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Abstract: We model thermal and compositional reservoir production as mass and energy
balances combined with a phase equilibrium constraint. The phase equilibrium constraint
is modeled as a thermodynamically rigorous UV flash process. The UV flash problem is a
mathematical statement of the second law of thermodynamics, and it replaces the condition of
equality of fugacities that is often used. We demonstrate that such a thermal and compositional
reservoir model is in a semi-explicit index-1 differential-algebraic form, and we briefly describe a
gradient-based single-shooting algorithm for the solution of production optimization problems.
We implement the algorithm in C/C++ using the software DUNE, the thermodynamic software
ThermoLib, and the optimization software KNITRO. We present an example of optimal water
flooding where the injected water has a higher temperature than the reservoir fluid.
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1. INTRODUCTION

Production optimization is concerned with maximizing a
financial measure over the expected lifetime of an oil reser-
voir. It combines numerical simulation of the subsurface
reservoir flow with numerical optimization. Production
optimization is applicable to both traditional recovery
methods, such as waterflooding, and to enhanced oil re-
covery methods such as chemical, biological, and thermal
methods. The simulation and optimization of enhanced
oil recovery processes often require compositional flow
models. In particular, thermal recovery processes require
thermal and compositional models.

Thermal and compositional reservoir flow models combine
two main principles; 1) conservation of mass and energy,
and 2) phase equilibrium. The phase equilibrium condition
is based on a thermodynamic state function being minimal
or maximal (Michelsen, 1999). The phase equilibrium con-
dition is therefore formulated as a mathematical optimiza-
tion problem, i.e. it is an optimization problem within the
production optimization problem. The optimization prob-
lem that is relevant to thermal and compositional models is
called the UVn flash problem because the internal energy,
U , the volume, V , and the total amount of moles of each
chemical species, n, are specified as parameters in the
problem. The UVn flash is a mathematical formulation of
the second law of thermodynamics which states that the
entropy, S, of a closed system in equilibrium is maximal.
This problem is often just called the UV flash because the
total amount of moles are specified in all flash problems. It
is also called the isochoric-isoenergetic flash. The solution
to the UV flash problem is the equilibrium temperature,
? This project is funded by Innovation Fund Denmark in the
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pressure, and the phase compositions (in moles). The most
commonly known flash problem is the PT flash problem
where both temperature and pressure are specified and
Gibbs energy is minimized. This is the problem that is
most often encountered in the reservoir simulation and
optimization literature. However, there it is formulated
as the equality of fugacities and not as an optimization
problem (Zaydullin et al., 2014; Kourounis et al., 2014).
The condition of equal fugacities can be derived from the
first-order optimality conditions of the PT flash problem.
The PT flash is common because it can be solved efficiently
with unconstrained optimization methods and because it
is equivalent to other types of flash problems when it is
combined with algebraic constraints on the specified quan-
tities, e.g. the UV flash is equivalent to the combination
of constraints on the internal energy, U , and the volume,
V , and the PT flash. The UV flash is a key component
in rigorous modeling of several vapor-liquid equilibrium
processes such as fluid vessels and flash drums (Arendsen
and Versteeg, 2009; Castier, 2010; Lima et al., 2008),
distillation columns (Flatby et al., 1994), and two-phase
computational fluid dynamical problems (Qiu et al., 2014;
Hammer and Morin, 2014). Recently, a gradient-based
single-shooting algorithm for the dynamic optimization
of UV flash processes was developed by Ritschel et al.
(2017a). The algorithm uses an adjoint method to compute
gradients.

Most research in production optimization algorithms con-
siders simple two-phase flow models that contain a water
component and an oil pseudo-component. Some authors
have solved production optimization problems involving
polymer flooding (Lei et al., 2012). Such problems do
not involve phase equilibrium conditions. More recently
Kourounis et al. (2014) applied a gradient-based single-
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shooting algorithm to a compositional model. Further-
more, Zaydullin et al. (2014) described a framework for
fully thermal and compositional reservoir simulation. It is
common to use single-shooting algorithms to solve pro-
duction optimization problems (Bukshtynov et al., 2015;
Kourounis et al., 2014; Forouzanfar et al., 2013; Capolei
et al., 2012). Some authors have also used multiple-
shooting (Codas et al., 2017; Capolei and Jørgensen, 2012)
and simultaneous collocation (Heirung et al., 2011). These
three methods belong to the class of gradient-based meth-
ods. There are two other classes of algorithms that au-
thors use to solve production optimization problems; 1)
gradient-free methods (Zhao et al., 2016) and 2) artifi-
cial intelligence methods (Onwunalu and Durlofsky, 2010;
Saputelli et al., 2002). The advantage of gradient-based
methods is that they are computationally efficient. The
disadvantages of gradient-based methods are 1) that they
require the computation of gradients which can be cum-
bersome for complex models, and 2) that they converge to
local minima.

The novelty of this work is the rigorous modeling of
thermal and compositional production optimization as a
UV flash process. We describe the UV flash problem and
the mass and energy conservation equations of the model.
We implement the single-shooting algorithm described by
Ritschel et al. (2017a) in C/C++ and provide an example
of an optimal water injection strategy where the injected
water has a higher temperature than the reservoir fluid.

Section 2 describes the thermal and compositional model,
and Section 3 briefly describes the single-shooting algo-
rithm. Section 4 provides a few details on the implemen-
tation, and Section 5 presents the numerical example.
Section 6 presents conclusions.

2. RESERVOIR FLOW MODEL

In this section, we describe the thermal and compositional
reservoir flow model and demonstrate that it is in the
semi-explicit index-1 differential-algebraic form that is
considered by Ritschel et al. (2017a). The model consists of
a set of phase equilibrium conditions based on the second
law of thermodynamics, a set of mass balance equations,
and one energy balance equation. The phase equilibrium is
reached at a much faster timescale than the flow processes
and we therefore assume that the phases are in equilibrium
at all times. The mass and energy conservation equations
are based on models of advective fluid flow and thermal
conduction in the rock.

2.1 Phase equilibrium

The fluid consists of water (w), oil (o), and gas (g). The
oil and gas phases contain NC chemical components. We
assume that all fluid phases are in thermal, mechanical
and chemical equilibrium with each other. We further-
more assume that the fluid is in thermal and mechanical
equilibrium with the rock (r), i.e. T = Tα = T r and
P = Pα = P r for α ∈ {w, o, g}. We comment further on
the thermal equilibrium between the fluid and the rock in
Section 2.3. The phase equilibrium is governed by the UV
flash in which the internal energy, U , the volume V , and
the total amount of moles of each chemical species, nw

and n = [n1; . . . ;nNC
], are specified as parameters. The

solution to the UV flash problem is the temperature, T ,
pressure, P , and phase composition vectors, nw, no, and
ng, that maximize entropy under the above constraints:

max
T,P,nw,no,ng

Sw + So + Sg + Sr, (1a)

subject to Uw + Uo + Ug + Ur = U, (1b)

V w + V o + V g + V r = V, (1c)

nw = nw, (1d)

nok + ngk = nk, k = 1, . . . , NC . (1e)

The above optimization problem only contains equality
constraints. The necessary first-order optimality condi-
tions are therefore algebraic equations which are solved
for each grid cell, simultaneously with the conservation
equations, during simulation.

2.2 Mass conservation equations

The fluid flow process is advective. Each conservation
equation contains a molar flux term and an injec-
tion/production source term:

∂tCw = −∇ ·Nw +Qw, (2a)

∂tCk = −∇ ·Nk +Qk, k = 1, . . . , NC . (2b)

The molar component flux, Nk, is

Nk = xkN
o + ykN

g. (3)

Nα is the molar flux of phase α ∈ {w, o, g}. xk and yk are
oil and gas mole fractions. The molar injection/production
terms are

Qw = Qw,inj −Qw,prod, (4a)

Qk = −
(
xkQ

o,prod + ykQ
g,prod

)
. (4b)

Water is injected at a molar rate of Qw,inj while all fluid
phases are produced at molar rates of Qα,prod.

2.3 Energy conservation equations

We first describe the energy conservation equations with-
out assuming that the fluid and the rock are in thermal
equilibrium. Then we describe how this assumption affects
the model equations and present the model that assumes
thermal equilibrium. The fluid (f) and rock (r) energy
conservation equations are

∂tu
f = −∇ ·Nf

u +Qfu, (5a)

∂tu
r = −∇ ·Nr

u +Qru. (5b)

uf and ur are internal energies per unit volume. The fluid
heat flux is caused by advection of the phases:

Nf
u = hwNw + hoNo + hgNg. (6)

hα is the molar enthalpy of phase α. We model the
conductive rock heat flux with Fourier’s law of thermal
conduction (Holman, 2010, Chap. 1):

Nr
u = −krT∇T r. (7)

krT is the thermal conductivity of the rock. Both the wells
and the conduction at the rock-fluid interface affect the
fluid energy balance:

Qfu = hw,injQw,inj −
∑

α∈{w,o,g}

hαQα,prod +Qrf . (8)

We model the thermal conduction at the rock-fluid inter-
face with Newton’s law of cooling (Holman, 2010, Chap. 1):

Qrf = −krfT (T f − T r). (9)
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T f is the fluid temperature, and krfT is the thermal
conductivity of the rock-fluid interface. It is only the
conduction at the rock-fluid interface that affects the rock
energy balance:

Qru = −Qrf . (10)

We now assume that the rock and the fluid are in thermal
equilibrium. This corresponds to energy being transferred

instantly through the rock-fluid interface, i.e. krfT is infinite
and T = T f = T r. We add (5a) and (5b) to obtain an
energy conservation equation for the internal energy of the
combined fluid-rock system, u = uf + ur:

∂tu = −∇ ·Nu +Qu. (11)

The combined heat flux and source terms are

Nu = hwNw + hoNo + hgNg − krT∇T, (12a)

Qu = hw,injQw,inj −
∑

α∈{w,o,g}

hαQα,prod. (12b)

2.4 Darcy’s law

The molar phase flux is the product of density and the
volumetric phase flux, Nα = ραuα. We describe the
volumetric phase flux with Darcy’s law:

uα = −(kαr /µ
α)K (∇P − ραg∇z) . (13)

kαr is relative permeability, µα is viscosity, K is a perme-
ability tensor, g is the gravity acceleration, and z is depth.

2.5 Well terms

The wells perforate certain grid cells in the discretized
reservoir. The well models for these cells are

Qw,inj = (1/V )WIρw(kwr /µ
w)(P bhp − P ), (14a)

Qα,prod = (1/V )WIρα(kαr /µ
α)(P − P bhp). (14b)

V is the volume of the perforated cell, WI is the well index,
and P bhp is the bottom-hole pressure in the well.

2.6 Relative permeabilities

We model the relative permeabilities with Stone’s model
II as described by Delshad and Pope (1989). The relative
permeabilities are functions of the phase saturations, i.e.
kαr = kαr (Ŝα) where Ŝα = V α/(V w+V o+V g). The relative
permeabilities are therefore functions of the temperature,
pressure, and phase composition vectors:

kαr = kαr (T, P, nw, no, ng). (15)

2.7 Viscosity

We use the phase viscosity model by Lohrenz et al. (1964).
They describe the viscosity as a function of temperature,
pressure, and phase composition, i.e.

µα = µα(T, P, nα). (16)

2.8 Thermodynamics

We use a thermodynamical model by Ritschel et al.
(2017b) to evaluate the enthalpy, entropy, and volumes
of the fluid phases:

Hα = Hα(T, P, nα), (17a)

Sα = Sα(T, P, nα), (17b)

V α = V α(T, P, nα). (17c)

We evaluate other thermodynamic functions with the
fundamental thermodynamical relations U = H − PV ,
G = H − TS, and A = U − TS (we only need U in this
model).

2.9 Finite volume discretization

The conservation equations (2) and (11) are all in the form
∂tC = −∇·N+Q. We integrate the equation over the i’th
grid cell, Ωi:

∂t

∫
Ωi

C dV = −
∫

Ωi

∇ ·N dV +

∫
Ωi

QdV. (18)

We apply Gauss’ divergence theorem to the flux term and
split up the resulting surface integral:∫

Ωi

∇ ·N dV =

∫
∂Ωi

N · n dA =
∑

j∈N (i)

∫
γij

N · n dA.

(19)

∂Ωi is the boundary of Ωi, and γij is the face shared by
grid cell i and j. nij is the outward normal vector, and

N (i) is the set of cells that share a face with grid cell i.
We evaluate the left-hand side integrals in (18) exactly:

Ui =

∫
Ωi

u dV, (20a)

nw,i =

∫
Ωi

Cw dV, (20b)

nk,i =

∫
Ωi

Ck dV. (20c)

We approximate the remaining integrals with quadrature:∫
Ωi

QdV ≈ (QV )i, (21a)∫
γij

N · n dA ≈ (AN · n)ij . (21b)

The right-hand side in (21b) contains gradients of T and P
when applied to (2) and (11). We approximate these flux
terms with a two-point flux approximation as described by
Lie (2014). The resulting differential equations are

U̇i =
∑

j∈N (i)

( ∑
α∈{w,o,g}

(hαΓĤα∆Φα)ij + (ΓT∆T )ij

)
+ (QuV )i, (22a)

ṅw,i =
∑

j∈N (i)

(ΓĤw∆Φw)ij + (QwV )i, (22b)

ṅk,i =
∑

j∈N (i)

(xkΓĤo∆Φo + ykΓĤg∆Φg)ij + (QkV )i.

(22c)

The term (ΓĤα∆Φα)ij approximates −(ANα ·n)ij . Γij is
the geometric part of the transmissibilities:

Γij = Aij

(
Γ̂−1
ij + Γ̂−1

ji

)−1

, (23a)

Γ̂ij =

(
Ki

cij − ci
|cij − ci|2

)
· nij . (23b)

Aij is the area of γij , cij is the center of γij , and ci is the

center of Ωi. Γ̂ij is the one-sided transmissibility. We define
ΓT,ij similar to Γij where krT replaces K. The potential
difference and the fluid part of the transmissibilities are
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∆Φαij = (∆P − ραg∆z)ij , (24a)

Ĥα
ij =

{
(ραkαr /µ

α)i, ∆Φαij < 0,

(ραkαr /µ
α)j , ∆Φαij ≥ 0,

(24b)

where ∆Pij = Pj − Pi, ∆zij = zj − zi, and ραij = 0.5(ραi +
ραj ). We have upwinded the fluid part of the transmissibili-

ties, Ĥα, in order to ensure numerical stability. We upwind
xk, yk, and hα in the same way.

2.10 Differential-algebraic model

We introduce the state variables xi = [U ;nw;n]i ∈ R2+NC ,
the algebraic variables yi = [T ;P ;nw;no;ng]i ∈ R3+2NC ,

the manipulated input variables ui = P bhp
i ∈ R, and

the disturbance variables di = T inj
i ∈ R. T inj is the

temperature of the injected water used to evaluate hw,inj

in (8). The UV flash problem (1) is thus in the form

min
yi

f(yi), (25a)

s.t. g(yi) = xi, (25b)

h(yi) = 0. (25c)

The optimality conditions of (25) are in the form
Gi(xi, yi, zi) where zi ∈ R3+NC are Lagrange multipliers
(Ritschel et al., 2017a). We enforce the phase equilibrium
in each grid cell. The left-hand side of the differential
equations (22) contains derivatives of the state variables,
xi, and all quantities on the right-hand side depend on the
algebraic variables, yi, the manipulated inputs, ui, or the
disturbance variables, di. The differential equations (22)
are therefore in the form ẋi(t) = F (yi(t), ui(t), di(t)), and
the discretized reservoir flow model is in the form

G(x(t), y(t), z(t)) = 0, (26a)

ẋ(t) = F (y(t), u(t), d(t)), (26b)

where G is the phase equilibrium conditions for all cells,
and F is the spatially discretized right-hand side of the
flow equations for all cells.

3. PRODUCTION OPTIMIZATION

In this section, we briefly describe the gradient-based
single-shooting algorithm by Ritschel et al. (2017a). The
production optimization problem is in the form

min
[x(t);y(t);z(t)]

tf
t0
,{uk}k∈N

φ =

∫ tf

t0

Φ(y(t), u(t), d(t))dt,

(27a)

subject to

x(t0) = x̂0, (27b)

G(x(t), y(t), z(t)) = 0, t ∈ T , (27c)

ẋ(t) = F (y(t), u(t), d(t)), t ∈ T , (27d)

u(t) = uk, t ∈ [tk, tk+1[, k ∈ N , (27e)

d(t) = d̂k, t ∈ [tk, tk+1[, k ∈ N , (27f)

{uk}k∈N ∈ U . (27g)

The objective function, φ in (27a), is a financial measure,
e.g. total oil production or net present value, (27b) is an
initial condition on the state variables, (27c)-(27d) are
the equilibrium conditions and the spatially discretized
reservoir flow equations, and (27e)-(27f) are zero-order

hold parametrizations of the manipulated inputs and dis-
turbance variables. Finally, (27g) are constraints on the
manipulated inputs, typically linear or bound constraints.
T = [t0, tf ] is the time interval, and N = {0, . . . , N −1} is
the set of timestep indices. N is the number of timesteps.

3.1 Numerical simulation

For simplicity, we describe the algorithm with the assump-
tion that the timesteps coincide with the control intervals.
The actual implementation uses an ESDIRK12 method
with a simplified version of the stepsize controller de-
scribed by Völcker et al. (2010). The differential equations
are discretized with Euler’s implicit method. That results
in the nonlinear residual equations Rk+1 = 0 where

Rk+1 =

[
xk+1 − xk −∆tkF (yk+1, uk, d̂k)

G(xk+1, yk+1, zk+1)

]
, (28)

for k ∈ N . We introduce w = [x; y; z] and solve the
nonlinear equations with Newton’s method:

wm+1
k+1 = wmk+1 − (∂Rk+1/∂wk+1)−1Rk+1(wmk+1). (29)

We use an ILU preconditioned GMRES method to solve
the linear system in (29).

3.2 The single-shooting algorithm

In the single-shooting approach, we transcribe the infinite-
dimensional optimal control problem (27) into the follow-
ing finite-dimensional optimization problem

min
{uk}k∈N

ψ = ψ
(
{uk}k∈N ; x̂0, {d̂k}k∈N

)
, (30a)

subject to {uk}k∈N ∈ U , (30b)

where the objective function is

ψ =

{
φ =

∑
k∈N

Φk(yk+1, uk, d̂k) : (31a)

x0 = x̂0, (31b)

Rk+1(wk+1;xk, uk, d̂k) = 0, k ∈ N
}
, (31c)

and Φk(yk+1, uk, d̂k) = ∆tkΦ(yk+1, uk, d̂k). Efficient algo-
rithms for the solution of the optimization problem (30)
require the gradients of ψ, {∇uk

ψ}k∈N . We use a discrete
adjoint method to compute these gradients. We solve the
following adjoint equations for the adjoints, {λk+1}k∈N ,
with an ILU preconditioned GMRES method:

(∂RN/∂wN )
T
λN = −∇wN

ΦN−1, (32a)

(∂Rk/∂wk)
T
λk = − (∂Rk+1/∂wk)

T
λk+1 −∇wk

Φk−1.
(32b)

The adjoint equations are solved in a backwards manner
starting with (32a) and proceeding with (32b) for k = N−
1, N − 2, . . . , 1. The gradients of ψ are computed with

∇uk
ψ = ∇uk

Φk + (∂Rk+1/∂uk)
T
λk+1, k∈ N . (33)

4. IMPLEMENTATION

We implement the single-shooting algorithm in C++.
We use the DUNE software to solve linear systems with
iterative methods (Blatt and Bastian, 2007) and for grid
management (Bastian et al., 2008). We use C routines
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Fig. 1. Permeability field [mD]. A white circle indicates an
injector, and the white X indicates the producer.

from the open-source software ThermoLib (Ritschel et al.,
2017b, 2016) to evaluate thermodynamic functions. We
use the optimization software KNITRO 10.2 to solve the
optimization problem (30).

5. NUMERICAL EXAMPLE

In this section, we present a numerical example where four
injectors inject water at 40◦C into a 110 × 110 × 10 m
reservoir that contains a fluid at 20◦C. The oil and gas
phases consist of methane, ethane, propane, n-heptane,
and hydrogen sulfide. The reservoir is discretized with
11 × 11 × 1 cells. The objective is to maximize the oil
production. The wells are placed in a five spot pattern as
shown in Fig. 1 which also shows the permeability field.
The producer bottom-hole pressure (BHP) must be in the
interval [10 MPa, 11 MPa] and the injector BHPs must
be in [11 MPa, 12 MPa]. The optimal production strategy
is shown in Fig. 2 together with the cumulative oil and
gas production. Fig. 2 also shows (in dashed lines) the oil
and gas production for a maximum injection strategy with
maximum injector BHP and minimum producer BHP.
The optimal oil production is 35% higher than what is
obtained with the maximum injection strategy while the
gas production is lower.

6. CONCLUSIONS

In this work, we present a fully thermal and compositional
reservoir flow model based on a rigorous formulation of the
phase equilibrium using the second law of thermodynam-
ics, i.e. the entropy of a closed system in equilibrium is
maximal. This results in an inner optimization problem
called the UV flash problem. The reservoir flow model is
in the semi-explicit index-1 differential-algebraic form that
Ritschel et al. (2017a) consider, and we implement their
gradient-based single-shooting algorithm for production
optimization. We present a numerical example where the
injected water has a higher temperature than the reservoir
fluid. Future work will involve isothermal compositional
models based on the model presented in this work.
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Fig. 2. Optimal well BHPs and oil and gas production
(solid: optimal strategy, dashed: reference strategy).
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