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Abstract: A model based method for kick and loss detection and attenuation in Managed Pressure
Drilling is presented. The drilling system is modeled as a distributed parameter system combined with a
reservoir flow equation containing reservoir pressure and the so-called productivity index as uncertain
parameters. A swapping-based design for state and parameter estimation utilizing bottom-hole pressure
measurements available via wired drill pipe is combined with a closed loop controller for kick and loss
attenuation. The performance of the proposed method is compared to earlier results on kick attenuation in

a simulation, showing significant improvement.
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1. INTRODUCTION
1.1 Problem Statement

In order to carry cuttings to the surface and maintain an
appropriate pressure barrier down-hole during drilling, a drilling
mud is circulated down the drill string, through the drill bit

and up in a casing surrounding the drill string (see Figure 1).

In cases where pressure margins are tight, a control choke and
a back pressure pump are installed at the top side end of the

annulus so that pressure can be controlled quickly and precisely.

The method utilizing this equipment is referred to as managed
pressure drilling (MPD) with applied back pressure (ABP). To
model the flow dynamics in the annulus, the following model
from Landet et al. (2013) is used

pe(zt) = —Aﬁlq,z(z,t) (12
A F
qi(2,t) = —71p2<z,t> - ﬁq(z, t)—Aig (b

where z € [0,1] and ¢ > 0 are the independent variables of space
and time respectively, [ is the well depth, p(z,t) is pressure,
q(z,t) is volumetric flow, p is the density of the mud, /3 is the
bulk modulus of the mud, Fj is the friction factor, A, is the
cross sectional area of the annulus and g is the acceleration of
gravity.

When drilling into an oil reservoir, the bottom-hole end of the
drill-string is exposed to the reservoir pressure. If the reservoir
pressure is higher than the bottom-hole pressure in the annulus,
the result is a net inflow of formation fluids into the annulus.
This situation is called a kick. Similarly, a loss is a net outflow of
drilling-mud into the reservoir caused by a higher bottom-hole
mud pressure in the annulus than formation pressure. To model
this relationship, a simple productivity-based-inflow model is
used. Together with the top-side actuation signal p; (t), this gives
the boundary conditions
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Fig. 1. Schematic of the drilling system. Courtesy of Ulf Jakob
Aarsnes (Aarsnes et al. (2016b)).

Q(O, t) =J (pr - p(oa t)) + Quit
p(l,t) = p(t)

where J > 0 is called the productivity index and is assumed
unknown, p, is the unknown reservoir pressure, and qp;; the
known flow through the drill bit. It is assumed that p,. satisfies
0 < pr < p, where p, is some known upper bound for
the reservoir pressure. Moreover, it is assumed that the choke
controller has significantly faster dynamics than the rest of the
system so that the actuation dynamics can be ignored and the
top-side pressure p; regarded as a control input. The design
utilizes both bottom-hole pressure measurements p(0, t), which
are assumed available in real time when using a wired drill pipe,
and the top-side flow ¢(, t).

(2a)
(2b)

The design goal is to keep the bottom-hole pressure equal to the
unknown reservoir pressure, that is p(0,¢) = p,. such that flow
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from the reservoir into the drill string is zero. This implies that
the flow through the annulus is equal to the drill bit flow.

1.2 Previous Work

Control of coupled distributed systems like (1) and (3) can be
achieved by using the method of infinite-dimensional backstep-
ping for PDEs. This method was first introduced for parabolic
PDEs in Liu (2003); Smyshlyaev and Krstic (2004, 2005),
where the gain kernel was expressed as a solution to a well-
posed PDE. The first result for hyperbolic PDEs was in Krstic
and Smyshlyaev (2008) for first order systems, for second
order hyperbolic systems in Smyshlyaev et al. (2010), and to
two coupled first order hyperbolic systems in Vazquez et al.
(2011). The results in the latter were used in Aamo (2013) for
disturbance attenuation in managed pressure drilling which has
similarities to the problem considered in this paper.

Results on adaptive control for parabolic PDEs can be found
in Smyshlyaev and Krstic (2010). Adaptive observers for n + 1
hyperbolic systems using sensing collocated with the uncertain
boundary parameters can be found in Anfinsen et al. (2016)
using swapping filters, and in Bin and Di Meglio (2017) using a
Lyapunov approach. The extension to general m + n systems is
given in Anfinsen et al. (2017). The extension to stabilization,
without additive boundary parameter and sensing at the left
boundary restricted to the form yo(¢t) = v(0,t), is given in
Anfinsen and Aamo (2017c) (n + 1 case) and Anfinsen and
Aamo (2017b) (m + n case). An adaptive observer for n + 1
systems with a multiplicative boundary condition is developed
in Di Meglio et al. (2014) and for 2 x 2 systems with an affine
boundary condition in Anfinsen and Aamo (2016). Adaptive
stabilization of the same type of systems, but without the additive
parameter is considered in Anfinsen and Aamo (2017a) and with
only the additive parameter unknown in Aamo (2013).

Kick attenuation in MPD has mainly been studied in the
context of lumped drilling models. A lumped ODE model is
applied to a gas kick detection and mitigation problem in Zhou
et al. (2011) by using a method for switched control of the
bottom-hole pressure. Another lumped model for estimation
and control of in-/outflux is presented in Hauge et al. (2012).
Kick handling methods for a first-order approximation to the
PDE system is presented in Aarsnes et al. (2016a) using LMI
(Linear Matrix Inequality) based controller design. An infinite-
dimensional observer for kick & loss detection is presented in
Hauge et al. (2013). Another observer for state and reservoir
pressure estimation in under-balanced drilling is given in Di
Meglio et al. (2014). In Holta et al. (2018, 2017), a distributed
PDE model is combined with a model of the reservoir inflow
relation (given in Equation 2a). Kick & loss detection with
sensing non-collocated with control is studied in Holta et al.
(2017), while a method for kick & loss attenuation for the same
system is presented in Holta et al. (2018).

1.3 Contributions and Paper Structure

This paper considers both kick/loss detection and attenuation.
The main contribution of this paper is an improved version
of the parameter estimation scheme presented in Holta et al.
(2018), better utilizing the bottom-hole pressure measurement.
The estimation scheme presented in this paper is combined with
the closed loop controller derived in Holta et al. (2018) and
applied to the kick & loss application. In Section 2, the main
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results from Holta et al. (2018) are included for completeness.
Section 3 presents the improved estimation scheme. In Section 4
the estimator from Section 3 is combined with the control law
from Holta et al. (2018) and applied to the kick & loss problem
in MPD where the performance of the new estimation scheme is
compared to results from Holta et al. (2018) in a simulation.

1.4 Mapping to Riemann Invariants

To ease the design process, as well as generalize the control
problem, it can be shown that system (1) with boundary
conditions (2) can be transformed, through a suitable coordinate
transformation (see Holta et al. (2018)), to an equivalent system
written in terms of Riemann invariants as

up(x,t) + Aug (2, t) = c1(z)v(z, t) (3a)
vi(,t) — pug(z,t) = ca(z)u(z,t) (3b)
w(0,t) = rv(0,t) + k(6 — yo(t)) (3c)
v(1,t) =U(t) (3d)

defined for x € [0,1], ¢t > 0, where u, v are the system states,
U (t) is the control input, A\, & > 0 and ¢; (), ca(z) € C([0,1])
are known, while £ € R and # € R are unknown boundary
parameters, but where sign(k) is known. The measurement
collocated with actuation is given by

1 (t) = u(1,1) @
while the measurement anti-collocated with actuation is gener-
ated as a linear combination of the system states. That is,

Yyo(t) = aou(0,t) + bov(0,1) %)
with ag # 0. The objective is generalized to stabilization in the
Ls-sense and boundedness uniformly and point-wise in x. In
addition, based on the design goal p(0,t) = p.(t), we select the
weaker control objective

t+T
lim |rv(0,7) —u(0,7)|dr =0 (6)
t—o00 t

for
r#t—— @

and for some arbitrary 7" > 0. Furthermore, it is assumed that
the initial conditions u(xz,0) = ug(z), v(x,0) = vo(z) satisfy
ug, vo € L([0,1]).

2. ESTIMATION AND CONTROL WITH ADAPTATION
BASED ON TOP-SIDE SENSING (OLD METHOD)

The main results on state and parameter estimation from Holta
etal. (2017) are given in Section 2.1 and Theorem 1 in particular.
Section 2.2 presents the main results from Holta et al. (2018)
with the control law given formally in Theorem 2.

2.1 State and Parameter Estimation

In Holta et al. (2017), a swapping based design is used to
generate on-line state and parameter estimates. The same
swapping filters will be used in this paper. The filters are given
by

ar(z,t) + Aag(z,t) =c1(x)b(x, t)

+Pi(2)(yi(t) —a(1,1)  (8a)
b(x,t) — pby(z,t) =ca(z)a(z,t)
+ Po(2)(y1(t) —a(1,1))  (8b)
a(0,t) =rb(0,1) (8¢c)
b(1,t) =U(t) (8d)
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and parameter filters
me(x,t) + Amy(x, , 1) (9a)

1
) ) - PQ(x)m( 7t)

ny(x,t) — ung(x,t) =co(z)m(x,t (9b)
m(0) =rn(0,t) +1 (9c)
n(1) =0 (9d)

and
wi(z, t) + Awg (2, t) =c1(x)z(x,t) — Pr(x)w(l,t) (10a)
ze(x,t) — pze(z,t) =co(x)w(z,t) — Po(x)w(l,t) (10b)
w(0,t) =rz(0,t) — yo(t) (10c)
2(1,t) =0 (10d)

where P, P, are gains to be designed. The input filters model
how the control signal U (¢) affect the system states u, v, while
the parameter filters model the effect of the boundary parameters
k and 6 on the system states.

Using the swapping filters, the following static relationship
between the system states (u,v) and unknown parameters k
and 6 can be found
u(z,t) =a(z,t) + k (Om(x,t) + w(z, t)) + e(z,t) (11a)
v(x,t) =b(z,t) + k (On(x,t) + z(z,t)) + e(z,t)  (11b)
where e, € represent the non-adaptive estimation error. It is

shown in Holta et al. (2017) that if the gains P;, P, are selected
as

Py(z) = AP"(z,1) (12a)
Py(z) = AP (2, 1), (12b)

where (P"%, P¥") is the solution to
APE(2,€) + APY (1, £) =1 () P(0,6)  (13)
WP (1, €) — PP (,€) = — e3(2) P (2,€)  (13b)
P (x, )\ + P"(z,x)p =ca(x) (13¢)
PY(0,&) =rP"(0,&) (13d)

defined over 71 = {(2,£)|0 < z < ¢ < 1}, then the error
terms e, € will tend to zero in a finite time given by

R
F=x o

It is shown in Coron et al. (2013) that the system (13) has a

continuous, bounded and unique solution (P**, P¥%).

(14)

Motivated by the bilinear form of the static relationship (11), the
following adaptive state estimates are generated:

a(x,t) =a(z,t) + k(t) (é(t)m(x,t) + w(x,t))

=u(z,t) — é(z,t) (15a)
oz, t) =b(x, t) + k(t) (é(t)n(oc,t) + z(m))
=v(z,t) — é(x,t) (15b)

where é, € represent the adaptive estimation error, and 6 and k
are estimates of 6 and k, respectively.

Evaluating (15a) at x = 1, inserting (4) and rearranging then
give

e(1,0) = (1) —a(1,t) — k(1) (é(t)m(l,t) + w(l,t)) . (16)

Assuming the sign of k is known, the gradient method for
bilinear parametric models in Ioannou and Sun (2012, Theorem
4.52) can be used to minimize a cost function based on the
square error ¢2(1,t) and thereby forming an adaptive law for
the parameter estimates 6, k. The following theorem presents
the main results from Ioannou and Sun (2012, Theorem 4.52)
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together with some additional properties needed to prove
stability of the closed loop system.

Theorem 1. Consider the adaptive laws

é(t) %Sign(k)%m(l’t) (17a)
(0) = [Om(L ) +wi ]~ )

1+ w2(L, 1)

fort > tr and é(t) = l;(t) =0fort < tp, where 1,72 > 0
are the adaptation gains, m(1, ¢) and w(1, ¢) are the filters given
in (9) and (10), é(1, ¢) is the adaptive estimation error in (16)
and tp is defined in (14). Suppose system (3) has a unique
solution u, v for all ¢ > 0. Then, the adaptive laws (17) have the
following properties:

(1) 0 k €L

) Q, k, € @oo N Ls. X R

(3) 6(t) — 0(t — dg) and k(t) — k(t — dp).

“4) W € Lowhere =0 —fandk =k — k.

(5) If w(l,-) € Lo and Om(1,-) + w(l,-) € Ly, then §
converges to 6 and k converges to some constant.

Proof. See Holta et al. (2017).

2.2 Closed Loop Adaptive Control

The control law from Holta et al. (2018) is given in terms of
the state estimates (@, 9) and parameter estimates 0,k. The
parameter estimates are generated from the adaptive laws
in Theorem 1. Once these estimates are found, the adaptive
relationship (15) can be used to generate state estimates.

Theorem 2. Consider system (3), the state estimates (15) and
the adaptive law (17), and suppose (7) holds. Then, the control
law

1 R
a1y ® (18)

where K : L2([0,1]) x L2([0,1]) — L2(][0, 1]) is the operator
given by

U(t) = Kla, 8](1) +

K, 8)(z) =b(z) — / " K (e, ©)ale)de
- /O " K (e, ©)0(¢)de

defined for = € [0, 1] where (K%, K¥?) is the unique solution
to (see Coron et al. (2013))

19)

K, Op — K¢ (2, A =K (x,§)ca(x)  (20a)
Ky (2, §)p+ K (@, §)p =K (z,8)cr(z) (20b)
K"(z,2)A\+ K" (z,z)p = — co(x) (20c)

K" (z,0)\r =K""(z,0)u (20d)

defined over 73 = {(z,£)]0 < ¢ < z < 1}, guarantees (6).
Moreover, all signals in the closed loop system are bounded

and the parameter estimate 6 converges to its true value 6 in the
sense
t+T
/ |0(7) = 0ldT — 0 21
t

for some T > 0.
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3. ESTIMATION WITH ADAPTATION BASED ON
BOTTOM-HOLE SENSING (NEW METHOD)

The adaptive law in Theorem 1 is designed to minimize the top-
side estimation error and the bottom-hole pressure measurement
is only used indirectly in the filters (8)-(10). Even though
new measurements o (t) are instantly available to the control
unit by wired drill-pipe technology, the old design forces new
measurements to propagate through the filter systems before
the state estimates are updated, and consequently, the top-side
error é(1,t) is only affected by yo(t — A~1). In contrast, the
proposed method of this section, which is the main result
of the paper, utilizes the bottom-hole pressure measurement
immediately and directly in the adaptive law, which is designed
to minimizes the bottom-hole estimation error rather than the
top-side error. The artificial time delay introduced by the filters
in the old method is therefore avoided and the parameter and
state estimates approach their true values significantly faster, as
demonstrated in simulations in Section 4.

The new design goes as follows. Using that e(0,¢) = ¢(0,¢) = 0
for all t > tr and inserting (5) into the static relationship (11),
and evaluating at x = 0 give

yo(t) =agu(0,t) 4+ bov(0, 1)

=ag (a(0,t) + k (6m(0,t) + w(0,1))) (22)
+ bo (b(0,t) + &k (0n(0,t) + 2(0,¢))) .
Defining
a(t) =a (O7 t) + bob(0, 1) (23a)
m(t) =agm(0,t) + bon(0,t) (23b)
w(t) =a (O t) + bpz(0,1) (23¢c)

and rearranging the terms, give the bilinear parametric model

yo(t) —a(t) = k (0m(t) + w(t)) .- 24)

The same adaptive state estimates (15) will be reused here.

Evaluating (15) at x = 0, inserting (5) and defining
&(t) = apé(0,t) + boé(0,t) (25)

then give

é(t) = yo(t) — alt) — k() (O(t)m(t) + w(t))

Assuming the sign of k£ is known, the gradient method for
bilinear parametric models in Ioannou and Sun (2012, Theorem
4.52) can be used to minimize a cost function based on the
square error ¢?(t) and thereby forming an adaptive law for the

parameter estimates 6, k

(26)

Theorem 3. Consider the adaptive laws

. . eit) .
0 otherwise

_ .. y e(t)

k(1) = O)m(t) + w(t)] Tram T2 2w
0 otherwise

for some adaptation gains 1, v2 > 0 where . (t) and w(t) are
given in (23), €(t) is the adaptive estimation error (25) and ¢ is
defined in (14). Suppose system (3) has a unique solution u, v
for all ¢ > 0. Then, the adaptive laws (27) have the following
properties:

(1) 0,k € L.

(2) 0, k€ LoN Loo.
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4) Ifw € L and O + 0 € Lo, then 0 converges to 6 and
k converges to some constant.

Proof. Consider the Lyapunov function candidate

1 - 1 -
Vo = |k|=—60% + —k?
0= Ikl 27 273
where § =0 —fand k = k — k. Differentiating, inserting the
adaptive laws (27) for t > tr and using relation (26) give

(28)

1 ~x 1 ~x
Vo = —|k|—00 — —kk
a! 72
B é(t) . o AR o
= T oD (1klBsign(kyin() - F [Beym(t) + w(0)] )
B é(t) . .
= Ty et (apgu(0,t) + bov(0,t) — ap@(0,t) — by®(0,1))
__ewm
1+w2(t) —
which shows that 1/, é, k € Loo. The adaptive estimation error
¢€ can be written on the form

(29)

é(t) = O T W (t) (30)

where
= [k, VIFB0)]" (31a)
U(t) = [Bin(t) + w(t), sign(k)/Rm@)]"  Gib)

It is shown in Holta et al. (2017) that the filter system (m, n) in
(9) is bounded point-wise in x. We then have

1

——VU(t) € Lo (32)
1+ w3(1,) Q
which together with Property 1 and (30) give
c Lo. (33)

—F— €
1+ w3(1,-)
Integrating (29) from ¢ = 0 to ¢ = oo and using that Vp > Ois a
non-increasing function of time give

[ (557) - ) e
=V (0

(oo) < 00 (34)
and therefore 1)
e(l,-
! . 35
T o
From (27a), one has
2 é(t) m(t)
0t 36
()‘ " VI+w2(t) || /14 w03(1) G0

v_vhich together with (33), (35) and boundedness of m give
0 € Lo N Lo and the first part of Property 2. For the second
part, one has similarly

() émo+wo
VI+@2(t) || /1+ 0%
Which together with (33), (35) and boundedness of m give

k € Lo N Ly and the second part of Property 2. Inserting
(26) into (27a) yields

é(t)\ < 37)
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<o msign(k) /5 ~ A . .
0 =110 (kem(t) +E(t) (Gm(t) + w(t))) m((?)t;)

where the last term can be treated as an external input. Using
that 172 € Lo, and if the last term k(t) (éfn(t) + u“)(t)) is square
integrable, then (38) forms an exponentially stable system and
it follows that § — 0 as ¢ — oo or equivalently the first part
of Property 4. The second part of Property 4 can be seen by
applying Cauchy-Schwarz’ inequality to (27b).

Remark 4. Property 4 in Theorem 3 gives sufficient conditions
for parameter convergence. For ¢ > tp, we have m(t) =
m(0,t) = 1 and w(t) = w(0,t) = —yo(t). The conditions
are then simplified to yo € Lo and (6 — yo) € Lo. If
the adaptive laws are used in conjunction with a closed loop

controller guaranteeing these properties, parameter convergence
will follow.

4. SIMULATION

The swapping based estimation scheme presented in Section 3,
consisting of the swapping filters (8)-(10), state estimates (15)
and the adaptive law of Theorem 3, is combined with the
control law from Holta et al. (2018) given in Theorem 2 and
implemented in MATLAB (the new method). This design is
compared to the design from Holta et al. (2017) (the old method),
consisting of the swapping filters (8)-(10), state estimates (15),
the adaptive law of Theorem 1 and the control law of Theorem 2,
which is also implemented in MATLAB. In addition, a simple
controller (the simple method) where the top-side flow is kept
equal to the drill bit flow ¢(I, t) = gp;+ is also implemented. For
all control schemes, the system parameters are chosen as

B = 7317 Pa, p=1250kgm™3 (39a)
[ = 2500 m, Ay = 0.024m? (39b)
Fy = 200, g=98lms 2 (39¢)
@it = 1/60m®s™!,  J=1.1x10"8m3s *Pa~!. (39d)

The reservoir pressure is initially set to p,(0) = 400 bar and
kept constant until a step to p,(t > to) = 450 bar occurs at
tp = 10s. The system is at steady state at ¢ = 0 with the initial
bottom-hole pressure set equal to the reservoir pressure and the
bottom-hole flow equal to the drill bit flow. The adaptation gains
are selected as y; = y2 = 5.

Figures 2 and 3 show the bottom-hole pressure and flow when
using the three methods. The figures show that all three methods
are able to attenuate the kick. The bottom-hole pressure is
stabilized at the reservoir pressure and the net gain into the
well converges to zero. It is seen that both the new method
and the old method converge in an approximately finite time
after ~ 10s, whereas the simple method has a much slower
asymptotic convergence time. In addition, as can be seen from
Figure 6, the new method offers a ~ 35 % reduction in total
accumulated inflow compared to the old method. This is due to
the better utilization of the bottom-hole measurement as can be
seen from the state estimation error in Figures 4, 5 and 7. Figure 7
also shows that the reservoir pressure estimates converge to the
true value for both methods.

5. CONCLUSIONS AND FURTHER WORK

A new method for kick detection and attenuation in managed
pressure drilling is presented. A swapping based estimator
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utilizing bottom-hole pressure estimates for fast parameter
adaption is presented. The estimation scheme is combined with
a recently developed closed loop controller for kick & loss
attenuation. The new design was compared to earlier works
on kick & loss attenuation in a simulation, suggesting that
significant performance improvement is possible by exploiting
downhole pressure measurements made available in real-time
by wired drill-pipe technology. Further work include a rigorous
proof of closed loop stability in the Lo-sense and convergence
of the bottom-hole pressure to the desired set-point.
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