we define the optimality residual as

η (X,λ,p) =

∥∥∥∥∥
(∇XJ (X,p) +∇Xc (X,p)λ

c (X,p)E
[min (c (X,p) ,λ)]I

)∥∥∥∥∥
∞

.

(10)

Here, we assume that the linear independent constraint
qualification (LICQ) is satisfied at any point X that
satisfies the KKT conditions (9).

Definition 1. (LICQ). Given a vector p and a pointX, the
linear independence constraint qualification (LICQ) holds
at X if the set of vectors {∇Xci (X,p)}i∈E∪A(X,p) are

linearly independent.

We also assume that the strong second order sufficient
condition is also satisfied.

Definition 2. (SSOSC). The strong second order sufficient
condition (SSOSC) holds at (X,λ) that satisfies the KKT

conditions, if dT∇2
XXL (X,p,λ)d > 0 for all d 6= 0 such

that ∇Xci (X,p)
T
d = 0 for i ∈ E ∪ A+ (X,p,λ).
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We are now ready to state the result for sensitivity of the
NLP, where X∗ (p) and λ∗ (p) are the primal and dual
solutions of (7), respectively.

Theorem 3. Let J , c be twice continuously differentiable
in p and X near a solution of (7) (X∗,p0), and let
LICQ and SSOSC hold at (X∗,p0). Then the solution
(X∗ (p) ,λ∗ (p)) is Lipschitz continuous in a neighborhood
of (X∗,λ∗,p0), and the solution function (X∗ (p) ,λ∗ (p))
is directionally differentiable. Moreover, the directional
derivative uniquely solves the following quadratic problem:

min
∆X

1

2
∆XT∇2

XXL (X∗,p0,λ
∗) ∆X

+ ∆XT∇pXL (X∗,p0,λ
∗) ∆p (11)

s.t.

∇Xci (X∗,p0)
T

∆X

+∇pci (X∗,p0)
T

∆p = 0 i ∈ A+ ∪ E ,
∇Xcj (X∗,p0)

T
∆X

+∇pcj (X∗,p0)
T

∆p ≤ 0 j ∈ A0.

Proof. See Robinson (1980) and (Bonnans and Shapiro,
1998, Section 5.2). 2

Instead of solving a full NLP problem, one can solve a
quadratic programming (QP) problem (11) to compute a
first-order approximation of the solution to the optimiza-
tion problem (3) in the vicinity of perturbation p0. We
refer the QP (11) to as pure-predictor QP. Note that there
is no requirement of strict complimentary in the theorem,
allowing for active-set changes.

To improve the approximation of the solution, we intro-
duce a corrector term in the objective function, and taking
into account that the parameter p enters linearly in the
problem, we can formulate the following QP (Suwartadi
et al., 2017; Kungurtsev and Diehl, 2014)

min
∆X

1

2
∆XT∇2

XXL (X∗,p0 + ∆p,λ∗) ∆X

+∇XJ T∆X (12)

s.t.

ci (X∗,p0 + ∆p)
T

∆p

+∇Xci (X∗,p0 + ∆p)
T

∆X = 0 , i ∈ A+ ∪ E ,
cj (X∗,p0 + ∆p)

T
∆p

+∇Xcj (X∗,p0 + ∆p)
T

∆X ≤ 0 , j ∈ I \ A+.

We denote the QP above as predictor-corrector QP, see
Algorithm 1. This QP formulation provides a reasonably
good approximation of the NLP solution in a small neigh-
borhood of p0. To allow large perturbation (large ∆p), we
employ a path-following approach, that is, to solve a series
of QP problems. This is analogous to Euler integration
scheme for ordinary differential equations. The parameter
p is updated according to p (tj) = (1− tj)p0+tjpf , where
t0 = 0 until it reaches t = 1, that is t0 = 0, t1 < t2 . . . <
tj < tj+1 . . . < tend = 1. The parameter pf corresponds
to new measurement data. During the course of path-
following iteration, the primal variable ∆X and dual vari-
able ∆λ are updated for each tj . The optimality residual
condition η (10) is computed and compared against its

maximum tolerance ηmax. If necessary, the stepsize ∆t is
reduced to satisfy η < ηmax. The method is implemented
as a subroutine in Algorithm 1, denoted as QP PC PF.

As described in Suwartadi et al. (2017) and Jäschke
et al. (2014), we apply the path-following QP within the
advanced-step NMPC (asNMPC ) framework (see Zavala
and Biegler (2009)) and refer the method to as pf-NMPC.
The pf-NMPC procedure includes the following three
steps.

(1) Solve the NLP problem (3) at time k constraining the
initial state value to the predicted state at k + 1.

(2) When the measurement xk+1 becomes available at
time k + 1, compute an approximation of the NLP
solution (3) using the QP (12) in a path-following
manner.

(3) Implement the optimal control input and update k ←
k + 1 and repeat from Step 1.

A sketch of the pf-NMPC procedure is described in Algo-
rithm 1.

4. SIMULATION RESULTS

In this section we use a gas lifted well network with nw = 2
wells to demonstrate the pf-NMPC controller and compare
its results against the ideal NMPC (iNMPC) controller
which solves the problem (3) using an NLP solver. All
simulations are done in MATLAB using CasADi version 3.2.0
as algorithmic differentiation tool (Andersson, 2013) where
IPOPT (Wächter and Biegler, 2006) is included as an
NLP solver. We use the QP solver from TOMLAB MINOS
(Murtagh and Saunders, 1982).

First, we run a steady-state optimization with total gas
production capacity constraint equals to 9.5 kg/s. The
optimized steady-state control inputs, algebraic and state
variables are incorporated in the stage cost regularization
terms, i.e.,

ψm (χl,νl, ζl) = ψ (χl,νl, ζl) (13)

+ α (‖χl − xs‖ , ‖νl − us‖ , ‖ζl − zs‖) ,

where xs, us, and zs are the steady-state state variable,
control input, algebraic variable respectively.

Next, we run the NMPC controllers and initiate the system
with an initial condition far away from the optimal point.
The NMPC controllers are implemented with sampling
time of 5 minutes with a prediction horizon of 2 hours
yielding 3014 optimization variables and 2966 nonlinear
constraints in the NLP.

We set ηmax = 10−5 and initial ∆t = 1.0 for the pf-
NMPC controller. Note that we use an adaptive steplength
strategy for ∆t in the Algorithm 1 meaning that the
steplength ∆t may be reduced in case ηmax > 10−5.

4.1 Comparison of Open-loop Optimization Results

We compare the open loop solutions from the ideal NMPC
and pf-NMPC controllers at time t = 10 minute (at second
NMPC iteration). The results are shown in Figure 2 in
which the total oil and gas production are depicted. The
solutions from pf-NMPC accurately track those of the ideal
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Algorithm 1 Economic pf-NMPC algorithm

Input: initial state x0, initial ∆t, and ηmax.

for k = 0, 1, 2, . . . do
[X∗,λ∗]← solution NLP PN

(
χk+1

)
for k + 1.

if a measurement of xk+1 is available then
Set p0 ← χk+1.

Set pf ← xk+1.

X ← QP PC PF(X∗,λ∗,p0,pf ,∆t)

Extract first input value from X and inject to
the plant as uk.
Update initial state x0 ← xk+1.
Set k + 1← k.

end if
end for

function qp pc pf(X,λ,p0,pf ,∆t)

Define parameter γ satisfying 0 < γ < 1.
Determine A+.
Set parameter ηmax.
Set j ← 0.
Set tj ← 0.
while tj < 1 do

Compute ηj := η (Xj ,λj ,p (tj)).
if QP is feasible then . solve QP

Compute ηj+∆ := η (Xj + ∆X, ∆λ,p (tj+∆t)) .

if ηj+∆ > ηmax then.
Decrease ∆t. . reduce QP stepsize
j ← j + 1.

else
X ←X + ∆X
λ← ∆λ
tj+1 ← tj + ∆t
p (tj) = (1− tj)p0 + tjpf
if ηj+∆ < η1+γ

j then . very good step

Increase ∆t.
end if
Update A+. . from QP’s dual solution.
j ← j + 1.

end if
else

Decrease ∆t. . reduce QP stepsize
j ← j + 1.

end if
end while
return X

end function

Output: x1, x2, x3, u1, u2, u3, . . .

NMPC controller. The errors between the ideal NMPC and
pf-NMPC are plotted in Figure 3.

4.2 Closed-loop Results

Next, we compare the closed-loop solution for both NMPC
controllers. The solutions, control input profiles as well as
total gas and oil productions, are displayed in Figure 4 and
Figure 5. The total gas production capacity constraint,
shown in Figure 5, is active. The solutions of pf-NMPC
approximate the solutions of the ideal NMPC controllers
very well. Moreover, we compare the online optimization

Fig. 2. Comparison of total oil and gas production for
iNMPC and pf-NMPC controllers from open loop
solutions at iteration number two. The solution of
iNMPC is depicted in green color, which overlaps the
solution of pf-NMPC denoted in black color.

Fig. 3. Total production errors for open-loop solution at
iteration number two.

online optimization runtime (in sec.)

min max average
iNmpc 0.85 0.94 0.88

pf-Nmpc 0.34 0.39 0.36

runtime for 60 NMPC iterations. It is shown that the
pf-NMPC controller is able to speed up the optimization
more than two times faster than those of the ideal NMPC
controller. However, a rigorous comparison of runtime is
very implementation dependent, and outside the scope of
this paper.

5. CONCLUSION

In this paper we presented an economic nonlinear model
predictive control for a gas lifted well network. To address
the issue of computational delay associated with economic
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Fig. 4. Control inputs comparison of iNMPC and pf-
NMPC controllers from closed-loop solutions.

Fig. 5. Total production of oil and gas of iNMPC and pf-
NMPC controllers from closed-loop solutions.

NMPC, we presented a path-following predictor-corrector
approach. Using simulation results, we showed that the pf-
NMPC is able to provide a fast solution, while honoring
the active constraints and reasonably approximating the
solutions.
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