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Abstract: We are concerned with robust and accurate forecasting of multiphase flow rates
in wells and pipelines during oil and gas production. In practice, the possibility to physically
measure the rates is often limited; besides, it is desirable to estimate future values of multiphase
rates based on the previous behavior of the system. In this work, we demonstrate that a Long
Short-Term Memory (LSTM) recurrent artificial network is able not only to accurately estimate
the multiphase rates at current time (i.e., act as a virtual flow meter), but also to forecast the
rates for a sequence of future time instants. For a synthetic severe slugging case, LSTM forecasts
compare favorably with the results of hydrodynamical modeling. LSTM results for a synthetic
noisy dataset of a variable rate well test show that the model can also successfully forecast
multiphase rates for a system with changing flow patterns.
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1. INTRODUCTION

Accurate multiphase flow rate measurement is an indis-
pensable tool for production optimization from oil and gas
fields, especially in an offshore environment (see e.g. Amin
et al. (2005)). Currently, there are two industry-accepted
solutions for providing such measurements: using test sep-
arators and using multiphase flow meters. While these
approaches have their advantages and disadvantages of
(see e.g. Corneliussen et al. (2005)), both of them require
hardware installations. This can limit the applicability of
physical metering devices due to possible transportation
issues, space and security considerations, and high costs.

A virtual flow meter (VFM) is a mathematical model
which allows to estimate multiphase rates using available
data on the flow. A VFM, primarily using readily available
cheap measurements (such as pressure and temperature),
can potentially serve as a cost-efficient addition to physical
flow metering devices.

VFM models can be classified as hydrodynamical or data-
driven. In the hydrodynamical approach one typically
solves the phase conservation equations in a pipe geometry,
which requires the choice of an adequate mathematical
model, appropriate numerical method, and availability of
a large number of input parameters. An advantage of this
method is that one can estimate various parameters at
arbitrary points of the flowline. A comparison of several
hydrodynamical VFMs is presented in Amin (2015).

The data-driven approach is a system identification tool,
which requires the user to accept one of generic model
structures. Such models exploit no prior knowledge on the
flow and produce essentially data descriptions. In practice,
it is easier to setup a data-driven model as compared to a
hydrodynamical one. However, data-driven predictions do

not have a physical interpretation and it is not possible
to estimate parameters with no historical data. Despite
these shortcomings, the use of data-driven VFMs is gaining
momentum in the industry, see Briers et al. (2016).

One important difference between hydrodynamical and
data-driven VFMs is the ability of the latter not only to
estimate rates at the current time instant tk, but also
to forecast rates at future time instants tk+1, tk+2, . . . .
Indeed, without a priori knowledge of time-varying bound-
ary conditions, a hydrodynamical model is only able to
yield forecasts at the next time instant tk+1.

The goal of the present paper is to evaluate the fore-
casting capability of a class of data-driven VFMs which
use artificial neural networks (ANNs). Feedforward ANNs
have been successfully used in VFM predictions by many
authors (see e.g. Al-Qutami et al. (2018) and the references
therein). However, the forecasting capability of feedfor-
ward ANNs is limited because they are unaware of the
temporal structure or order between observations.

Recent results in such applications as automatic text
translation and image captioning suggest that the Long
Short-Term Memory (LSTM) model of Hochreiter and
Schmidhuber (1997) is an efficient tool for time series
forecasting.

In order to assess the LSTM model performance for VFM
applications, we consider a synthetic two-phase severe
slugging case (see Andrianov et al. (2007)) and a three-
phase well testing dataset.

For the severe slugging data set, we demonstrate superior
performance of LSTM as compared to the feedforward
ANN sliding window approach. We investigate the LSTM
convergence as a function of provided distributed pressure
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measurements and determine the optimal model configu-
ration.

For the variable rate well test data set, we show that
LSTM can successfully handle a noisy dataset, describing
a system with changing flow patterns. The accuracy of the
forecast improves with the the number of flow periods used
for training the model.

2. LSTM MODEL SETUP

Consider a time series {x(tk)} and {y(tk)}, where x(tk)
is a m-dimensional vector of input features and y(tk) is a
n-dimensional vector of output features values at equally
spaced time instants tk. In VFM applications, features are
the measurement data acquired at different points of the
flowline. One can select the sets of the input and output
features independently from each other. In particular, a
feature can simultaneously be used for both input and
output (e.g., we might be willing to forecast future values
of a flow rate from its past values).

We are interested in forecasting the sequences of output
features of length lo using the sequences of input features
of length li. To this end, the terms x(tk) and y(tk) from
the training interval [t0, tL] are divided into N overlapping
sequences of length l = li + lo, shifted by an indentation
step s. The result can be cast in form of the training array

X =

 x(t0) . . . x(tli−1)
x(ts) . . . x(ts+li−1)

. . . . . . . . . . . . . . . . . . . . . . . .
x(tL−l+1) . . . x(tL−lo)

 (1)

and the target array

Y =

 y(tli) . . . y(tl−1)
y(ts+li) . . . y(ts+l−1)
. . . . . . . . . . . . . . . . . . . . . . . .
y(tL−lo+1) . . . y(tL)

 , (2)

so that X ∈ RN×li×m
and Y ∈ RN×lo×n

.

LSTM maps an input sequence x(tk), . . . ,x(tk+li−1) to the
output sequence ŷ(tk+li), . . . , ŷ(tk+l−1) for k = 0, . . . , N .
LSTM is conventionally represented as an unfolded in
time layered network of memory cells, followed by a time-
distributed layer, as illustrated in Fig. 1.

A memory cell is defined as follows,

g(t) = ϕ
(
Wgx · x(tk) + Wgh · h(tk−1) + bg

)
(3)

i(t) = σ
(
Wix · x(tk) + Wih · h(tk−1) + bi

)
(4)

f(t) = σ
(
Wfx · x(tk) + Wfh · h(tk−1) + bf

)
(5)

o(t) = σ
(
Wox · x(tk) + Woh · h(tk−1) + bo

)
(6)

s(t) = g(tk)i(tk) + s(tk−1)f(tk) (7)

h(t) = ϕ (s(tk)o(tk)) , (8)

where the hyperbolic tangent ϕ and the sigmoid σ are the
activation functions; C is a number of memory cells in

LSTM’s layers; W·,x ∈ Rm
, W·,h ∈ RC

, and b· ∈ R are
memory cells’ weights and biases; x(tk) ∈ Rm

is the input

vector at the current time instant; and h(tk−1) ∈ RC
is

the vector of current layer’s output values of memory cells
from the previous time instant.

The time-distributed layer cells are defined via a linear
transformation

Fig. 1. An example of a two layer LSTM with each layer
containing C memory cells (MCs), followed by a time-
distributed (TD) layer. Temporal dependencies are
highlighted in yellow.

ŷ(tk) = Wh(tk) + b, (9)

where W ∈ Rn×C
and b ∈ Rn

are the corresponding
weights and biases.

The trainable parameters of the model (i.e., weights and
the biases of all cells) are iteratively updated to minimize
a loss function, which penalizes the distance between the
output and the target sequences. The original LSTM
by Hochreiter and Schmidhuber (1997) is limited to the
case when li = lo; Cho et al. (2014) and Sutskever
et al. (2014) introduced an encoder-decoder architecture
to generalize the LSTM applicability for cases with li 6= lo.
See Lipton et al. (2015) for a review.

In this work, we use Keras implementation of LSTM,
see Chollet et al. (2015). The simulation scripts with the
corresponding datasets (see below) are publicly available
under https://github.com/nikolai-andrianov/VFM/.

3. EXPERIMENTS

3.1 Severe Slugging Case

Consider a two-phase isothermal gas-liquid flow in a 60
m section of an offshore pipeline, ending with a 14 m
long riser. The flow can be described by a set of partial
differential equations, expressing conservation of mass and
momentum for the phases. We will be using the mathe-
matical model, numerical method, and the specifications
for the test case, presented in Andrianov et al. (2007).

Under certain constant boundary conditions at the pipeline
inlet and at the riser outlet, the numerical solution exhibits
a typical severe slugging behavior, see Fig. 2.

We will utilize this numerical solution as a “ground truth”
for forecasting the liquid and gas rates at the riser bottom
using the data from virtual pressure gauges distributed
along the flowline, see Fig. 3.

In order to run LSTM forecasts, we resample the normal-
ized pressure and flow rate data with a uniform timestep of
1 sec, and use half of the total hydrodynamical simulation
time as a training interval, [t0, tL] = [0, 1500] sec.
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Fig. 2. A snapshot of the numerical solution for the severe
slugging case at intermediate time instant.

Fig. 3. Pressure data used as input to forecast the flow
rates.

We first analyze the quality of LSTM forecasts when the
network is trained using only pressure readings as input
and liquid rate as output. The training data is divided into
N = 1127 sequences of length l = 374 sec with li = lo,
shifted by the indentation step s = 1 sec. The network
details are given below:

• Deep LSTM with 3 hidden layers and 10 memory cells
at each layer;
• Total number of trainable parameters is 2171, . . . , 2411

with validation split of 0.05 for the number of input
features m = 1, . . . , 7 and number of output features
n = 1;
• Fixed random seed for repeatability in parameter

initialization;
• Mean squared error (MSE) loss function and Adam

optimizer of Kingma and Ba (2014) with batch size
of 1 and number epochs equal to 10.

These network training parameters were determined by
trial-and-error. For the case considered, the forecasting
results were most sensitive to the number and lengths of
input/output sequences.

Fig. 4. LSTM liquid rate forecasts using various number
of pressure readings as input.

The forecasting capability of an LSTM can be quantified
with the ratio

f =
lo

tL − t0
· 100%, (10)

which we will term the relative forecasting interval. For the
severe slugging case f = 12.4%, i.e. the LSTM can forecast
the future flow rates for the time interval which length is
12.4% of the length of LSTM’s training interval.

The forecasts are plotted as 15 non-overlapping sequences
of length l = 374 sec with li = lo = 187 sec, shifted by
the indentation step s = 187 sec, see Fig. 4. Observe
that even when trained on a single pressure reading,
LSTM yields excellent agreement with the ground truth
hydrodynamical solution in terms of the frequency and
amplitude of the liquid rate peaks. This is in striking
contrast to the results of a feedforward ANN using sliding
window approach with 3 hidden layers and 10 neurons at
each layer, trained on the same dataset as the LSTM, see
Fig. 5.

Fig. 5. Feedforward ANN liquid rate forecasts using a
single pressure readings as input.

Adding more pressure data as the training input does
generally increase the accuracy of LSTM forecasts. How-
ever, this improvement is not monotonous, and starting
from a certain number of pressure readings (in this case
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Fig. 6. LSTM convergence history as a function of number
of pressure readings used to train the network.

Fig. 7. First output sequences of zoomed LSTM liquid rate
forecasts using 5 pressure readings as input.

5 readings) the accuracy remains essentially the same, see
Fig. 6. One can argue that this new data is similar to the
one already used for model training (cf. Fig. 3), so the
model performance does not improve any further.

Note that there are spurious oscillations visible in LSTM
forecasts on Fig. 4. We replot the zoomed LSTM forecasts
using 5 pressure readings as overlapping sequences of
the same length li = lo = 187 sec, but shifted by the
indentation step s = 93 sec, see Fig. 7.

Observe that the spurious oscillations are located at the
beginning of each sequence. This is not surprising because
LSTM learns its weights within the input sequence. How-
ever, these oscillations do not affect the accuracy of the
forecasts if we use overlapping output sequences. Indeed,
referring to Fig. 7 we have by the end of t = li the 0th

sequence forecast till t = 2li, which is oscillation-free by
the time t = li + s, when the new 1st sequence forecast
is made till t = 2li + s. We keep using the 0th sequence
forecast until the oscillations in the 1st sequence forecast
disappear, and repeat the process.

The performance of LSTM trained on pressure and liquid
rate is presented in Fig. 8. Observe that increasing the

Fig. 8. Convergence history of LSTM trained on several
pressure readings and the liquid rate.

number of measurements used to train the network does
not improve the accuracy of the forecast, cf. Fig. 6.
Moreover, if few pressure readings are used for training,
the performance of LSTM trained on pressure and rate
data becomes worse than that of LSTM trained just on
pressure data. In other words, the improvement in model
accuracy is not monotonous with respect to the amount of
training data used.

The accuracy of LSTM forecasts of both liquid and gas
rates (i.e., n = 2 output features) is essentially the same
as the results presented above for liquid rate forecasts only.

We also tested the encoder-decoder LSTM of Cho et al.
(2014) and Sutskever et al. (2014), but the forecasts were
less accurate compared to the results presented above.

Wall time required for training of LSTMs described above
with was approx. 30 mins using a single core of i7-7700HQ
CPU. Using 8 cores of the same CPU resulted in approx.
20% speedup.

3.2 Variable Rate Well Test

Consider a synthetic dataset of pressure, temperature, and
oil, gas and water rates measurements during a well test,
see Fig. 9 and Fig. 10. The data is characteristic for a rich
gas condensate deliverability test, which involves flowing
the well on successively larger choke openings in order to
determine the well’s inflow performance relationship (IPR)
and maximize gas condensate recovery. (In what follows,
we will refer to gas condensate as “oil”.)

The dataset consists of 5 flow periods, which are character-
ized by the corresponding choke opening. Within each flow
period, the measurements are generally sampled with the
uniform timestep of 1 min. We are interested in forecasting
the multiphase rates using the values of pressure and
temperature.

To this end, we will be utilizing essentially the same
procedure as for the severe slugging experiment. We train
the network on first flow periods using pressure and tem-
perature readings as input features and multiphase rates
as output features. Then, the multiphase rates forecasts
are run for all flow periods.
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Fig. 9. Pressure and temperature for the variable rate well
test.

Fig. 10. Multiphase rates for the variable rate well test.

One key difference of the variable rate well test case from
the severe slugging case considered in the previous section
is that the flow pattern in the well test case changes
drastically from one flow period to another, see Fig. 9
and Fig. 10. This constitutes a challenge to the neural
network, because we try to approximate the behavior of
the changing flow system with the same ANN. Another
difference and a challenge for the neural network is that
the dataset is noisy.

In what follows, we will compare the forecasting accuracy
of LSTMs trained on first 2 and 3 flow periods. For these
two cases, the training data is divided into N = 2705
and N = 3828 sequences, respectively. In both cases the
sequence length is l = 244 min with li = lo, and the
indentation step is s = 1 min. The relative forecasting
intervals are f = 3.8% and f = 2.6%, respectively. The
LSTM structure is the same as described in the previous
section. The forecasts are presented in sequences of l = 244
min with the indentation step is s = li/2 min.

The results for the LSTM, trained on first 2 flow periods,
are presented in Fig. 11.

The model reproduces well the training data from the first
2 flow periods. The best accuracy is achieved for forecasted

Fig. 11. Multiphase rates forecast for the LSTM trained on
first 2 flow periods. Spurious oscillations are plotted
semi-transparent.

values of oil and water rates, while the gas rate is slightly
overestimated. Still, the trends for all rates are captured
correctly.

On the testing set (flow periods 3 to 5), the model yields
reasonable values for the oil and water rates. However,
the forecasts for gas rate are non-satisfactory. This can be
explained by the fact that both oil and water rates lie in a
same range throughout all flow periods, which is not the
case for the gas rate. Also, note that the first li data points
on each training sequence are not covered by any output
sequence. Consequently, the sharp peaks at the beginning
of the flow periods 2, 3, and 4 are not included in the
training dataset.

On Fig. 11 we witness the same spurious oscillations as
discussed in the previous section, cf. Fig. 7. To see this, in
Fig. 12 we plot the measured gas rate together with the
first output sequences of forecasted gas rate during the
1st flow period. Observe that the peaks are located at the
beginning of each output sequence of length lo = 122 min.
By following the same reasoning as in the previous section,
we argue that these spurious oscillations do not affect the
quality of the forecast.

Fig. 12. First output sequences of zoomed LSTM gas rate
forecasts.
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Fig. 13. Multiphase rates forecast for the LSTM trained on
first 3 flow periods. Spurious oscillations are plotted
semi-transparent.

The results for the LSTM, trained on first 3 flow periods,
are presented in Fig. 13. The model reproduces well all
training data from the first 3 flow periods. It is interesting
to note that the forecasts are less noisy as compared to
the measured data. There are spurious oscillations visible
on the graphs, but their amplitude is less than that of the
model, trained on 2 flow periods.

On the testing set (flow periods 4 and 5), the model
performance is best for oil and water rates, and less
satisfactory for gas rates. Again, this can be explained
by a larger variability of the gas rate as compared to oil
and water rates. Overall, the accuracy of the forecast is
considerably better compared to that of the model, trained
just on 2 flow periods.

Wall time required for training of LSTMs on first two and
three flow periods using a single core of i7-7700HQ CPU
was approx. 50 and 90 min, respectively.

4. CONCLUSION

In this work, we have shown that LSTM can be considered
as a promising tool for forecasting the values of multiphase
rates using pressure and temperature data. The best
accuracy was achieved when the lengths of the input and
output sequences to LSTM were equal. Consequently, we
are limited in the length of the time interval suited for
forecasts. Removing this limitation without sacrifice on
the accuracy of the forecast can be an interesting topic
of future research.
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