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The Genetic Algorithms require setting up parameters in the search for the best value of 
the objective function in an optimization process. The present work proposes the use of 
a factorial design technique, which makes use of the most meaningful effects on a 
response, in order to set up the genetic algorithms parameters applied to a three phase 
catalytic reactor. The genetic algorithm used is a real-coded genetic algorithm that 
operates directly on real values. The results have shown the potential of factorial design 
technique proposed to find out the most significant set of parameters without using the 
conventional procedure of trial-and-error which is not suitable for large scale systems.  
 
1. Introduction 
Genetic Algorithms (GAs) have been the most popular form of evolutionary algorithms 
and they have proved to be a versatile and effective approach for solving optimization 
problems (Baskar et al., 2003). GAs have the advantages of not exploiting the 
mathematical structure of the objective function and/or constraint and not requiring an 
initial feasible point. This makes the optimization procedure robust and attractive for the 
solution of large scale nonlinear systems. A real-coded GA is used in this work. During 
the procedure of optimization by GA, a set of parameters must be chosen. There are in 
the literature many works that suggest values for GA parameters, but there are few 
works that present how the suitable GA parameters choice is made.  
The present work proposes a systematic procedure to set up the GA parameters for large 
scale systems applied to a three-phase catalytic reactor that produces 2-methyl-
cyclohexanol. This procedure is a factorial design that determines the statistically 
significant GA parameters that exert influence on the search for the optimal solution at 
the optimization problem. The selection of the statistically significant GA parameters is 
important to decrease the computational effort, saving time, since the optimization trials 
can be done varying only these statistically significant GA parameters, guarantying high 
performance of the search and the convergence to global optimal solution. The factorial 
design requires less time than conventional procedure of trial-and-error and is more 
suitable for large scale systems. 
 
2. Genetic Algorithms 
GAs are global optimization algorithms inspired by Darwin’s theory of the survival of 
the fittest. The GAs start with a random population of chromosomes that are a set of 



solutions to the optimization problem. Each solution is evaluated by the fitness function 
that associates a value to the solution, determining the best ones. A new population is 
created using genetic operators. This procedure is repeated along the generations, until a 
termination criterion is satisfied. In this paper, the real-coded GA is employed. 
 
2.1 Real coded GA 
Two ways of encoding GA are binary or real. The real-coded GA eliminates the 
difficulties of achieving arbitrary precision in decision variables. The GA code used in 
this paper is the Fortran GA driver based on real code developed by Yedder (2007), 
with modifications. In the code the niching (sharing) technique is activated emphasizing 
distant solutions in the variable space to remain in the population. The elitism strategy is 
also included guarantying that the best individual is replicated into next generation. The 
number of generations is a termination criterion chosen, since the solutions are getting 
better along the generations. The genetic operators of selection, crossover and mutation 
are applied. The selection operator used is roulette wheel where each individual in the 
population is assigned a space on the roulette wheel, which is proportional to the 
individual relative fitness (Arumugam et al., 2005). The routine can apply two types of 
crossover and two types of mutation. Crossover operator can be multi-point crossover 
(expressed by multip) with four-points crossing sites or SBX crossover (simulated 
binary crossover) where the spread of children solutions around parent solutions can be 
controlled using a distribution index set in 2. With SBX crossover operator any arbitrary 
contiguous region can be searched, provided there is enough diversity maintained 
among the feasible parent solutions (Deb, 2000). Mutation operator can be non-uniform 
or gaussian mutation. Non-uniform mutation (denoted by nonuni) is a special dynamic 
mutation operator that improves single-element tuning and reduces the disadvantage of 
random mutation in the real encoding (Michalewicz, 1992). Gaussian mutation 
(expressed by varnor) consists in adding a random value from a Gaussian distribution to 
each element of an individual’s vector to create a new offspring (Hussain, 1998).  
Crossover and mutation operators are not performed on every individual, its frequency 
being controlled by a crossover probability (Pc) and mutation probability (Pm). 
 
3. Case Study and Formulation of the Optimization Problem 
In this paper the o-cresol hydrogenation to obtain 2-methyl-cyclohexanol, which is 
carried out in a three phase catalyst slurry reactor.  
The mathematical model of this reactor was developed by Vasco de Toledo et al. (2001) 
and respective equations can be found in Rezende et al. (2006). In order to perform the 
optimization of the reactor and to find the GA significant parameters, the GA real-coded 
is coupled with the non-linear mathematical model.  
The optimizing variables in this model are linear velocity of gas (ug), linear velocity of 
liquid (ul), linear velocity of coolant (ur), hydrogen concentration in the gas phase in the 
reactor feed (Agf), hydrogen concentration in the liquid phase in the reactor feed (Alf), 
o-cresol concentration in the liquid phase in the reactor feed (Blf), feed reactor 
temperature (Tf) and the feed coolant temperature (Trf). 
The objective function is given by the maximization of the productivity of 2-methyl-
cyclohexanol, as calculated by Equation 1: 
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where L is the reactor length that is equal to 2 meters.  
Since, the productivity of the process is deeply dependent on the o-cresol conversion, 
the o-cresol conversion is defined as a constraint of the process by Equation 2: 
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The optimization problem can be written as in Equation 3: 
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where x is vector composed by the input variables (ug, ul, ur, Agf, Alf, Blf, Tf and Trf). 
 
In order to manipulate the constraint of the optimization problem, the constraint 
handling method proposed by Deb (2000) and given by Equation 4is used. 
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The parameter fmax is the objective function value of the worst feasible solution in the 
population. The fitness of an infeasible solution not only depends on the amount of 
constraint violation, but also on the population of solutions at hand. However, the 
fitness of a feasible solution is always fixed and is equal to its objective function value. 
 
4. Factorial Design 
The factorial design method is a statistical technique that evaluates the process variables 
(factors) and determines which ones really exert significant influence on the final 
response (Costa et al., 2005).  
The factors to be considered in the factorial design proposed in this work are the GA 
parameters, to know, population size (popsize), number of generations (genemax), 
crossover probability (Pc), mutation probability (Pm) and two qualitative factors: type 
of crossover (typec) and type of mutation (typem). The response is the variable of 
interest, which in this work is the productivity of 2-methyl-ciclohexanol (fitness 
function). In order to analyze the GA parameters influence on the fitness function, a 
factorial design was constructed using the Statistica software (StatSoft v.7.0). 
Table 1 show the levels of the quantitative factors used in the factorial design. The 
values of zero level (central point) are based on the suggestions of the literature. 
 
Table 1 - Levels of the quantitative factors used in the GA code. 

GA Parameters (quantitative factors) (-) level Central point (+) level 
(1) popsize 64 80 96 

(2) genemax 40 50 60 
(3) Pc 0.64 0.80 0.96 
(4) Pm 0.10 0.125 0.15 



The variables typec and typem are considered qualitative factors in the factorial design. 
Qualitative factors are those where the factor settings are categorical in nature, and 
which, therefore, cannot be continuously adjusted. Center points cannot be added for 
qualitative factors; hence, to balance the design, when you request center points, 
Statistica software will construct full factorial designs for all qualitative factors at each 
center point, for all continuous factors (Statistica Eletronic Manual, 2004). The 
meanings of types of crossover (sbx and multip) and of the types of mutation (nonuni 
and varnor) were explained in item 2.1.  
Table 2 shows the levels of the qualitative factors used in the factorial design.  
 
Table 2 - Levels of the qualitative factors used in the GA code. 

GA Parameters (qualitative factors) (-) level (+) level 
(5) typec sbx multip 
(6) typem nonuni varnor 

 
Since the factors are six, a 26-1 fractional factorial design was chosen requiring thirty 
two optimization trials plus four optimization trials of central point. The spreadsheet 
containing the thirty six optimization trials is presented in Table 3. The last column 
brings the best fitness function (productivity) in the last generation for each run.  
 
Table 3 - Fractional factorial design 26-1 study results for the three-phase reactor. 

Runs popsize genemax Pc Pm typec typem Productivity (x10-4  kmol/m3 s) 
1 64 40 0.64 0.1 -1 -1 1.424923 
2 96 40 0.64 0.1 -1 1 1.227468 
3 64 60 0.64 0.1 -1 1 1.233618 
4 96 60 0.64 0.1 -1 -1 1.424923 
5 64 40 0.96 0.1 -1 1 0.974902 
6 96 40 0.96 0.1 -1 -1 0.871991 
7 64 60 0.96 0.1 -1 -1 1.121153 
8 96 60 0.96 0.1 -1 1 0.974902 
9 64 40 0.64 0.15 -1 1 1.198361 

10 96 40 0.64 0.15 -1 -1 0.865833 
11 64 60 0.64 0.15 -1 -1 0.865833 
12 96 60 0.64 0.15 -1 1 1.335519 
13 64 40 0.96 0.15 -1 -1 0.854199 
14 96 40 0.96 0.15 -1 1 0.843818 
15 64 60 0.96 0.15 -1 1 0.843818 
16 96 60 0.96 0.15 -1 -1 0.923729 
17 64 40 0.64 0.1 1 1 1.210146 
18 96 40 0.64 0.1 1 -1 1.244694 
19 64 60 0.64 0.1 1 -1 1.245954 
20 96 60 0.64 0.1 1 1 1.210146 
21 64 40 0.96 0.1 1 -1 1.380034 
22 96 40 0.96 0.1 1 1 1.282908 
23 64 60 0.96 0.1 1 1 1.282908 
24 96 60 0.96 0.1 1 -1 1.380035 
25 64 40 0.64 0.15 1 -1 1.407136 
26 96 40 0.64 0.15 1 1 1.142728 
27 64 60 0.64 0.15 1 1 1.143843 
28 96 60 0.64 0.15 1 -1 1.407136 
29 64 40 0.96 0.15 1 1 1.284729 
30 96 40 0.96 0.15 1 -1 1.372017 
31 64 60 0.96 0.15 1 -1 1.372017 
32 96 60 0.96 0.15 1 1 1.285247 

33 (C) 80 50 0.8 0.125 -1 -1 0.850719 
34 (C) 80 50 0.8 0.125 1 -1 1.401577 
35 (C) 80 50 0.8 0.125 -1 1 0.868171 
36 (C) 80 50 0.8 0.125 1 1 1.143311 



Table 4 presents the effect estimates of the parameters and interactions effects between 
the parameters. In bold are the parameters statistically significant.  
 
Table 4 - Effect estimates on productivity for the fractional factorial design with two 
factor interactions calculated with 95% of confidence. 

Factor Effect p Factor Effect p
 Mean/Interc. 1.163901 0.000000 1 by 2 0.107217 0.032969

   1 by 3 -0.019234 0.677743
(1)popsize -0.003155 0.945488 1 by 4 0.028916 0.533773

   1 by 5 0.002923 0.949491
(2)genemax 0.029056 0.531829 1 by 6 0.019456 0.674255

   2 by 3 0.010846 0.814349
(3)Pc -0.096241 0.052026 2 by 4 -0.003016 0.947890

   2 by 5 -0.028694 0.536878
(4)Pm -0.084046 0.084872 2 by 6 -0.010938 0.812793

   3 by 4 0.022889 0.621407
(5)typec 0.249594 0.000043 3 by 5 0.174755 0.001748

   3 by 6 -0.019834 0.668350
(6)typem -0.051520 0.247929 4 by 5 0.106300 0.034266

   4 by 6 0.044180 0.346225
   5 by 6 -0.084550 0.067876

 
Table 4 shows the effects and p-values. Although we use p-value analysis to evaluate 
the significance of the effects (effects with p-level ≤ 0.05 are considered significant), in 
a simulation work the p-value has no physical meaning, as there are no experimental 
random errors involved.  
Table 4 shows that the most significant effect is the type of crossover (typec). The 
interactions popsize and genemax, pc and typec, pm and typec have shown to be of 
great significance. These results show a great influence of the type of crossover, the 
most important effect, but also show that the population size, number of generations, 
crossover and mutation probabilities must be considered in further optimizations.  
Figure 1 shows the Pareto chart that reinforces the results presented in Table 4. 

Pareto Chart of Standardized Effects; Variable: Productivity x 10-4

2**(6-1) design; MS Residual=.0164339
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Figure 1 – Pareto Chart for the factorial design study. 

 
In Pareto chart, the effect estimates of all parameters in the factorial design are plotted 
and statistically significant parameters are the ones that cross the vertical line of p=0.05. 



5. Conclusions 
A systematic procedure to set up the GA parameters applied to a three-phase catalytic 
reactor was developed. The factorial design technique was used in order to analyze six 
GA parameters and to determine the most meaningful effects on the productivity of 2-
methyl-cyclohexanol. The results showed that the most statistically significant effect is 
the type of crossover and that the interaction between this parameter and the crossover 
and mutation probabilities was also of great significance. The interaction between the 
population size and the maximum number of generations was also important. In this 
way, these parameters must be considered in further optimizations. 
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