An overview of the use of hybrid models in biochemical networks

JOHN LYGEROS

WWW.CONTROL.ETHZ.CH

Special thanks to

The speakers

Konstantinos Koutroumpas

The HYGEIA project

FP6-NEST-004995

Outline

Mathematical Modeling in Biology

- Long history, many levels
- Population dynamics
 - Single species

- Predator-prey models
- Ecosystems
- Epidemiology

Mathematical Modeling in Biology

Organisms of parts thereof

Neurophysiology

- Aneasthesia

Exercise and rehabilitation

Mathematical Modeling in Biology

- Molecular level
 - Genes and protein coding
 - Protein-protein interactions
 - Signaling within the cell
 - Signaling between cells

Systems biology

- Here refers to mathematical modeling of biological processes at the molecular level
- Genes proteins and their interactions
- Field driven by abundance of data
 - Micoarray
 - Imaging and microscopy
 - Reporter systems,
 micorarrays,
 bioinformatics, robotics

Systems biology

- Models based on biologists intuition
- Used to "correlate" large data sets
- Model predictions
 - Highlight "gaps" in understanding

- Motivate new experiments

• Virtuous cycle

Model

Experiments

Example: DNA replication

- Microarray data:
 - Positions along genome
 - Efficiencies
 - ~900 origins of replication
- Manual analysis impossible
- Develop stochastic model
- Monte-Carlo simulation
- Model predictions unrealistic

Example: DNA replication

- Predicted duration of DNA replication too long
- Many possible explanations
- Tested on the model
- Only two seem plausible
- New data will allow us to test one (hopefully!)
- Targeted experiments designed to test the other

Outline

Hybrid systems

- Dynamical systems that involve interaction of discrete & continuous dynamics
- Systems with phased operation
 - Bouncing balls, walking robots
 - Systems controlled by valves, pumps, computers
 - Embedded systems
- Focus of interest for over a decade

Dynamical evolution

Zürich

Uncertainty

- Dynamical systems often deterministic: One solution for each initial condition
- Hybrid systems allow uncertainty in
 - Initial condition
 - Flow direction
 - Discrete & continuous state destinations
 - Choice between flowing and jumping
- "Traditionally" uncertainty worst case
- This may be too coarse for biological systems
- Stochastic hybrid systems: Probabilities

Hybrid Systems

Methods and computational tools

- Modeling & simulation
- Identification & observers
- Analysis & verification
- Controller design

Numerous successful applications

- Automotive & avionics
- Industrial processes
- Transportation
- Telecom & power networks
- Biochemical systems

Different modeling methods at molecular level

- Discrete: Finite states and their interactions
- Continuous: ODE, PDE
- Stochastic: Master equation, Markov chain
- Hybrid

H. de Jong, "Modeling and simulation of genetic regulatory systems: A literature review", *Journal of Computational Biology*, 9(1):67-103, 2002

Discrete models

Example: Directed and undirected graphs

Other examples: Bayesian & Boolean networks

Discrete models

- Advantages:
 - Easy to develop: Directly map biological intuition
 - Easy to analyze: Graph operations
 - Analysis can lead to interesting conclusions
 - Cycles suggest feedback relations
 - Sub-graphs suggest functional modules
 - Graph comparisons suggest evolutionary conserved mechanisms
- Disadvantages:
 - Somewhat coarse
 - No temporal variation or spatial information
- Alternative: Add continuous dynamics

CyclinB/Cdk dimers

- Model evolution of concentrations of RNA, proteins, etc.
- Chemical reactions, interdependencies lead to nonlinear differential equations
- Nonlinearities often due to sigmoidal activation functions

$$\frac{d[CycB]}{dt} = k_1 - (k'_2 + k''_2 [Cdh1])[CycB]$$

$$\frac{\text{d[Cdh1]}}{\text{d}t} = \frac{(k'_3 + k''_3 A)(1 - [Cdh1])}{J_3 + 1 - [Cdh1]}$$

$$\frac{\text{Cdh1/APC}}{\text{complexes}} - \frac{k_4 m [CycB] [Cdh1]}{J_4 + [Cdh1]}.$$

[Tyson & Novak, 1999]

- Advantages
 - Direct link to biochemical understanding
 - Standard nonlinear systems tools applicable
 (e.g. bifurcation analysis)
- Disadvantages
 - Model quickly becomes very complex

$$\frac{d[CycB]}{dt} = k_1 - (k'_2 + k''_2 [Cdh1])[CycB]$$

$$\frac{\text{d}[\text{Cdh1}]}{\text{d}t} = \frac{(k'_3 + k''_3 A)(1 - [\text{Cdh1}])}{J_3 + 1 - [\text{Cdh1}]}$$
$$-\frac{k_4 m [\text{CycB}] [\text{Cdh1}]}{J_4 + [\text{Cdh1}]}.$$

[Tyson & Novak, 1999]

$$\frac{\mathrm{d}\operatorname{Sic1}}{\mathrm{d}t} = k_5 - k_6'\operatorname{Sic1} - k_p\operatorname{Sic1} + k_{pp}\operatorname{Cdc14}\cdot\operatorname{Sic1P} - k_j\operatorname{Clb}\cdot\operatorname{Sic1} + k_{jr}\operatorname{Tri} + k_{2c}\operatorname{Tri}$$

$$\frac{\mathrm{d}\operatorname{Sic1P}}{\mathrm{d}t} = k_p\operatorname{Sic1} - k_{pp}\operatorname{Cdc14}\cdot\operatorname{Sic1P} - (k_6' + k_6')\operatorname{Sic1P} - k_j\operatorname{Clb}\cdot\operatorname{Sic1P} + k_{jr}\operatorname{TriP} + k_{2c}\operatorname{TriP}$$

$$\frac{\mathrm{d}\operatorname{Tri}}{\mathrm{d}t} = k_j\operatorname{Clb}\cdot\operatorname{Sic1} - k_{jr}\operatorname{Tri} - k_{2c}\operatorname{Tri} - k_6'\operatorname{Tri} - k_p\operatorname{Tri} + k_{pp}\operatorname{Cdc14}\cdot\operatorname{TriP}$$

$$\frac{\mathrm{d}\operatorname{TriP}}{\mathrm{d}t} = k_p\operatorname{Tri} - k_{pp}\operatorname{Cdc14}\cdot\operatorname{TriP} + k_j\operatorname{Clb}\cdot\operatorname{Sic1P} - k_{jr}\operatorname{TriP} - k_{2c}\operatorname{TriP} - (k_6' + k_6')\operatorname{TriP}$$

$$\frac{\mathrm{d}\operatorname{C1b}}{\mathrm{d}t} = k_1\operatorname{mass} - k_j\operatorname{Clb}\cdot\operatorname{Sic1} + k_{jr}\operatorname{Tri} - k_j\operatorname{Clb}\cdot\operatorname{Sic1P} + k_{jr}\operatorname{TriP}$$

$$- k_2\operatorname{Clb} + k_6'\operatorname{Tri} + (k_6' + k_6')\operatorname{TriP}$$

$$\frac{\mathrm{d}\operatorname{Het1}}{\mathrm{d}t} = \frac{k_{herr}(1 - \operatorname{Het1})}{J_{herr} + 1 - \operatorname{Het1}} - \frac{k_{her}\operatorname{Het1}}{J_{her} + \operatorname{Het1}}$$

$$\frac{\mathrm{d}\operatorname{Cdc20}}{\mathrm{d}t} = k_{as}\operatorname{Clb} - k_{aa}\operatorname{Cdc20} + k_{ai}\operatorname{Cdc20}_A - k_{ad}\operatorname{Cdc20}_A$$

$$\frac{\mathrm{d}\operatorname{Cdc20}}{\mathrm{d}t} = k_{as}\operatorname{Clb} - k_{aa}\operatorname{Cdc20} + k_{ai}\operatorname{Cdc20}_A - k_{ad}\operatorname{Cdc20}_A$$

$$\frac{\mathrm{d}\operatorname{INH}}{\mathrm{d}t} = k_3 - k_i\operatorname{INH}\operatorname{Cdc14} + k_{ir}\operatorname{IC} - k_4\operatorname{Cdc20}_A\operatorname{INH}$$

$$\frac{\mathrm{d}\operatorname{IC}}{\mathrm{d}t} = k_i\operatorname{INH}\operatorname{Cdc14} - k_{ir}\operatorname{IC} - k_4\operatorname{Cdc20}_A\operatorname{IC}$$

$$\frac{\mathrm{d}\operatorname{mass}}{\mathrm{d}t} = \mu\operatorname{mass}$$

[Tyson & Novak 2001]

- Advantages
 - Direct link to biochemical understanding
 - Standard nonlinear systems tools applicable (e.g. bifurcation analysis)
- Disadvantages
 - Model quickly becomes very complex
 - Sensitivity w.r.t. parameter values
 - Concentration approximation often inaccurate
 - Deterministic
 - No spatial component
- Alternative: Abstract nonlinearities by switches

- Model evolution of concentrations
- But with a spatial component
- Reaction diffusion equations
- Can be model variations of concentrations
 - Between cells
 - Between different compartments in a cell
 - Between different areas in a nucleus

- Concentrations of chemicals, $x_i(t,l)$, i=1, 2, ..., n
- In parameterized by 1 dimension (l) + time (t)

- *n* coupled PDE + boundary conditions
- Normally in 3 dimensions + time
- Disadvantages
 - Very difficult to solve
 - By hand for few chemicals, low dimension
 - Numerically?
 - Sensitivity w.r.t. parameter values
 - Concentration approximation often inaccurate
 - Deterministic
- Advantages
 - Fairly faithful representation of reality
 - Simplification often possible (eg. radial symmetry)

Stochastic master equations

- Treat every molecule separately
- State, *X*, number of molecules of chemicals
- Joint probability distribution p(X,t)
- Evolves according to *m* reactions

$$\frac{\partial}{\partial t}p(X,t) = \sum_{j=1}^{m} [b_j - a_j p(X,t)]$$
Effect of reaction j

Stochastic master equations

- Advantages
 - Very faithful representation of reality
 - Can deal with few copies of molecules
 - Can be blended with/simplified to ODE models
 - Spatial component can be added
- Disadvantages
 - Very difficult to solve in general
 - Often resort to simplifications
 - Stochastic simulation

Stochastic simulation [Gillespie]

- Monte-Carlo type simulation
- State: Number of molecules of each chemical
- Algorithm
 - 1. Determine when next reaction will be (stochastic)
 - 2. Determine which reaction this will be (stochastic)
 - 3. Update system state according to reaction
 - 4. Repeat
- Complexity, efficient implementation
- Widely used in practice
- Spatial variation possible (e.g. step 1)

- Model exist to deal with discrete, continuous and stochastic aspects of the problem
- Often the interaction makes the difference

• Example: Cell cycle

• Example: Cell differentiation

Courtesy: J. Wittbrodt

- Time scale hierarchies
- Abstract nonlinearities by switches

$$\dot{x}_i = k_i h(x_j, \theta_j, m) - l_i x_i \quad \Longrightarrow \dot{x}_i = \begin{cases} k_i - l_i x_i & \text{if } x_j \ge \theta_j \\ -l_i x_i & \text{else} \end{cases}$$

Nonlinear

Piecewise affine

- PWA systems
 - Special type of hybrid systems
 - Not general nonlinear systems
 - Provide enough structure to allow some analysis
- Biological networks → special class of PWA
 - Dynamics decoupled
 - Switching boundaries aligned with the axes
- Special care is needed
 - Dynamics discontinuous
 - Sliding modes, pseudo equilibria

Stochastic hybrid systems

- In some cases stochastic terms central
- Examples:
 - Master equation, stochastic simulation
 - Cell cycle
 - Cell differentiation
- Stochastic hybrid models
 - Discrete states
 - Continuous states
 - Probabilistic representation of uncertainty

Outline

Workshop overview

- 8.45 9.30 **John Lygeros**: An overview of hybrid models for biochemical systems
- 9:45 10.30 **Zoe Lygerou**: An introduction to information flows within the cell
- 11:00 11:45 **Zoe Lygerou**: Tools and approaches in modern biological science
- 12:00 12:45 **Hidde de Jong**: Qualitative analysis and verification of piecewise affine models of genetic regulatory networks
- 14:30 15.15 **Delphine Ropers**: Development and experimental validation of piecewise affine models of carbon starvation response in Escherichia coli
- 15:30 16:15 **Giancarlo Ferrari-Trecate**: Identification of deterministic piecewise affine models of genetic regulatory networks
- 16:45 17:30 **John Lygeros**: Stochastic hybrid models of DNA replication

