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Abstract: We present an extended Kalman filter for state estimation of semi-explicit index-1
differential-algebraic equations. It is natural to model dynamic UV flash processes with such
differential-algebraic equations. The UV flash is a mathematical statement of the second law
of thermodynamics. It is therefore important to thermodynamically rigorous models of many
phase equilibrium processes. State estimation of UV flash processes has applications in control,
prediction, monitoring, and fault detection of chemical processes in the oil and gas industry,
e.g. separation, distillation, drilling of oil wells, multiphase flow in oil pipes, and oil production.
We present a numerical example of a UV flash separation process. It involves soft sensing of
vapor-liquid compositions based on temperature and pressure measurements.
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1. INTRODUCTION

State estimation is concerned with reconstructing the state
of a process based on noisy measurements and a model
of the process. It is central to nonlinear model predictive
control, prediction, monitoring, and fault detection of
several chemical processes in the oil and gas industry.
For instance, authors have considered state estimation
of distillation columns (Pan et al., 2009; Kataria et al.,
2016), oil and gas pipe flow (Binder et al., 2015), oil
well drilling (Nikoofard et al., 2017), and oil reservoir
production (Oliver and Chen, 2011).

Many chemical processes involve phase equilibrium, i.e.
thermodynamic equilibrium between two or more phases.
The condition of phase equilibrium is derived from the sec-
ond law of thermodynamics which states that the entropy
of a closed system in equilibrium is maximal. The UV flash
problem is a mathematical statement of the second law
of thermodynamics. It is therefore a key component in
thermodynamically rigorous models of phase equilibrium
processes, e.g. flash separation (Castier, 2010; Arendsen
and Versteeg, 2009; Lima et al., 2008), distillation columns
(Flatby et al., 1994), and computational fluid dynamical
problems (Hammer and Morin, 2014; Qiu et al., 2014).
The UV flash problem can be formulated as an optimiza-
tion problem (Michelsen, 1999). The solution to the opti-
mization problem is the temperature, pressure, and phase
compositions that maximize entropy. The optimization
problem contains equality constraints on internal energy,
U , volume, V , and total mass of each chemical component,
n. U , V , and n are parameters in the optimization prob-
lem. The phase equilibrium conditions are the optimality
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conditions of the optimization problem which are algebraic
equations. Dynamical UV flash processes are therefore
modeled with differential-algebraic equations (DAEs). Re-
cently, Ritschel et al. (2017a) developed dynamic optimiza-
tion algorithms for UV flash processes. However, state
estimation of dynamic UV flash processes has not been
treated in the open literature.

The Kalman filter is optimal for linear systems. How-
ever, many chemical processes are inherently nonlinear
such that the Kalman filter cannot be used. There exist
a number of nonlinear filters, e.g. the extended Kalman
filter, the unscented Kalman filter, and particle filters
(Simon, 2006). The extended Kalman filter applies the
Kalman filter equations to a linearization of the nonlinear
model. For highly nonlinear processes, this linearization
can limit the accuracy of the extended Kalman filter. The
unscented Kalman filter and particle filters use samples of
the states to provide better estimates than the extended
Kalman filter for severely nonlinear processes. The un-
scented Kalman filter uses deterministic samples whereas
particle filters use random samples. A particular particle
filter, called the ensemble Kalman filter, has gained much
attention in oceanography and oil reservoir characteriza-
tion (Evensen, 2009a,b; Gillijns et al., 2006). Alternatives
to the above state estimation algorithms include moving-
horizon estimation (Alessandri et al., 2010), which is an
optimization-based algorithm, and neural network-based
algorithms (Talebi et al., 2010). Research on state esti-
mation algorithms was originally focused on systems of
ordinary differential equations (ODEs). However, many
processes are naturally modeled with DAEs. Algebraic
equations often result from the approximation of a fast
process as a quasi-steady-state, e.g. it is common to as-
sume that phase equilibrium occurs instantaneously in dy-
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namic processes. Recently, several authors have developed
algorithms for state estimation of DAE models, e.g. the
extended Kalman filter (Mobed et al., 2016; Jørgensen
et al., 2007; Becerra et al., 2001), the unscented Kalman
filter (Purohit et al., 2015, 2013; Pastorino et al., 2013;
Mandela et al., 2010, 2009), particle filters (Haßkerl et al.,
2017, 2016), and the ensemble Kalman filter (Puranik
et al., 2012).

In this work, we present an extended Kalman filter for
state estimation of dynamic UV flash processes. Such pro-
cesses are modeled with DAEs in a semi-explicit index-1
form where the right-hand side of the differential equations
are independent of the differential states. We exploit this
fact in the computations. We present a numerical example
that involves soft sensing of vapor-liquid compositions in
a UV flash separation process based on temperature and
pressure measurements.

The remainder of this paper is structured as follows. In
Section 2, we describe the stochastic semi-explicit index-
1 DAE system that we consider, and in Section 3, we
describe the numerical simulation of such systems. In
Section 4, we describe the extended Kalman filter. We
briefly describe the model of the UV flash separation
process in Section 5, and we present numerical results in
Section 6. In Section 7, we present conclusions.

2. STOCHASTIC SEMI-EXPLICIT INDEX-1 DAE
SYSTEMS

We consider stochastic DAE systems in the form

G(x(t), y(t), z(t)) = 0, (1a)

dx(t) = F (y(t), u(t))dt+ σ(y(t), u(t))dω(t). (1b)

x(t) is the state vector, y(t) is a vector of algebraic
variables, and z(t) is a vector of adjoint algebraic vari-
ables. Phase equilibrium conditions can be formulated
as the Karush-Kuhn-Tucker (KKT) conditions of an op-
timization problem. The algebraic equations (1a) repre-
sent such KKT conditions, and z(t) represents the corre-
sponding Lagrange multipliers. The stochastic differential
equations (1b) represent conservation equations, and the
states represent the conserved quantities. The right-hand
side of the stochastic differential equations is indepen-
dent of the states. The initial states are distributed as
x(t0) ∼ N(x0, P0). u(t) are manipulated inputs, and ω(t)
is a standard Wiener process, i.e. it has an incremental
covariance of Idt. For the systems that we consider, the
algebraic equations (1a) can be solved for y(t) and z(t)
when x(t) is given, i.e. the DAE system (1) is of index
1. The system is observed at discrete times, tk, using the
measurement equation,

ym(tk) = H(y(tk)) + v(tk). (2)

ym(tk) are the measurements. The right-hand side of the
measurement equation is independent of the states. The
measurement noise, v(tk), is normally distributed, i.e.
v(tk) = vk ∼ N(0, Tk).

3. NUMERICAL SIMULATION

In this section, we describe the numerical simulation of
the stochastic DAE system (1). We solve the differential
equations and the algebraic equations in a simultaneous

manner. We discretize the deterministic and stochastic
part of the stochastic differential equations (1b) with
Euler’s implicit and explicit method, respectively. That
results in the equation Dk+1 = 0 where

Dk+1 = Dk+1(xk+1, yk+1) = Dk+1(xk+1, yk+1;xk, yk, uk)

= xk+1 − F (yk+1, uk)∆tk − σ(yk, uk)∆ωk − xk.
(3)

We introduce wk+1 = [xk+1; yk+1; zk+1]. For each time
step, we solve the residual equations, Rk+1 = 0, for wk+1.
The residual function is

Rk+1 = Rk+1(wk+1) = Rk+1(xk+1, yk+1, zk+1)

= Rk+1(xk+1, yk+1, zk+1;xk, yk, uk)

=

[
Dk+1(xk+1, yk+1;xk, yk, uk)

G(xk+1, yk+1, zk+1)

]
. (4)

We solve the residual equations with Newton’s method:

wm+1
k+1 = wm

k+1 + ∆wm
k+1. (5)

In each Newton iteration, we solve the linear system

M∆wm
k+1 = −Rk+1(wm

k+1), (6)

where the iteration matrix, M , is

M ≈ ∂Rk+1

∂wk+1
=

 I −∂F
∂y

∆tk 0

∂G

∂x

∂G

∂y

∂G

∂z

 . (7)

3.1 Efficient solution of the linear system

The main computational task in the solution of the linear
system (6) is the factorization of the iteration matrix, M .
Because of the identity matrix in the Jacobian in (7), we
can obtain an explicit expression for ∆xmk+1 from (6):

∆xmk+1 =

(
∂F

∂y
∆tk

)
∆ymk+1 −Dk+1. (8)

We use (6) and (8) to obtain a reduced linear system for
∆ymk+1 and ∆zmk+1:

M̄

[
∆ymk+1
∆zmk+1

]
=
∂G

∂x
Dk+1 −G(xmk+1, y

m
k+1, z

m
k+1). (9)

The reduced iteration matrix, M̄ , is

M̄ ≈
[
∂G

∂y
+
∂G

∂x

∂F

∂y
∆tk

∂G

∂z

]
. (10)

It is cheaper to factorize M̄ than M because M̄ is smaller.

4. THE EXTENDED KALMAN FILTER

The extended Kalman filter consists of a) a measurement-
update that incorporates the current measurement and
b) a time-update that propagates the state mean and its
covariance through time in between measurements. The
initial state estimate and its covariance are the mean and
covariance of the initial states:

x̂0|−1 = x0, (11a)

P0|−1 = P0. (11b)

4.1 Measurement-update

The one-step ahead prediction of the measurement, ŷmk|k−1,

and its approximate covariance matrix, Tk|k−1, are

ŷmk|k−1 = H(ŷk|k−1), (12a)

Tk|k−1 = CkPk|k−1C
′
k + Tk. (12b)
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The one-step ahead estimate of the algebraic variables,
ŷk|k−1, is available from the previous time-update. Tk
is the covariance matrix of the measurement noise. The
matrix Ck is

Ck =
∂H

∂x
(ŷk|k−1)

=
∂H

∂y
(ŷk|k−1)

∂ŷk|k−1

∂x̂k|k−1
. (13)

As we describe later, the one-step ahead estimates satisfy
the algebraic equations, i.e. G(x̂k|k−1, ŷk|k−1, ẑk|k−1) = 0.
We apply the implicit function theorem to the algebraic

equations in order to compute
∂ŷk|k−1

∂x̂k|k−1
and

∂ẑk|k−1

∂x̂k|k−1
:

[
∂G

∂y

∂G

∂z

]
∂ŷk|k−1

∂x̂k|k−1
∂ẑk|k−1

∂x̂k|k−1

 = −∂G
∂x

. (14)

The partial derivatives of G in (14) are evaluated at
x̂k|k−1, ŷk|k−1, and ẑk|k−1. The innovation error of the
measurement is

ek = ymk − ŷmk|k−1, (15)

where ymk = ym(tk) is the measurement. The Kalman filter
gain matrix is

Kfx,k = Pk|k−1C
′
kT
−1
k|k−1. (16)

The filtered state and its approximate covariance matrix
are updated by

x̂k|k = x̂k|k−1 +Kfx,kek, (17a)

Pk|k = Pk|k−1 −Kfx,kTk|k−1K
′
fx,k. (17b)

The filtered estimates of the algebraic and adjoint alge-
braic variables satisfy the algebraic equations:

G(x̂k|k, ŷk|k, ẑk|k) = 0. (18)

The corresponding approximate covariance matrices are

Py,k|k = Φyx(tk, tk)Pk|kΦyx(tk, tk)′, (19a)

Pz,k|k = Φzx(tk, tk)Pk|kΦzx(tk, tk)′. (19b)

We use the implicit function theorem to compute the

sensitivities, Φyx(tk, tk) =
∂ŷk|k
∂x̂k|k

and Φzx(tk, tk) =
∂ẑk|k
∂x̂k|k

:[
∂G

∂y

∂G

∂z

] [
Φyx(tk, tk)
Φzx(tk, tk)

]
= −∂G

∂x
. (20)

The partial derivatives of G in (20) are evaluated at x̂k|k,
ŷk|k, and ẑk|k.

4.2 Time-update

In the time-update, we propagate the state estimate and
covariance matrix from time tk to time tk+1 where the next
measurement arrives. We obtain the one-step ahead pre-
dictions at time tk+1 by solving the initial value problem

x̂k(tk) = x̂k|k, (21a)

G(x̂k(t), ŷk(t), ẑk(t)) = 0, t ∈]tk; tk+1], (21b)

dx̂k(t)

dt
= F (ŷk(t), u(t)), t ∈]tk; tk+1]. (21c)

The sensitivities, Φxx(t, s) = ∂x̂k(t)
∂x̂k(s)

, Φyx(t, s) = ∂ŷk(t)
∂x̂k(s)

,

and Φzx(t, s) = ∂ẑk(t)
∂x̂k(s)

, satisfy

Φxx(s, s) = I, (22a)

∂G

∂x
Φxx(t, s) +

∂G

∂y
Φyx(t, s) +

∂G

∂z
Φzx(t, s) = 0, (22b)

dΦxx(t, s)

dt
=
∂F

∂y
Φyx(t, s). (22c)

The partial derivatives of F and G in (22) are evaluated at
x̂k(t), ŷk(t), and ẑk(t). We compute the covariance matrix
from the sensitivities (Jørgensen et al., 2007):

Pk(t) = Φxx(t, tk)Pk|kΦxx(t, tk)′

+

∫ t

tk

Φxx(t, s)σ(ŷk(s), u(s))σ(ŷk(s), u(s))′Φxx(t, s)′ds.

(23)

4.3 Numerical solution of the time-update equations

We use Euler’s implicit method to solve the initial value
problem (21) for the one-step ahead predictions, x̂k+1|k =
x̂k(tk+1), ŷk+1|k = ŷk(tk+1), and ẑk+1|k = ẑk(tk+1). That
corresponds to solving the nonlinear equations

Rk+1|k = Rk+1|k(x̂k+1|k, ŷk+1|k, ẑk+1|k)

= Rk+1|k(x̂k+1|k, ŷk+1|k, ẑk+1|k; x̂k|k, uk)

=

[
x̂k+1|k − F (ŷk+1|k, uk)∆tk − x̂k|k

G(x̂k+1|k, ŷk+1|k, ẑk+1|k)

]
= 0. (24)

We solve the nonlinear equations (24) with Newton’s
method. The approach is similar to the one described in
Section 3. We also discretize the sensitivity equations (22)
with Euler’s implicit method: I −∂F

∂y
∆tk 0

∂G

∂x

∂G

∂y

∂G

∂z

[Φxx(tk+1, tk)
Φyx(tk+1, tk)
Φzx(tk+1, tk)

]
=

[
I
0

]
. (25)

The partial derivatives of F and G in (25) are evaluated
at x̂k+1|k, ŷk+1|k, and ẑk+1|k. We exploit the structure
of the linear system (25) in the same way that we did
in Section 3.1. We discretize the integral in (23) with a
left rectangle quadrature rule to obtain an expression for
Pk+1|k = Pk(tk+1):

Pk+1|k = Φxx(tk+1, tk)ΛkΦxx(tk+1, tk)′ (26a)

Λk = Pk|k + σ(ŷk|k, uk)σ(ŷk|k, uk)′∆tk (26b)

5. DYNAMIC UV FLASH SEPARATION PROCESS

In this section, we consider a flash separation process
where a mixture of NC chemical components is separated
into a vapor phase and a liquid phase. The vapor phase
and the liquid phase are in thermodynamic equilibrium.
A feed stream supplies the separator with a vapor-liquid
mixture. The mixture exits the separator from a vapor
stream and a liquid stream, and the separator is subject
to external heating. The two main principles of the model
of the separation process are 1) vapor-liquid equilibrium
and 2) conservation of mass and energy.

5.1 Vapor-liquid equilibrium

The vapor phase (v) and the liquid phase (l) are in thermo-
dynamic equilibrium. The second law of thermodynamics
states that the entropy, S, of a closed system in equilibrium
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is maximal. As we discuss later, the internal energy, U ,
and the total composition of the mixture (in moles), n,
are given by conservation equations. The volume, V , of
the separator is fixed. The above conditions constitute the
UV flash optimization problem,

max
T,P,nv,nl

S = Sv(T, P, nv) + Sl(T, P, nl), (27a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (27b)

V v(T, P, nv) + V l(T, P, nl) = V, (27c)

nvi + nli = ni, i = 1, . . . , NC . (27d)

The solution to the UV flash optimization problem is the
temperature, T , pressure, P , and vapor-liquid composition
(in moles), nv and nl, that maximize entropy while satis-
fying the constraints on the internal energy, U , volume, V ,
and total composition, n. The UV flash is sometimes called
the UVn flash or the isoenergetic-isochoric (constant en-
ergy - constant volume) flash. The UV flash optimization
problem (27) is in the form

min
y

f(y), (28a)

s.t. g(y) = x, (28b)

h(y) = 0, (28c)

where the states are x = [U ;n], and the algebraic variables
are y = [T ;P ;nv;nl]. Because (28) does not contain
inequality constraints, the first-order optimality conditions
are a set of algebraic equations:

G(x, y, z) = 0. (29)

z are Lagrange multipliers.

5.2 Conservation of mass and energy

The internal energy, U , and the total composition (in
moles), n, of the mixture are conserved. The deterministic
conservation equations are

U̇(t) = Hv
F (t) +H l

F (t)−HV (t)−HL(t) +Q(t), (30a)

ṅi(t) = fvF,i(t) + f lF,i(t)− vi(t)− li(t), i = 1, . . . , NC .

(30b)

Hv
F and H l

F are the vapor-liquid enthalpies of the feed
stream, and HV and HL are the enthalpies of the vapor
and liquid streams. Similarly, fvF,i and f lF,i are the vapor-
liquid flow rates of the feed stream, and vi and li are the
flow rates of the vapor stream and the liquid stream. Q is
the heat flux from the external heating. The deterministic
conservation equations (30) are in the form

ẋ(t) = F (y(t), u(t)), (31)

where u are inputs. Adding process noise to (31) results in
the stochastic differential equations (1b).

5.3 Thermodynamic model

Because the vapor-liquid equilibrium conditions are the
first-order optimality conditions of an optimization prob-
lem, they contain first-order derivatives of thermody-
namic functions. We therefore need to evaluate second-
order derivatives of thermodynamic functions in order to
evaluate the Jacobian matrices of the equilibrium con-
ditions. We use the open-source thermodynamic library,
ThermoLib, developed by Ritschel et al. (2017b, 2016)
for that purpose. It implements a thermodynamic model

based on the DIPPR database (Thomson, 1996) and cu-
bic equations of state. It provides routines that evaluate
enthalpy, H = H(T, P, n), entropy, S = S(T, P, n), and
volume, V = V (T, P, n), as well as first- and second-
order derivatives. Given H, S, and V , the internal energy
is U = H − PV , Gibbs energy is G = H − TS, and
Helmholtz energy is A = U − TS. ThermoLib is available
from www.psetools.org.

6. NUMERICAL EXAMPLE

We use the extended Kalman filter as a soft sensor that
can estimate the vapor-liquid composition of a mixture
based on temperature and pressure measurements. Soft
sensing of compositions is an economical alternative to
physical sensors which can be slow, expensive, and lack
accuracy. We consider the separation of a mixture of 60%
C1, 8% C2, 5% C3, 25% n-C7, and 2% CO2 in a 0.2 m3

separator. We consider a 72 h time interval and a sampling
time of 5 min. We assume that the inputs are known. The
tank is cooled, i.e. Q ≤ 0. Q increases from −9 MJ/h
to −4 MJ/h after 24 h. The feed flow rate is constant
at 1000 mol/h, and the vapor-liquid stream flow rates
are constant at 400 mol/h and 600 mol/h. The standard
deviations of the temperature and pressure measurement
noise are 10 K and 10−1/2 ≈ 0.3 MPa. We consider
a constant diffusion coefficient, i.e. σ(y(t), u(t)) = σ =
diag([σU ;σC1

;σC2
;σC3

;σn-C7
;σCO2

]), where σU = 1 MJ,
σC1

= σC2
= σn-C7

= 1 mol, and σC3
= σCO2

= 0.1 mol.
The mean of the initial states, x0, is a steady-state of the
deterministic system (30), and the covariance of the initial
states is P0 = σσ′.

Fig. 1 shows the filtered estimates of the total composition
(in moles), internal energy, temperature, and pressure.
It also shows the deviation of the estimates from the
corresponding true simulated quantities and the root-
mean-square deviation (RMSD). The RMSD of the i’th
state variable is

RMSDi =

(
1

N + 1

N∑
k=0

(x̂i,k|k − xi,k)2

)1/2

, (32)

where we compute the simulated states, xk, as described
in Section 3. N + 1 = 865 is the number of measurement
samples. The RMSD of the temperature and pressure
estimates are computed similarly. We see that the devi-
ations of the estimates are small compared to the scales
of the estimates. Fig. 2 shows the filtered estimates of
the total mole fractions, the vapor-liquid mole fractions,
and the vapor fraction. Such estimates are necessary in
model predictive control of processes with constraints on
the purity (i.e. mole fractions) of the output streams, e.g.
separation and distillation processes.

7. CONCLUSIONS

We present an extended Kalman filter for state estimation
of UV flash processes. It is natural to model such processes,
as well as other phase equilibrium processes, with DAEs
that are in a semi-explicit index-1 form. We describe a
model of a UV flash separation process, and demonstrate
that it is in the semi-explicit index-1 DAE form. Finally,
we demonstrate the accuracy of the extended Kalman
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Fig. 1. Top row: filtered estimates of total composition, internal energy, temperature, and pressure. Middle and bottom
rows: deviation (dev.) of estimates from the simulated (i.e. true) separation process. The black horizontal lines are
+/- two times the RMSD of the estimates.
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Fig. 2. Estimates of the total mole fractions, vapor mole fractions, liquid mole fractions, and the vapor fraction. We do
not show the vapor mole fractions of C3 and n-C7 because they are very small, i.e. below 1%.

filter with a numerical example that involves soft sensing
of vapor-liquid compositions based on temperature and
pressure measurements.
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