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Abstract: The heave motion of a floating rig induces pressure oscillations in the well when the
heave compensators are disabled during connections. In this paper we discuss several factors
affecting the achievable performance when rejecting such pressure oscillations by feedforward by
controlling the opening of the topside choke. Here, the well is modeled as a semilinear hyperbolic
system with a predictor-based control law that achieves exact pressure tracking at one location
in the well in the nominal case. The focus is on wells with large friction (i.e. deep wells with
high-viscosity drilling muds), where large control inputs are required at the topside choke.
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1. INTRODUCTION

Managed pressure drilling (MPD) is a widely used method
to drill wells where tight pressure control is required, as
it allows to control the pressure in a well not only via the
weight of the mud column but also by applying a pressure
at the top of the annulus by use of an outflow choke
and a backpressure pump (Hannegan, 2006). A common
objective is to control the pressure at the bottom of the
well to within +2.5bar of a setpoint (Godhavn, 2010).
Drillstring movements have long been known to induce
pressure oscillations in a well that can potentially violate
pressure margins (Mitchell, 1988).

When MPD is applied on a floating rig, the drillstring
oscillates with the wave-induced heaving motion of the
rig during connections. Over the last 5-10 years, there
have been efforts at NTNU and Statoil towards designing
controllers to reject the resulting pressure oscillations by
controlling the opening of the topside choke. After con-
trollers based on low-order lumped models failed to reject
such high-frequency disturbances (Pavlov et al., 2010),
a discretized PDE model has been presented in (Landet
et al., 2013), and controllers were designed based on output
regulation theory and the internal model principle . Other
approaches using models obtained by system identification
and controllers based on model predictive control and Ly
adaptive control, respectively, are presented in (Albert
et al., 2015; Mahdianfar et al., 2016). However, these
papers assume that downhole measurements are available,
which is not realistic in practice. A method of designing the
opening of the topside choke such that pressure oscillations
are kept small by creating pressure antiresonances in the
well is discussed in (Aarsnes et al., 2014). A boundary con-
trol law for a linear distributed model using only topside
actuation and sensing has been developed in (Aamo, 2013).
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In (Strecker et al., 2017) it has been shown that nonlinear
friction can have a significant effect on the pressure os-
cillations. A controller design method for such semilinear
hyperbolic systems is presented in (Strecker and Aamo,
2017b,c).

The main advantage of controller design methods from
(Aamo, 2013) and (Strecker and Aamo, 2017b) is that
they achieve exact pressure tracking at one location in
the well if the model matches the actual dynamics exactly.
However, due to the feedforward-nature of these control
laws, high fidelity is required in the predictive capabilities
of the model on which the controller design is based. More-
over, more fundamental limitations affect the achievable
controller performance, related to the predictability of the
disturbance/waves and to the fact that by controlling the
topside choke it is only possible to reject the pressure
oscillations at one location in the well. Summarizing, the
following factors affect the achievable controller perfor-
mance in practice

1) uncertainty in downhole parameters, in particular in
the bulk modulus and rheology of the drilling mud.

) errors in the wave prediction.

) errors in actuation due to hysteresis when opening
and closing the choke.

4) neglected dynamics of the elastic drill string.

5) topside actuation can reject disturbances at only one

location in the well, but not in a section.

For a linear model with uncertainties as described under
(1)-(4), the performance of the controller from (Aamo,
2013) was investigated in (Strecker and Aamo, 2017a).
In many cases, feedforward control performed better than
keeping the choke opening or choke pressure constant, and
it was possible to track the bottomhole pressure to within
a few bar, even in presence of uncertainty. The effect of
(5) is discussed in (Aarsnes et al., 2013). The focus of the
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Fig. 1. Schematic of well and controller.

present paper is to investigate the effect of (1)-(5) on the
pressure oscillations in a well with nonlinear friction with
the controller from (Strecker and Aamo, 2017c).

The paper is organized as follows. The nominal model and
the control law are introduced in Section 2. Then, the
sensitivity of controller performance is investigated, first
with respect to various uncertainties in isolation in Section
3 and then in a more realistic exemplary case in Section
4. Finally concluding remarks are given in Section 5.

2. NOMINAL SYSTEM
2.1 Nominal model

The controller design is based on the following model for
the annular hydraulics in a vertical well, which can be
derived from distributed mass and momentum balances
and was first presented as a model for heave-induced
pressure oscillations in (Landet et al., 2013)

prlz,t) = —Aﬂaqxz,t) (1)

Gz 1) = —%pz<z,t> - %F(g(z,tm(t» —4g @)

q(0,t) = —Aqua(t) ®3)
where z € [0,!] is the position measured from the bottom
in a well of length I, ¢ > 0 is time, p(z,t) is pressure,
q(z,t) the volumetric flow rate, the subscripts , and
+ denote partial derivatives with respect to space and
time, respectively, F' is a nonlinear function representing
friction, v4(t) is the drill string velocity, A, the cross
sectional area of the annulus, A; is the area displaced
by the drill string, 8 is the bulk modulus of the mud, p
the mud density, and g the gravitational acceleration. The
parameters A, 3, p, and F' can vary with 2z, but we omit
this dependence in the notation for the sake of readability.
It has been shown in (Landet et al., 2013) that (1)-(3)
is capable of capturing the dynamics in an experimental
well accurately. However, a very simple drilling mud was
used in the experiments in (Landet et al., 2013), whereas
the rheology of drilling muds used in practice is often
highly nonlinear at the shear rates that occur during heave.
Therefore, we adopt the methodology from (Strecker et al.,
2017) for the construction of the friction term F.

The control objective is to control the pressure at z € [0, ]
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(often at the bottom, i.e. z = 0) to a given setpoint psp,
ie.

p(za t) = Dsp- (4)
The topside boundary condition can be controlled via the
choke opening and backpressure pump flowrate, and is
left as the control input. Moreover, we assume that both
the topside pressure and flow rate, p(l,t) and ¢(I,t), are
measured.

2.2 Controller

Due to the distance between actuation (topside) and the
location of the tracking objective (well bottom) and due to
the hyperbolic nature of (1)-(2), there is a delay before the
actuation at the choke affects the pressure in the lower part
of the well. The speed of sound in drilling muds is usually
around ¢ = 1000 m/s. In a well of several kilometers depth,
the corresponding delay d = ¢/l is in the order of several
seconds, and thus in the same order of magnitude as the
time period of the disturbance (heave motion). Therefore,
feedforward based on the prediction of the heave motion
is required to reject the disturbance. A pure feedback-
based controller could react to the disturbance only after
it affected the pressure and after another delay before
these pressure fluctuations affect the topside measurement,
and by the time the subsequent control action affects the
downhole pressure the disturbance would already have
changed.

The control law adopted in this paper was originally
presented in (Strecker and Aamo, 2017b) and (Strecker
and Aamo, 2017¢). A summary of the mathematical details
is given in Appendix A. It consists of the following parts

(1) a linear state transformation mapping (1)-(3) into
Riemann invariants (which makes the system more
convenient from a mathematical point of view)

(2) an observer estimating the distributed state using the
measurements p(l,t) and g(l,t).

(3) a predictor mapping the observer state to the pre-
dicted state a short time into the future corresponding
to the delay in the system. This predictor requires a
short-term prediction of the drill string velocity vg .

(4) a control law computing the actuation from the
predicted state and predicted disturbance.

(5) a transformation mapping the output of the control
law into a value for the choke opening.

Note that the control law from (Strecker and Aamo, 2017b)
is computationally expensive to evaluate in practice. In
this paper, however, we only use the control law to inves-
tigate the performance that can be achieved.
In order to obtain short-term predictions of the distur-
bance, we use a linear model for the drillstring velocity of
the form

X(t) = AX (1), va(t) =CX(t)  (5)
where the matrices A and C are tuned to approximate
the heave spectrum and X is the state of the heave
motion (e.g. heave position and velocity in case of a
harmonic oscillation model). In (Fossen, 2011), chapter
8, it is suggested to determine A and C by a least-
square approximation of the heave spectrum. However, we
obtained better results by using a harmonic oscillation
corresponding to the peak frequency wy of the heave
spectrum, i.e.
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1 =4000m p = 1500 kg/m3 Ag=mr?
rq=0.0635m || B=16x10Pa [ Ay =7 (r2 —r?)
rw = 0.1079 m Z=0m

Table 1. Nominal parameters.

T 0 wo =

A= {—wo 0], C=101]. (6)
Using more than one harmonic in A and C resulted
in excessive sensitivity to noise in the measurement of
vq. Assuming that measurements of the rig velocity are
available (which would perhaps require an accelerometer
combined with an observer in practice), X(¢) can be
estimated from vg(¢) by the observer

X(t) = AX(t) + L (va(t) — 0a(t)), 0a(t) =CX(t), (7)

where the observer gain L is chosen such that A — LC is
Hurwitz. Then, a prediction of vy available at time ¢ is
given by

v4(0) = Cer 0D X (1). (8)
2.8 Nominal dynamics

Throughout the paper we use the nominal parameters
given in Table 1 unless stated otherwise. The drillstring
with outer diameter r4 is concentric in the well of diam-
eter r,,. The Herschel-Bulkley model is the recommended
model for the rheology of drilling fluids (API Recom-
mended Practice 13D, 2006). It relates the shear rate
to the shear stress 7 by
r)= (K4 25 il > m
17 )

4 =0 if |7] <79
where 79, K and n are the yield point, consistency index
and flow index of the fluid, respectively. Using 9 = 5 Pa,
K = 0.2Pas and n = 0.7 and the geometry described
above, the curve-fitting procedure from (Strecker et al.,
2017) gives

2

Fla,va) = Y (ch+ciloiysl™ ) s (viyr),  (10)
1=1
where v!; r = ¢/A — k'vg,
c=2-1, ckx=33 n'=07 k'=08 (11)
c = 3.5, i =48, n*=07, k*=0.09, (12)
and v
(13)

s(v) Vo? 4+ 0.01

is a smooth approximation of the sign function.
The drill string velocity vg used in the examples, which
has been obtained from on-rig measurements, is depicted
in Figure 2 and compared to the estimation as given by (7)
and (8) for § —t =1/+/B/p, respectively. The estimation
is very close to the true trajectory but the prediction is
significantly off at some times. Note that these prediction
errors are inherent to the stochastic nature of waves. The
trajectory of the pressure in the well is depicted in Figure
3. For comparison purposes, the controller is switched on
at t = 100 seconds. Before that, a constant choke opening
corresponding to

a(l.1) = jﬁip@(z,t) )

Copyright © 2018, IFAC

(14)

=
n
1

. TN =
£
5 f L

05 50 100 150 200 250 300

time [s]

Fig. 2. Drillstring velocity time series and comparison with
estimated and predicted trajectory.
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Fig. 3. Pressure trajectory using nominal parameters and
Z = 0. The controller is switched on at ¢t = 100,
before that a constant choke opening corresponding

to q(l,t) = j{gfp(p(l,t) — psp + pgl) is used.

is used. We refer to (14) as impedance matching because
the impedance of the outflow choke equals the impedance
of the transmission line. By use of (14), pressure reflections
at the choke are avoided.

In the first 100 seconds, the bit movement induces pressure
oscillations at the bottom of the well and the pressure
waves propagate along the well with finite speed. Due
to friction, and in particular due to the yield point in
(9), the pressure amplitude decays along the well. Once
switched on, the controller applies a pressure at the topside
choke in an attempt to cancel the downhole oscillations.
Thereby, large control inputs are required at the topside
choke to overcome friction and in particular to break the
yield point. The mismatch between predicted and actual
drillstring velocity results in non-negligible pressure oscil-
lations at the bottom.

The pressure amplitudes are investigate closer in Figure
4. Inspired by the definition of the significant wave height
of sea waves, we take the mean of the one-third highest
pressure deviations from steady state (single-amplitude)
for the pressure amplitude, where the pressure peaks are
sampled from simulations over a 5 minute period. Be-
cause of the large control inputs, the pressure amplitudes
increase with the distance from the bit. When using a
noncausal controller with access to exact wave predic-
tions (which might become implementable if additional
instrumentation for the wave observation is installed), the
pressure oscillations at the well bottom become zero up to
numerical errors, but the pressure amplitude profile along
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the well remains similar. Moving the tracking objective
to £ = 1000m, for instance, rejects the oscillations at
x = 1000 effectively but the amplitude at = 0 increases
slightly. This limitation is inherent if only one actuator far
from where the disturbance enters the system is available,
and it is impossible to control the pressure in, for instance,
a section of the well.

When keeping the choke closed or the choke pressure
constant, the bit-movement-induces pressure oscillations
in the lower part that are, due to friction, almost indepen-
dent from the choke pressure. For nominal parameters,
the pressure oscillations are larger then when using active
control in the lower 1000 — 2000 m of the well, depending
on the choice of Z, but smaller in the upper part.

For comparison, the pressure amplitudes in a higher vis-
cosity mud are also depicted in Figure 4. Due to the larger
friction factors, larger control inputs are required, the
pressure amplitudes at the well bottom become larger, and
the corresponding pressure amplitude decays are steeper.

3. SENSITIVITY OF CONTROLLER
PERFORMANCE

In the following, the sensitivity of the performance with
respect to various uncertainties as described in the intro-
duction is investigated.

3.1 Parametric uncertainty

The main uncertainty in downhole parameters is in the
bulk modulus of the drilling mud, which affects the speed
of sound in the mud, and in the friction factor (which
depends on the mud rheology). First, we consider multi-
plicative uncertainties of the form

F&=(1+Ap)F B2 = (1+2p)8 (15)

where F2 and B2 are the uncertain plant parameters
and the nominal parameters F' and [ as given in Table
1 are used for controller design. The sensitivity of the
pressure oscillations at x = 0 with respect to Ar and
Ag are depicted in Figures 5. The pressure oscillations are
minimal if the uncertainty is zero, while without active
control the pressure amplitude is monotonously increasing
in both F' and (. Active feedforward control performs
better than keeping the choke closed, the choke pressure
constant or applying impedance matching over a large
range of uncertainties. Only when the friction factor is
overestimated (Ap < —0.6), the large control inputs result
in excessive pressure oscillations. If friction is vastly un-
derestimated A 2 1, the control input is not enough and
the performance converges to the same level as without
feedforward. The results look very similar if the nominal
viscosity of the mud is increased, but due to the larger
control inputs, overestimating F*® results in even greater
pressure oscillations (not depicted here).

The sensitivity with respect to Ag is similar in that feed-
forward control performs better than the other strategies
for a large range of uncertainties. In the limit 8~ — 0,
which becomes relevant when gas is dissolved, the pressure
oscillations converge to zero in all cases.

It should be mentioned that there is no formal proof for
stability of the closed-loop system if there is an error be-
tween plant parameters and the parameters used for con-
troller design, and it is unclear if one can be found and how
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Fig. 5. Sensitivity of the performance with respect to
uncertainty in friction (top), bulk modulus (middle)
and the time constant of the actuator control loop
(bottom).

conservative the estimates on the allowable uncertainty
would be. However, it can be said that the trajectories
in all cases in this paper look stable. For the “passive”
boundary conditions closed choke, impedance matching
and constant choke pressure, stability can be proven via
dissipation of energy, and it seems that the relatively large
friction terms keep the system stable also in the controlled
case.

3.2 Actuation errors

The models in (Aamo, 2013), (Strecker and Aamo, 2017c¢)
assume that the topside boundary condition can be con-
trolled with absolute precision. In practice, a separate
control loop is required for the opening of the outflow
choke. Hysteresis as well as the sampling rate at which
the outflow can be measured limit the speed of this choke-
opening control loop. To investigate the effect of this
additional loop on the overall performance, we introduce

an additional low-pass filter before the actuator:
. 1
Uact = f(Uref - Uact) (16)

where U, represents the actual actuation entering the
well, Uy r is the reference control input (i.e. the output of
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Fig. 6. Well path of a deviated well, bit and rig motion and downhole pressure oscillations.

the controller sketched in Section 2.2) and T is the time
constant of the choke control loop. The sensitivity of the
downhole pressure amplitude with respect to T is depicted
in Figure 5 (bottom). To avoid the effect of the additional
loop, T" must be in the order of 0.25seconds or faster.
At T = 1second, performance is affected significantly
but still better than with the other topside boundary
conditions, whereas the benefit of active control is lost
almost completely for T 2 5seconds. These numbers
depend mostly on the heave spectrum and are independent
from the well parameters. Keeping the choke pressure
constant requires control of the choke opening, too, but the
bottomhole pressure oscillations are almost independent
of the time constant T" because no feedforward is applied
when controlling the choke pressure constant. Closed choke
and impedance matching correspond to constant choke
openings.

3.3 Neglected dynamics

The nominal model (1)-(3) assumes that the drillstring is
rigid, which is reasonable in approximately vertical wells
up to around 5000m depth. However, the dynamics of
the elastic drillstring become significant in very deep or
deviated wells. The path of a 4000m long deviated well
is depicted in Figure 6. The bit movement, as calculated
from the more detailed model in (Strecker et al., 2017),
differs significantly from the rig motion. The figure also
shows the pressure trajectory when applying the control
law assuming that the string is rigid. That is, the controller
tries to actively reject a predicted disturbance that differs
significantly from the actual disturbance. This strategy
results in significant pressure oscillations in the well, not
only when the bit is not moving at all but even when
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the bit moves the predictions are too erroneous. Without
feedforward control, while the worst pressure peaks are
in the same order of magnitude, the pressure deviation is
much smaller at times when the bit is not oscillating.
While it might be possible to include the drillstring dy-
namics in the controller design, this will only increase
the number of uncertain parameters (mechanical friction
factor, etc) and it is highly questionable whether accurate
enough predictions of the string movement are possible to
make feedforward feasible in such a case.

4. ASSESSMENT OF ACHIEVABLE PERFORMANCE

The previous section investigated the sensitivity with re-
spect to various modeling errors in isolation, but in prac-
tice it is highly relevant to assess the controller perfor-
mance in presence of uncertainty in all parameters. Since
the performance depends on a combination of several pa-
rameters, such an analysis should be done on a case-by-
case basis. In the following we focus on an exemplary well
with |Ap| < 0.3, |[Ag| < 0.2, T < 1second and otherwise
the parameters from Table 1, and investigate the worst-
case pressure oscillations in the lower 1500 m-section of the
well (which can represent the case that the well is cased
from 1500 m to the top), see Figure 7. In the nominal case
without uncertainty in the model or wave prediction, it is
optimal to locate the tracking objective at £ = 600m, in
which case the maximum pressure oscillations of approxi-
mately 3.2 bar are attained at both x = 0 and = = 1500 m.
With uncertain wave prediction, the pressure amplitude
at * = 0 increases to 4bar. In presence of uncertainty
in F, § and T, the pressure at the bottom can only be
controlled to within £6.6 bar, which is significantly worse
than without uncertainty. The location of the minimum
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a higher-viscosity mud with yield point 10 Pa (right).

pressure amplitude seems to move upwards in the well (to
around 1500 m in this case), and it turns out that locating
the tracking objective at £ = 0 reduces the worst-case
pressure amplitude in the section slightly to about 6 bar.
For both choices of Z, the controller performance is only
slightly better than applying impedance matching at the
choke which corresponds to a constant choke opening.
For comparison, the pressure amplitudes in a higher-
viscosity mud with yield point 10Pa is also depicted in
Figure 7. As discussed earlier, stronger actuation is re-
quired to overcome higher friction. This increases both
the pressure amplitudes in general and the sensitivity
with respect to uncertainty. For the given example, the
worst-case pressure amplitude grows from around 5 bar in
the nominal case to, depending on z, 10 — 12bar under
the uncertainty. Moreover, impedance matching performs
better than active control in this case.

5. CONCLUSIONS

We have discussed limitations in the performance of a
feedforward control law rejecting heave-induced pressure
oscillations by topside actuation due to model uncertainty,
erroneous actuation and, more fundamentally, related to
uncertain disturbance prediction and the fact that the
pressure at only one location can be controlled. In many
situations, active feedforward control brings an improve-
ment compared to keeping the choke opening or choke
pressure constant. However, large control inputs are re-
quired at the choke to overcome friction in high-viscosity
muds, making the pressure amplitude decay along the
well steep and the performance sensitive to uncertainty.
Notably, the remaining pressure amplitudes are larger
than in the small-friction case that has been considered
in (Strecker and Aamo, 2017a). In practice, a case study
like in Section 4 can help to decide not only the best
control strategy but also if the achievable performance is
satisfactory, or if drilling should be suspended to wait for
better weather/wave conditions.

While it is advisable to assess the controller performance
on a case-by-case basis, the pressure oscillations tend to
increase with well length, mud viscosity, parametric un-
certainty, actuation errors, heave prediction errors and the
length of the section in which the pressure oscillations are
to be rejected, and decrease with well diameter.

The control law employed in this paper is designed to
exactly reject disturbances at one location under nominal
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conditions but, since the figures in Figure 5 are relatively
symmetric with respect to Ap/g = 0 for small uncer-
tainties, it is unclear if it is possible to find a controller
that performs (significantly) better under uncertainty. In
this regard, the optimal control law would be obtained
by minimizing the worst-case pressure oscillations under
uncertainty, perhaps by solving an optimization problem
of the form

Il’lén <6€I£7%§X pamp (.’13, 6a C)) (17)

where C' represents the control law and pgmp(,d,C) is
the closed-loop pressure amplitude at location x for un-
certainty 6. Considering the nonlinear and distributed
nature of the system (1)-(2) it is, however, unclear if a
solution to optimal control problem (17) can be found.
Moreover, while such an optimal controller might improve
the sensitivity with respect to parametric uncertainty to
some degree, limitations related to wave prediction and
the pressure amplitude profile along a section are more
fundamental and cannot be removed by topside control.
Finally, pressure control performance could be improved
by two ways . Relying on topside actuation as presented
in this paper, better performance can be enabled by a more
accurate heave prediction. If additional instrumentation is
installed to observe the wave motion in a certain distance
around the rig (for instance by installing a ring of buoys
around the rig or an optical /radar-based method for wave
observation), combined with a model for the rig’s motion
response, more accurate heave predictions than what is
achieved by (7)-(8) would enable a controller performance
closer to that of the noncausal controller in Figure 4. How-
ever, limitations due to parametric uncertainty and due to
the pressure amplitude profile along the well would remain.
If very tight pressure control is required in challenging
wells, an alternative approach would be to maintain cir-
culation and install a controllable valve in the BHA to
directly control the downhole inflow into the annulus. By
placing actuator and sensors directly at the well bottom
where pressure control is required, measurements and ac-
tuation no longer have to propagate through the whole
mud column. Thus, no heave prediction is required, and
sensitivity with respect to uncertainty in mud parameters
can be expected to be reduced significantly.
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Rheology and

Appendix A. SUMMARY OF CONTROL LAW

In the following we briefly summarize the control law
which is given in detail in (Strecker and Aamo, 2017b)
and (Strecker and Aamo, 2017¢). See also Figure A.1.
After rescaling the domain to x = z/l (with z = z/1), the
state transformation given in (Strecker and Aamo, 2017c)
maps (1)-(3) into
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Fig. A.1. Controller structure.

u(x,t) = —equg(x,t) + Fy(u(x, t),v(z, t),vq(t)), (A.1)
Ut(xat) v$($7t)+Fv(u(xvt)vv(xat)avd(t))v (A2)
u(0,t) = —v(0,t) — Agug(t), (A.3)
v(l,t) =U(t), Y(t) = u(l,t), (A4)

where U is the actuation, Y the measurement and all other
coefficients are given in (Strecker and Aamo, 2017c). In
terms of the original physical system, we have

U0 = (4.0~ = (0000~ pop 4 palt - ) )
1 A _
V(0= 5 (40,0 + =000 oy + 091 - 2)

The control objective becomes
u(z,t) = v(T,1). (A.5)

Define

| |
o= [ it e = [ g
a(z,t) = u(x, t + ¢p(z,t)), v(x,t) =v(x,t+ dp(z,1)),
a(z,t) = u(x,t — gy (x, 1)), 0(x,t) =v(x,t — dy(a,t)).
Consider the observer

Uy (2, t) = %Fu(ﬁ(x,t)ﬁ(x,t),vd(t — ¢u(z,1))),  (A.6)

bu(z,t) = eu“:”ev b (2, 1) (A7)
e ol ), 00, 1),valt = Gl 1))

a(l,t) =Y (t), o(1,t) = U(1), (A.8)

with arbitrary bounded initial guess. For each ¢ there exists
an prediction operator A?; independent of U(t), such that
for all t > ¢,,(0) + ¢,,(0)

(u(~,t),v(-,t)) = At(ﬂ(7t)af}(7t)) (Ag)
Moreover, for every t there exists an prediction operator
' independent of U(t) but depending on the predicted
values vq(t + 0) for 6 € [0, ¢,,(0)], such that
o(-, t) satisfies

_eivFv(a(x,t),a(x,t),vd(H%(o:,t)))- (A.11)

Next we determine the desired ©(z,t), which we denote
by U*(t). If Z = 0, inserting (A.3) into (A.5) gives
U*(t) = 1d(t + ¢,(0)). If z # 0, U*(t) = u(z,t) where
u(7,t) is given by the evaluation of ®*. The required U (t)
to achieve 0(Z,t) = U*(t) is determined by solving (A.11)
backwards, i.e. solving the Cauchy problem

Up(z,t) =

QDT(:E) = 7%}7’”(@(:6, t)7 (P(x), Ud(t + QSU(I? t))v (A12)
with ¢(z) = U*(t) for x € [z,1] and setting U(t) = ¢(1),
and defining the operator

Ut (al, 1), U(t) = o(1). (A.13)
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