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Abstract: Optimal control is important in the oil and gas industry, where small changes of
process variables may have significant economical, environmental and safety impacts. Finding
the optimal setpoint for a controlled variable may not be straight-forward for an operator,
motivating the use of automatic optimization methods. A widely used optimal control method
is the model predictive control (MPC) method which requires a dynamic model to predict the
future behaviour of the system. The MPC satisfies constraints and finds the optimal input to
a plant. However, the requirement of a model can make the method difficult to implement and
computation time might be too high for real-time implementation. An alternative to MPC is
the Extremum Seeking (ES) method. This method aims to find the input that optimizes the
output by slowly perturbing the controlled variable. It does not require a model and is less
computationally expensive. In this paper we apply an MPC and an ES optimization scheme to
a gas liquid cylindrical cyclone in order to optimize the purity of the gas outlet. Simulations
show that both methods are able to find a liquid level setpoint that ensures high quality of the
gas outlet stream under varying inlet conditions.
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1. INTRODUCTION

Optimal control plays an important role in the offshore
production of oil and gas. It can ensure operation within
the environmental, product quality and safety constraints
of the production facility while economically optimizing
production. A small change in process variables, such as
pressure and flow rate, may lead to a huge economic
payback as reported in Willersrud et al. (2013), where it
is shown through simulations that the implementation of
a short-term nonlinear model predictive control (NMPC)
method increased the yearly revenue from a typical oil
production facility with over USD $16 million (with an
oil-price of USD $100 per barrel).

The offshore oil and gas industry is currently relying on
large vessels called gravity separators to separate the pro-
duced fluids, i.e., oil, water and gas. The gravity separators
are well known and robust, but due to their large size
they are not suited for installation in deep waters and
in challenging areas such as the arctic regions (Hannisdal
et al., 2012). This is why the oil and gas industry is leaning
towards more compact separation equipment, like the gas-
liquid cylindrical cyclone (GLCC).

The GLCC is a widely used separation device and is
currently installed in over 6000 onshore gas production
and processing plants around the world (Kristiansen et al.,
2016). While popular in onshore production facilities, the

GLCC has yet to reach the same popularity in subsea and
offshore production and processing facilities.

Subsea separation and gas-liquid separation in particular
is described in Hannisdal et al. (2012) as an enabler for
(i) more efficient liquid boosting, (ii) longer range gas
compression from subsea to onshore, (iii) cost efficient hy-
drate management, (iv) more efficient riser slug depression
and (v) access to challenging field developments. Subsea
separation is also considered one of the main enablers for
what is referred to as the Subsea Factory, an all subsea oil
and gas production facility able to produce and deliver
oil and gas directly to customers without sending the
produced fluids topside for processing (Ramberg et al.,
2013).

The quality of the outlet streams of the GLCC are in-
versely proportional to each other, i.e., we have to reduce
the quality of one outlet to ensure improved quality of
the other. Research has shown that the separation perfor-
mance of the GLCC can be improved by control. Extensive
research has been performed at the University of Tulsa in
the late 90’s and early 2000’s. In Wang et al. (1998), a
dynamic model of the liquid level and gas pressure inside
a GLCC is derived and PI and PD controllers are used
to stabilize the level and pressure. In Wang et al. (2000) a
gain-scheduling like approach is used to stabilize the liquid
level when different inflow conditions are present. Another
solution, also considering the varying inlet flow, is found
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Fig. 1. Schematic of a GLCC.

in Earni et al. (2003) where a feedforward controller is
combined with feedback control to counteract the effect of
the variations.

These control methods work quite well and are able to
stabilize the liquid level and gas pressure. However, the
models used in the above papers do not include the sep-
aration of gas and liquid. Hence, the control objective is
limited to maintaining a constant liquid level and gas pres-
sure. Recently, a more sophisticated model including the
separation of gas and liquid was developed (Kristoffersen
et al., 2017b). This model includes calculations of the mass
flow of gas and liquid between the phases and includes
measures of the gas and liquid that is not separated, the
so called gas carry under (GCU) and liquid carry over
(LCO). The GCU and LCO plays an important role in
determining the efficiency of the GLCC.

The model from Kristoffersen et al. (2017b) is sufficiently
complex to capture the phenomena of GCU and LCU
and sufficiently simple to be used in model-based control
solutions. In Kristoffersen et al. (2017a), a feedback lin-
earizing controller that handles transients better than a
PI controller is derived. This method requires full state
and parameter knowledge, hence an adaptive feedback
linearizing controller was derived in Ohrem et al. (2017)
to overcome these requirements.

The model has also been incorporated into model predic-
tive control (MPC) schemes. In Kristoffersen and Holden
(2017b), a nonlinear MPC scheme using band control was
introduced. The band control allows the liquid level to
change in order to release a degree of freedom to use
for optimization. The results show an increase in GLCC
efficiency when the band control algorithm is applied.
A linear MPC scheme in combination with an extended
Kalman filter has also been developed (Kristoffersen and
Holden, 2017a).

MPC is a commonly used and well established optimal
control scheme with increasing popularity in the indus-
try (Qin and Bagwell, 2003). The advantages of MPC
are many and some are already mentioned, but there are
also disadvantages. The first, obvious, disadvantage is that
a model of sufficient accuracy is required. If the plant
dynamics are complex, such models can be difficult to ob-
tain. Developing models is time-consuming and non-trivial
and models will never be exact. Another disadvantage is
the computational time required to solve the optimization
problem. In some cases this is too long for the scheme to

be implemented in an industrial application, especially in
the case of nonlinear MPC.

An alternative to MPC are model-free optimization
schemes. One such scheme is called Extremum Seeking
(ES) (Ariyur and Krstić, 2003). Extremum seeking is an
adaptive optimization method that attempts to find the
extremum (minimum or maximum) of the reference-to-
output map of a plant. Since this map is unknown or
uncertain it is necessary to use adaptation to find the
setpoint which, in our case, maximizes the output. The
method has been around for several decades, but has risen
in popularity since the stability proof of the method on
general nonlinear systems was given in Krstić and Wang
(2000). Applications of ES ranges from finding the optimal
gas injection rate in a gas-lifted oil-well (Krishnamoor-
thy et al., 2016) to optimizing bioreactors (Hsin-Hsiung
et al., 1999) and tuning PID controllers (Killingsworth and
Krstic, 2006).

In this paper we evaluate the efficiency of the GLCC using
both MPC and ES, and investigate whether the more com-
plex model-based optimization scheme performs better
than the model-free method. As a lower-level stabilizing
controller for the ES case we use the adaptive feedback
linearizing controller from Ohrem et al. (2017). For the
NMPC we use the scheme presented in (Kristoffersen and
Holden, 2017b) with added integral action and a reformu-
lated objective function. PI controllers are used as lower
level controllers.

The paper is divided into the following sections: Section
II describes the model used in the simulations. Section III
presents the MPC and ES strategies as well as the lower
level controller. Section IV presents the results and Section
V concludes the paper.

2. DYNAMIC MODEL

A GLCC separator is shown in Fig. 1 and is based on the
principle of centrifugal separation. The inlet flow of gas
and liquid win is brought into a rotational motion inside
the separator due to the tangential inlet and high inlet
velocity. The gas and liquid are separated due to their
density difference by the centrifugal forces created by the
rotational motion. The separation is incomplete, resulting
in the accumulation of gas with some liquid droplets, called
wet gas (WG), and the accumulation of liquid with some
gas bubbles, called light liquid (LL). The accumulated gas
creates a gas pressure pG, while the accumulated liquid
creates a liquid level hL. The outlet flows of gas and liquid
are denoted by wWG and wLL, respectively.

In this paper we consider the dynamic model of a
GLCC separator with separation performance presented
in Kristoffersen and Holden (2017b), which is an extension
of the model presented in Kristoffersen et al. (2017b). The
dynamic model consists of four state variables given by:

• mLL,L: accumulated liquid in LL [kg]
• mLL,G: accumulated gas in LL [kg]
• mWG,L: accumulated liquid in WG [kg]
• mWG,G: accumulated gas in WG [kg] .

The dynamics is described by four ordinary differential
equations (ODEs) given by

Copyright © 2018, IFAC 114



ṁLL,L =βinwin − εim,L(1− βin)win

+ εL(1− βWG)mWG,L − (1− βWG,L)wLL
(1)

ṁLL,G =εim,Gβinwin − εGβLLmLL,G − βLLwLL (2)

ṁWG,L =εim,L(1− βin)win − εL(1− βWG)mWG,L

− (1− βWG)wWG
(3)

ṁWG,G =βinwin − εin,Gβinwin + εGβLLmLL,G

− βWGwWG,
(4)

where ṁLL,L and ṁLL,G are the time derivatives of liquid
and gas in the LL, respectively, ṁWG,L and ṁWG,G are the
time derivatives of liquid and gas in the WG, respectively.
The inlet conditions are given by the inlet flow win and the
inlet gas mass fraction βin. The two outlet flows are given
by wLL for the liquid outlet and wWG for the gas outlet.
The LL and WG gas mass fractions (GMFs) are given by

βLL =
mLL,G

mLL,G +mLL,L
, βWG =

mWG,G

mWG,G +mWG,L
, (5)

where βLL is the gas mass fraction in the LL and βWG is
the gas mass fraction in the WG.

The immediate separation factors, εim,L and εim,G, de-
scribe the immediate distribution of gas and liquid into the
separator volumes as the inlet flow enters the separator.
The continuous separation factors, εL and εG, describe the
continuous separation of liquid from the WG to the LL
and of gas from the LL to the WG, respectively. These
separation terms are derived from steady-state separation
performance and are highly nonlinear.

In a real process, the liquid level hL and gas pressure
pG would be available as measurements and thus, these
variables constitutes the controlled variables and are given
by

hL =
mLL,L +mLL,G

a
(6)

pG =
bmWG,G

aH − (mLL,L +mLL,G)
, (7)

where H is the total tank height and a and b are positive
constants.

3. CONTROL

Two control structures are considered in this paper. The
first utilizes the model-free Extremum Seeking method
to find the setpoint for the liquid level in the GLCC
that maximises the purity of the gas outlet. The method
requires a measurement of the gas mass fraction in the
gas outlet and this is assumed available. The liquid level
setpoint calculated by the ES method is sent to a lower-
level stabilizing controller that calculates the correct valve
opening for the liquid outlet valve and hence ensures
tracking of the setpoint. The gas pressures is kept at
a constant value by another lower-level controller. An
adaptive feedback linearizing controller is used for lower-
level control of the liquid level and for control of the gas
pressure.

In the second control structure a NMPC is used to both
optimize and stabilize the liquid level and to stabilize the
gas pressure. The NMPC requires measurements of the
masses, separation factors, inlet gas mass fraction, inlet
flow and the outlet flows. The NMPC, however, calculates
the outlet flow rates of liquid and gas that corresponds

Fig. 2. The non-model based control scheme consisting of
the adaptive feedback linearizing controller and the
ES scheme.

to an optimal liquid level and a constant gas pressure.
These flow rates are sent to lower-level controllers which,
in turn, calculates the valve openings. PI controllers are
used as lower level controllers in this case.

3.1 Extremum seeking

Extremum seeking is an adaptive method for finding the
steady-state input that maximizes (or minimizes) the
steady state output from a plant, online and without
requiring knowledge of the plant (Ariyur and Krstić, 2003).
The output we seek to maximize in this case is the GMF
in the gas outlet stream. As input we will use the liquid
level. A static mapping between the liquid level and GMF
in the gas outlet can be described by

f(hL,d) = f∗ +
f ′′

2
(hL,d − h∗L)2 (8)

where f∗ is the optimal value of f(hL,d), the second
derivative |f ′′| > 0 is constant and h∗L is the optimal liquid
level. All these parameters are unknown, in fact, all we
need to know is whether f ′′ is positive or negative, i.e.
we need to know if the map provides us with a minimum
or maximum. By perturbing the input to the plant, i.e.
the liquid level, with a sinusoid of the form a sin(ωt)
we get a measure of the unknown gradient f ′(h∗L). The

integrator adds to the estimate ĥL. At the maximum, the
gradient will be zero and only small variations caused by
the perturbations will affect the estimate. A block diagram
showing the non-model based control solution is shown in
Fig. 2.

When designing the method, key parameters are the
amplitude a and frequency ω of the perturbation signal,
the cut-off frequencies of the high-pass and low-pass filters,
ωh and ωl, respectively, and the adaptation gain k. As
mentioned in Krstić and Wang (2000), the overall feedback
system has three time-scales, from fastest to slowest these
are: (i) the plant with the stabilizing controller, (ii) the
periodic perturbation and (iii) the high-pass and low-pass
filters.

The GMF of the gas outlet and the level of liquid in the
GLCC are inversely related, i.e., a low liquid level indicates
a high GMF in the gas outlet stream. By slowly changing
the liquid level from 1 m to 2.5 m and measuring the
GMF with different inlet conditions, we obtain the relation
shown in Fig. 3 by curve fitting the measured relationship.
It is clear from Fig. 3 that the location of the maximum
and the slope of the curve depends greatly on the inlet
conditions. In the worst case, when the inlet contains low
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Fig. 3. The efficiency peak and slope of the curve changes
with different inlet conditions. The low limit of the
liquid level is at 1 m.

amounts of gas and high amounts of liquid, the efficiency
peak is below the minimum allowed liquid level of 1 m. The
extremum seeking scheme is unaware of this limit and will
therefore attempt to decrease the level to an unfeasible
operating point.

To address this problem we suggest using a projection
based integration scheme instead of a standard integra-
tor when calculating the desired liquid level in the ex-
tremum seeking algorithm. The projection based integra-
tion scheme utilizes the fact that we know certain limits
on the parameter we try to estimate and ensures that the
integration stops when the parameter reaches this limit.
The update law for the liquid level setpoint then becomes

˙̂
hL,d = kγProj(ĥL,d,

˙̂
hL,d) . (9)

As a lower-level stabilizing controller for the ES case we
have chosen the adaptive feedback linearizing controller
presented in Ohrem et al. (2017). This controller ensures
excellent trajectory tracking for both the liquid level and
the gas pressure. The controller is briefly presented here
and for a full presentation including stability proofs we
refer to the original paper (Ohrem et al., 2017).

We first define the error variables for the liquid level and
gas pressure

h̃L = hL − hL,d (10)

p̃G = pG − pG,d (11)

where hL,d and pG,d are the desired liquid level and
gas pressure, respectively. The time derivatives of (10)
and (11)

˙̃
hL =

1

a
(f1 + f1,s − wLL) = φ1 (θ1 −∆wLL) (12)

˙̃pG = F
[
f3 + f3,s −

1

η + 1
wWG +

pG
b

(f1 + f1,s −∆wLL)

]
(13)

where φ1 = 1/a is known and θ1 = f1,s is an unknown

disturbance. φ2 =
[
F FwWG

Fξ2
b

]
consists of known

signals, while θ2 = [f3,s σ θ1] with σ = 1 − 1
η+1 is

unknown. The variable η =
mWG,L

mWG,G
has its own dynamics,

but this is left out in this paper. The variable F =
b

a(H−hL)
.

The separation flows between the phases are described by

f1,s = εL(1− βWG)mWG,L − εim,L(1− βin)win (14)

+ εim,Gβinwin − εGβLLmLL,G

f3,s = εim,L(1− βin)win − εL(1− βWG)mWG,L (15)

and are considered as unknown disturbances to the system.

The inputs to (12) and (13) are the net mass flows of liquid
and gas through the GLCC. These are chosen as

∆wLL = θ̂1 +
1

φ1
k1h̃L (16)

∆wWG = −pG
b
θ̂1 −

pG
bφ1

k1h̃L +
1

F

(
k2p̃G + θ̂T2 φ2

)
, (17)

where ∆wLL = wLL− f1 and is the difference between the
outlet liquid flow wLL and the inlet liquid flow f1. For the
gas outlet, ∆wWG = wWG−f3 where wWG is the outlet gas
flow and f3 is the inlet gas flow. The controller gains are
k1 > 0 and k2 > 0. Since the actual inputs to the GLCC
are the valve openings uL and uG we calculate these as
follows:

uL =
wLL

AL

√
ρLmax(pL − p0, 0)

(18)

uG =
wWG

AG

√
ρGmax(pG − p0, 0)

, (19)

where AL and AG are the cross sectional areas of the liquid
and gas valves, respectively, p0 is the downstream pressure
and pL = ρLghL + pG is the pressure at the liquid outlet
and pG is the pressure at the gas outlet. The max function
ensures a non-negative flow.

The estimates θ̂1 and θ̂2 are updated with the following
projection based update laws:

˙̂
θ1 = γ1Proj(θ̂1, φ1ξ̃1) (20)

˙̂
θ2 = Γ2Proj(θ̂2, φ2ξ̃2) . (21)

The projection operator is defined in (Hovakimyan and
Cao, 2010, App. B) as

Proj(x, y) ,

{
y if g(x) < 0 ∨ g(x) ≥ 0 ∧∇gTy ≤ 0

y − ∇g∇g
Tyg(x)

||∇g||2 , if g(x) ≥ 0 ∧∇gTy > 0

(22)

where the logic symbols ∧ and ∨ represents or and and,
respectively, and g(x) is a smooth function given by

g(x) =
(κx + 1)xTx− x2max

κxx2max

, (23)

with κx as the projection tolerance bound, ||x||22 ≤ x2max

and the gradient ∇g(x) = 2 κx+1
κxx2

max
x. This adaptive con-

troller achieves local asymptotic stability of the error sys-
tem (12) and (13).

3.2 Nonlinear Model Predictive Control

MPC is an advanced control method using a prediction
model of the plant to achieve optimal control. At each
execution time, the MPC optimizes the future performance
of the prediction model over a finite horizon and based ob-
tains an optimal input sequence based on constraints and
a specified optimal control objective. Optimal control is
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achieved by applying the first element of the optimal input
sequence to the plant and repeating this procedure at the
next execution time. MPC combines both the stabilizing
task of the controller and the optimization task of the
optimizer, while naturally including constraints instead of
using a projection method like in the ES scheme. Thus, for
evaluating the efficiency of the cascade consisting of the
adaptive feedback linearizing controller and the extremum
seeking method, a NMPC combining the objectives of both
the adaptive controller and extremum seeking optimizer is
designed. The MPC computes the flow references to two PI
controllers controlling the flow through the outlet valves. A
block diagram of the closed-loop system using the NMPC
scheme is shown in Fig. 4.

The applied NMPC is an extension of the NMPC pre-
sented in Kristoffersen and Holden (2017b) using an aug-
mented nonlinear prediction model to incorporate integral
action and a reformulated objective function to overcome
the prediction error experienced for high inlet gas mass
flows in Kristoffersen and Holden (2017b). The following
summary is a brief presentation of the applied NMPC and
the reader is referred to Kristoffersen and Holden (2017b)
for additional details.

The nonlinear dynamic model (1)–(4) is augmented with
two additional integral error states of the controlled vari-
ables giving the augmented nonlinear prediction model

˙̃m=


(1)
(2)
(3)
(4)

m̃1+m̃2

a − hL,d
bm̃2

aH−(m̃1+m̃2)
− pG,d

=f(m̃, win, βin, εin, ε, w), (24)

where m̃ = [m̃LL,L, m̃LL,G, m̃WG,L, m̃WG,G, m̃5, m̃6]> is
the augmented state vector, εin = [εin,L, εin,G]>, ε =
[εL, εG]>, w = [wLL, wWG]>.

The objective of the NMPC is to control the liquid
level and gas pressure while optimizing the purity of
the outlet products. As there are only two inputs and
four control variables, the optimization problem solved
by the NMPC is augmented with band control of the
liquid level, using slack variables, to free up a degree of
freedom enabling optimization of the gas product purity.
Moreover, the NMPC uses a different sampling time for
the states and inputs. The fast dynamics of the system
necessitates a fast sampling time, while the sampling time
for the inputs are constrained to a slower sampling time to
reduce complexity and enable use industrial applications.
Additionally, to further reduce complexity, the separation
factors are assumed constant over the prediction horizon.

The NMPC scheme is implemented in MATLAB using
CasADi version 3.1.0. CasADi is a framework for auto-
matic differentiation and optimization (Andersson et al.,

Fig. 4. The NMPC scheme including the PI flow controller.

2012). The nonlinear optimization problem created offline
is discretized using the method of multiple shooting and
solved online by the NMPC using IPOPT which is an
interior-point solver interfaced by CasADi (Wächter and
Biegler, 2005).

The part of the cost function of the nonlinear optimization
problem optimizing the purity of the outlet products is
reformulated from minimizing (1 − βLL) and (1− βWG)
to maximizing the purity of the outlet products mLL,L

and mWG,G. This change is motivated by the prediction
error experienced for high inlet gas mass flows in Kristof-
fersen and Holden (2017b) occurring due to model error
introduced in mWG,L by using constant separation factors.
The reformulated optimization problem, including band
control, is given as

min
m̃,w

J =

∫ T

0

[
q1

(hL − hL,d
hL,d

)2
+q2

(pG − pG,d
pG,d

)2
+ q3

(
∆wLL,d

)2
+q4

(
∆wWG,d

)2
+ q5(m̃5)2 + q6(m̃6)2

− q7

(
m̃LL,L

)2−q8

(
m̃WG,G

)2]
dt

(25)

s.t. m̃(0) = m̃0 (26)

˙̃m = f(m̃, win, βin, εin, ε, w) (27)

s1 + hL = hL,max (28)

s2 − hL = −hL,min (29)

hL,d − cH/2 ≤ hL ≤ hL,d + cH/2 (30)

pG,min ≤ pG ≤ pG,max (31)

wd,min ≤ wd ≤ wd,max (32)

− s ≤ 0 (33)

where Q = diag[q1, q2, q3, q4, q5, q6, q7, q8] is the MPC
weightss, hL,d is the desired liquid level, pG,d is the desired
gas pressure, wd = [wLL,d, wWG,d]

> is the desired outlet
flows applied as reference values for the PI controllers
controlling the outlet valves, hL,max and hL,min is the upper
and lower limits of the liquid level for the band control
scheme, pG,max and pG,min is the upper and lower limits
for the gas pressure, wd,max and wd,min is the upper and
lower limits for the outlet flow references, cH is the size of
the control band and s = [s1, s2]> are the slack variables.

The optimal desired outlet flow of gas and liquid computed
by the NMPC are applied as references to the respective
PI flow controllers controlling the gas and liquid outlet
flows, respectively.

4. RESULTS

The ES and NMPC schemes were implemented in a
Simulink model of the GLCC and the parameters used
in the simulations are shown in Tab. 1. The results of
the simulation are shown in Fig. 5, where we see that the
level setpoint is reduced. The projection-based integration
scheme ensures that the liquid level setpoint is not reduced
below the minimum allowed value of 1 m. The scheme is
robust towards changes in inlet conditions and the low-
level adaptive controller ensures excellent tracking of the
liquid level setpoint. The gas pressure tracks its setpoint
very well during the whole simulation.

The results from using the NMPC scheme are also shown
in Fig. 5. The results show that the NMPC immediately
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Fig. 5. The results of simulation with both extremum
seeking and NMPC.

finds the global optimum for the liquid level at the lower
constraint of 1 m and quickly moves the liquid level to-
wards this operating point. Simultaneously, as the oper-
ating point of the liquid level is optimized, the NMPC
achieves offset free control of the gas pressure. The results
also show that the NMPC achieves robust control of both
controlled variables, with regards to severe changes in inlet
conditions. The differences between the methods are more
easily observed from Fig. 6 where the first 250 seconds of
simulation are emphasized.

To objectively evaluate the performance of the ES and
NMPC schemes, the mean and peak efficiency of the
GLCC when using the ES and NMPC are shown in
Table 2. Perfect efficiency is equivalent to an efficiency of 1.
The results from this table show that the NMPC achieves a
slightly better mean efficiency than the ES at the expense
of increased computational time. The peak efficiencies are
approximately equal. The lower mean efficiency of the ES
scheme is caused by the slower convergence of the desired
setpoint towards the optimum and beacuse the setpoint is
slightly perturbed by the sinusouid.

5. CONCLUDING REMARKS

The efficiency of a gas liquid cylindrical cyclone has been
optimized using two different optimal control methods.
The model-free method, utilizing a model-free adaptive
controller and a model-free extremum seeking optimiza-
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Fig. 6. The first 250 seconds of simulation.

Table 1. Values of parameters used in simula-
tions

Parameter Value Description

k1 250/φ1 ≈ 9 Adaptive controller gain
k2 10 Adaptive controller gain
γ1 5/φ1 ≈ 139 Adaptation gain
Γ2 20 × 10−5I3×3 Adaptation gain
ε 1 Projection tolerance bound
a 0.01 Amplitude, perturbation signal
ω 0.001 Frequency, perturbation signal
ωh 0.0001 Frequency, high-pass filter
ωl 0.0001 Frequency, low-pass filter
k 10 Adaptive integrator gain

Q
[0, 1 · 108, 1, 1,

0, 1000, 100, 0]>
NMPC weights

cH 1 Size of the control band
hL,d 1.5 Desired/nominal liquid level
pG,d 50 ·105 Desired gas pressure
hL,min 1 Lower limit for the liquid level
hL,max 2 Upper limit for the liquid level
pG,min 45 Lower limit for the gas pressure
pG,max 65 Upper limit for the gas pressure
wd,min [0, 0]> Minimum desired outlet flows
wd,max [20, 20]> Maximum desired outlet flows

tion scheme, is able to keep the average efficiency of the
GLCC at ∼ 85% with varying inlet conditions and has
a peak efficiency of ∼ 95%. By using a projection based
integrator we are able to ensure that the setpoint does not
breach the constraint for minimum liquid level.
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Table 2. Mean and peak efficiency

Mean efficiency Peak efficiency

Extremum seeking 0.8574 0.9550
NMPC 0.8769 0.9567

The model-based NMPC scheme shows a slightly better
mean efficiency with ∼ 87%, but the peak efficiency is
very similar to that of the ES scheme, namely at ∼ 95%.
The liquid level constraint is handled at all times and
with varying inlet conditions, showing the robustness of
the method.

There are, however, pros and cons to both methods. The
NMPC requires a model of the plant dynamics and may
be sensitive to parameter variations, while the ES scheme
is model-free. Obtaining a model might be difficult or time
consuming when dealing with complex or large plants. The
overall complexity and computational time of the NMPC
is much higher than that of the ES scheme. A typical
runtime for the NMPC simulation was ∼1.5 hours while
the ES simulation took ∼3 min on an Intel Core i7 2.6
gHz computer. The NMPC shows a very fast convergence
to the optimum, whereas the ES scheme takes longer.
In addition, the NMPC converges to the actual optimal
setpoint, but the ES scheme converges to a point very close
to the optimum, thus inflicting some loss of efficiency.

As future work we propose doing field or laboratory tests
of both methods to properly evaluate whether a model-
based approach is better than a model-free approach. If
model-free methods proves better, or the potential loss
of efficiency can be justified, much time can be saved
when developing optimization and control software, as
the model-free methods are universal, whereas the model-
based methods are designed specifically for each plant they
are implemented on.
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Andersson, J., Åkesson, J., and Diehl, M. (2012). CasADi:
A symbolic package for automatic differentiation and
optimal control. Recent Advances in Algorithmic Dif-
ferentiation, 297–307.
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