
*This work has been supported by the “Deutsche
Forschungsgemeinschaft” under grant n°. WO 565/12-1

CHANCE CONSTRAINED BATCH DISTILLATION
PROCESS OPTIMIZATION UNDER UNCERTAINTY*

Harvey Arellano-Garcia, Walter Martini, Moritz Wendt, Pu Li and Günter Wozny
Department of Process Dynamics and Operation, Technical University Berlin

10623 Berlin, Germany

Abstract

Uncertainties may have a large impact on equipment decisions, plant operability, and economic analysis.
Thus the consideration of uncertainties in optimization approaches is necessary for robust process design
and operation. As a part of it, efficient chance constrained programming has become an important field
of research in process systems engineering. In this work, a new approach is proposed for chance
constrained programming of large scale nonlinear dynamic systems, in which some dependent variables
at certain time points are to be constrained with a predefined probability. This new approach is an
extension and a modification of the existing method for nonlinear chance constrained process
optimization, which has been utilized for steady state processes. The main idea of this method is the
employment of the monotone relation between output constraints and uncertain variables, so that the
probabilities and their gradients can be achieved by numerical integration of the probability density
function of the multivariate uncertain variables by collocation on finite elements. The new approach
involves new efficient algorithms for realizing the required reverse projection and hence the probability
and gradient computation with an optimal number of collocation points so that the original idea is now
applicable for dynamic optimization problems with larger scale. This approach is applied for
optimization problems of batch distillation with A detailed dynamic process model
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Introduction

Most current approaches for process operations are
based on deterministic optimization, where uncertainties of
several parameters are not taken into consideration. Thus
systematic methods are required for integrating the
available stochastic information of uncertain parameters
into process operation decisions.

A process may have internal uncertainties such as
inaccurate model parameters or external uncertainties such
as unknown future feedstock. However, changing market
conditions lead to frequent disturbances from the amount
and quality of both feedstock and product. These
disturbances are often multivariate and correlated
stochastic sequences, which will have influences like a
chain-effect, to each unit operation of the production line.
The characteristics of the stochastic processes, such as

mean, covariance or probability distribution function
(PDF), may be known from long term operation data.

To solve an optimization problem under uncertainty,
some special treatments of the objective function, the
equality and inequality constraints have to be considered in
order to relax the stochastic problem to an equivalent NLP
problem, so that it can be solved by the existing
optimization routines. While the objective function is
usually described by the expected value, inequality
constraints can be relaxed to chance constraints as one of
the main approaches.

In this research we concentrate on the assumption of
multivariate normal distributions of the uncertain variables.
Thus we finally deal only with NLP problems. For the
optimization itself, we use the sequential approach with a



standard NLP solver. However, the main challenge of this
research work lies in the computation of probabilities and
their gradients in the simulation layer, especially when the
relation between the uncertain and constrained variables is
nonlinear. Due to the importance of this matter, the
expression nonlinear is used for describing the relation
between those two variables in this context.

The application of the developed stochastic
methodology to handle uncertainties of the operation
problem under chance constraints to the batch distillation
process is the main focus of this contribution.

Method for nonlinear chance constrained
programming

In nonlinear systems, the type of the PDF of the
uncertain input is not the same as the one of the
constrained output. Unlike linear systems, a multivariate
normal distribution of the input never causes a multivariate
normal distribution of the output. The PDF of the output is
mostly not even known. Thus a transformation performed
for linear systems is not possible. The chance constraints
can be either computed through efficient sampling
techniques (Diwekar et al., 1997) or numerical integration
techniques (Bernardo et al., 1999). The latter one has been
accomplished (Wendt et al. 2002) in the case of a
monotone relation between the constrained output and at
least one uncertain input. This method is applicable to all
stochastic optimization problems with single chance
constraints.

In this method, an equivalent representation of the
probability is derived by mapping the feasible region to a
region of the random inputs. Consider the confined feasible
region that will be formed by the nonlinear projection from
the region of the uncertain variables at some given u . For
a practical engineering problem, it is realistic that one can
find a monotone relation between an output variable

ii Yy ∈ and one of the uncertain input variables
SS Ξ∈ξ ,

where SΞ is a subspace of Ξ . Denoting this monotone

relation as )( Si Fy ξ= , the mapping between iy and Sξ
can be schematically depicted in Fig. 1.

The right and left circle in Fig. 1 represent the whole

region of iY and SΞ respectively. The points are some

realizations of the variables based on their distribution

functions. A point in SΞ leads to a point in iY through

the projection )( Si Fy ξ= . Due to the monotony, a point

iy can lead to a unique Sξ through the reverse projection
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Fig. 1: Mapping between an uncertain input variable
and an output variable.

the region, with the bound L
Sξ , of the random variable

corresponding to iY ′ . It can be easily seen that if

↑⇒↑ iiy ξ the representation

{ } α≥ξ≤ξ L
SSP (2)

is the same as (1). If ↓⇒↑ iiy ξ , then the representation

{ } αξξ ≥≥ L
SSP (3)

corresponds to (1). Generally, in case of a negative
monotony, an upper bound of the constrained output
induces a lower bound of the random variable and vice
versa. No change between upper and lower bound will be
in case of a positive monotone relation. This implies that
the probability of holding the output constraint can be
computed by integration in the corresponding region of the
uncertain variable. It should be noted that all uncertain

variables, which have an impact on iy , have to be taken

into account when computing { }SP
ii yyP ≤ . In addition, the

values of the decision variables u have also an impact on

the projected region. Then the bound L
Sξ will change

based on the realization of the individual uncertain
variables )1,,1(, −=ξ Sss L and the value of u, i.e.
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and this leads to the following representation
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Furthermore, for linking this method to a NLP
framework, we need to compute the gradients of the output
constraint probability to the decision variables u. From (4)-
(5), u has the impact on the value of the probability
through the integration bound of the corresponding region
of the random inputs. Thus the gradients can be computed
as follows:
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The numerical integration of (6) can be computed
simultaneously to (5).



For the numerical integration, collocation on finite
elements is used. For this purpose the optimal number of
collocation points and intervals need to be found in order
to find a trade-off between computational time and
accuracy. Recent studies have shown, that 5-point
collocation is more efficient than 3-point-collocation at any
rate. With two intervals, the error of probability
computation is always less than 1%; with one interval, the
error is at the worst between 1% and 2%.

Due to the model complexity, an explicit expression of
(4) is usually not available. Therefore, a Newton-Raphson
step has been used for steady state problems for computing
the bound value L

Sξ and its derivative with respect to u

with given SP
iy , u and 11 ,, −ξξ SL for each integrated

subspace. However, for solving dynamic problems with a
constraint variable )( f

SP
i ty for a fixed time point

ft and

uncertain parameters occurring throughout the entire
operation time with different u in different time intervals, a
more general and efficient dynamic solver is required.

To be applicable to large scale dynamic problems in a
reasonable computation time, the procedure of the dynamic
solver can be divided into two steps:

1) Determination of the reverse projection of the
feasible region by the bisectional method

2) Computation of the gradients
u

l
S

∂
∂ξ . The method is

based on formulation of the total differential of
the model equations ( )ξ,, uxf :

0=
∂
∂+

∂
∂

∂
∂+

∂
∂

∂
∂= du

u

f
du

u

f
du

u

x

x

f
df

l

S

l

S

ξ
ξ

Therefore a system of differential equations will be
generated as follows:
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where Ji denotes the jacobian matrix ( )
i

xf ∂∂ at time

interval i and m is the number of time intervals. Ci is the
gradient ( )

i
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The jacobian matrix at the last time interval Jm is adjusted

by replacing the constrained variable with l
Sξ . Thus, the

desired gradient








∂
∂

u

l
Sξ is included in the last line of the

matrix, which denotes the gradients ( )u
x

∂
∂ . The unknowns in

this DAE system, the values for xU, will be computed using
Gauss elimination.

The whole computational strategy for solving the
nonlinear chance constrained optimization problem is a
sequential NLP approach that can be depicted in Fig. 2.

SQP is chosen for computing the values of the decision
variables u in the NLP solver. The values of the objective
function, the probabilistic constraints and their sensitivities
are computed by the multivariate integration, while the
upper and lower bounds of the integration region will be
calculated through solving the model equations by the
dynamic solver algorithm. It is worth noting that the
computation of both the probability and the gradients is not
limited to a certain kind of distribution form of the
uncertain inputs, but works for any form of probability
distribution.

SQP

multivariate integration

dynamic solver
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Fig. 2. Computational strategy for solving chance
constrained problems

Joint chance constraints in nonlinear systems

To compute a joint constraint, again, there must be one

uncertain variable Sξ , which is monotone to all

constrained output variables. Then this selected uncertain
variable has to be defined as an upper or lower bound
according to the bounds of the constrained outputs and the
characteristics of the monotony as explained in the second
section. In case, there are several constrained outputs
inducing several upper or lower bounds, then for the

integration of Sξ the lowest possible value of the upper

bound and the highest possible value of the lower bound is
chosen. Thus, the joint probability concerning the output
constraints will be formulated so that

{ } { }LSS
l
S

SP
ii PIiyyP ξ≤ξ≤ξ==≤ ,,1, L (7)

where L
Sξ and l

Sξ are the upper and lower bound of

the uncertain input region, respectively. This region is
formed by the cutting planes mapped by

),,1(,),( Iiyuy SP
ii L=≤ξ . Then the joint probability

(7) can be computed by:
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This formulation is applicable to all steady state problems,
but also to dynamic processes, where the random variables
are steady throughout the process. It should be noted, that
if all constrained outputs have a positive monotone relation

∂
∂

∂
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to the uncertain input, there will be no lower bound, but the
lowest possible value will become the upper bound.

Application to reactive semibatch distillation

Batch processing is dynamic and provides a high
degree of operational freedom. This new approach has
been implemented for a complex industrial reactive
semibatch distillation process, described by a rigorous
model, which has been validated through a conventional
batch run on the industrial site. A slightly endothermic
trans-esterification of two esters and two alcohols takes
place in the reboiler. During the batch a limited amount of
educt alcohol will be fed to the reboiler to increase the
reaction rate to the desired direction. The product alcohol
(the lightest component) is distillated from the reboiler,
through which the reaction will be shifted towards the
product direction. It is assumed that the uncertainties are
from the kinetic parameters (the activation energy and the
frequency factor in the Arrhenius equation) and the tray
efficiency η. The one uncertain variable, which is
monotone to the restricted state variables in the
probabilistic constraints at any rate is the tray efficiency η.
That means there is a relation ↑⇒↑ 1,Dxη and also

↓⇒↑ NSTAx ,η . According to (1)-(5) Lη can be used as

the upper bound for the random variable η in the

numerical integration of the probabilities P of the
complementary event of the original constraints.

The actually wanted probability then will be found by

PP −=1 . As an alternative, Lη could be the lower bound

for computing the wanted probability. Thus, for given
values of the restricted variables the corresponding tray
efficiency η will be computed using the bisectional method
starting with values for η between 0.1 and 0.96.

For the implementation we consider two cases, the
simplified single fraction problem as case 1 and the more
complex two-fraction problem as case 2.

Case 1: The single fraction problem:

The target of this optimization problem is the
maximization of the total amount of distillate product J
within a fixed time horizon and a fixed trajectory of feed
flow rate of the educt alcohol. The product is restricted by
a given purity specification of 0.99 mol/mol, which has to
be formulated as a probabilistic constraint. Here the
trajectory of the reflux ration is seen as the only
independent variable to be optimized.

In Fig. 3 and table 1 the impact of different probability
levels is illustrated, indicating the trade-off between the
objective and robustness of the process. It can be noted,
that mainly in the beginning time intervals, the probability
level has an impact to the optimal process operation policy
and thus only those time intervals are shown in Fig. 3.
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Fig. 3: impact of probability level to the objective value

Case 2: The two-fraction problem

In the main cut period the product alcohol is
accumulated in the first distillate accumulator with a given
purity specification. At the end of the batch, a mixture of
the product ester with a desired purity and the educt
alcohol will be achieved in the reboiler and then separated
by a recovery column.

The aim of the optimization is to minimize the batch
operation time. Thus the independent variables of the
problem are the feed flow rate F and the reflux ratio Rv.
Considering the sequential approach, the nonlinear
dynamic optimization problem is formulated as follows:

( )fuVf ttRtFt ,,),(min

s.t. ( ){ } 11, /98.0 α≥≥ molmoltxP switchD

{ } 2, /002.0)( α≥≤ molmoltxP fNSTA

∫ ≤
ft

t

kmoldttF
0

20)( and hltF /150)(0 ≤≤

with xD,1 and
NSTAx ,

as the average distillate composition at

the end of the main cut period and the purity in the bottom,
respectively. In order to handle the fraction switching-time

switcht and the total batch time
ft conveniently, the lengths

of the different time intervals are also regarded as
independent variables, additionally.
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