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Abstract 

The Measurement and Control Engineering Center (MCEC), a National Science Foundation 
Industry/University Cooperative Research Center (I/UCRC), is a cooperative venture among Oklahoma 
State University, The University of Tennessee, Oak Ridge National Laboratory, the National Science 
Foundation, and numerous industrial partners. Current research efforts include two projects where 
opportunities for optimization in process control are being explored.  One project, Control to Economic 
Optimum, is developing a control and optimization algorithm that addresses the profit maximization 
motive behind industrial operations and dictates economically optimal dynamic profiles for manipulated 
variables. In the Experimental Batch Optimization project, new techniques are being developed for 
experimental optimization of batch recipes in real-time.     
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Introduction

The main objective of this paper is to show the 
opportunities for economic optimization of dynamic 
processes in process control.  Traditional industrial 
applications of process control economically optimize 
assuming steady state behavior, ignoring the dynamic 
nature of many processes.   

Control to Economic Optimum 

Background 

A control system is designed to maintain the process 
in a profitable state of operation, respecting safety, stability 
and quality constraints of the process. To produce a 
product of uniform quality, process control must 
compensate for effects of disturbances and hold the 
product quality constant (Buckley, 1964). There is a dual 
optimization approach in the conventional control 
approach. First setpoints for each controlled variable are 

calculated from a design condition, typically the steady 
state. Then the controller calculates a manipulated variable 
profile which minimizes squared deviation from setpoint, a 
non-economically motivated objective. As the plant 
continually changes from one state to another, its optimal 
conditions change; thus the basic motive of maximizing 
profit is addressed only at particular conditions. In recent 
decades, the Online Optimization (OO) concept was 
implemented in the control process. Using the OO strategy, 
the optimizer periodically (on an hourly scale) updates the 
setpoints for the process according to a predefined 
objective function, (technical or economic). The OO 
concept is used widely (Ayala, 1997) and provides a better 
profit compared to conventional control algorithms (Lauks, 
et al. 1992). However, OO concept still uses the steady 
state process consumption. 



  
 

Motivation 

The power of the computer presently challenges the 
current control methods in following ways: 
∙ The ultimate objective of control is to maximize 

profits, not to minimize the variance from setpoints. 
∙ A steady state assumption is rarely valid due to the 

continual transient nature of continuous processes. 
∙ Process changes between setpoints update periods and 

old setpoints are off optimum, but the outdated values 
are still used. 
This suggests a modification in the control objective 

function to incorporate process economics. The optimizer 
should dynamically dictate the next most profitable 
operating point and also the most economically optimum 
path to that point.  The main flow of the CEO (Control to 
Economic Optimum) algorithm can be seen in Figure 1.  

 

 
Figure 1. Control to Economic Optimum flow chart 

Formulation of Objective Function 

The aim of the process is to maximize the total profit 
during the period considered, the objective function is 
adjusted as: 

 
Profit=∫(Product Revenue – Operation Cost) * dt  (1) 

 
 The optimizer will provide optimal manipulated 

variable profiles, which will be implemented into the 
process. 

Case Study 
The binary distillation column is chosen as the process 

studied, which has 15 trays and one feed flow. Two models 
involved in the case study, one is the full range model 
modified from Luyben’s (Luyben, 1992) binary distillation 
column model, which is used as the plant model and 
receives the input from the second model, the 
simulator/optimizer; the other model is the key of the 
study, the simulator/optimizer, which predicts the optimal 
control variable profile in the 2 hours prediction horizon, 
(480 sampling points are used.) and output them to the 
plant model. (The software is MATLAB/Optimization 
Toolbox). 

In order to differentiate these two models, the 
simulator/optimizer was developed by reduced order 
model, using the orthogonal collocation method (Stewart et 
al. 1985).   

Since the process is usually in a transient state, 
overhead product removal rate (D), bottoms product 
removal rate (B), reflux rate (R) and vapor boilup rate (V) 
are not constant; the above formulation can be divided into 
small temporal stages which need to be integrated, the 
objective function is written as: 

Profit = Σ( VD*Di + VB*Bi – CR*Ri – CV*Vi) * ∆ti  (2) 
VD, VB are the values of the distillate and bottom 

product respectively, and CR, CV are the cost of reflux and 
vapor boiled up respectively; the summation is over the 
prediction horizon.  

In this optimization objective function, the 
independent variables, or the decision variables are the Ri 
and Vi. By choosing the best profiles of Ri and Vi , the 
process can be maintained at the best profit condition over 
the study horizon. 

As a preliminary study, eight decision variables (DVs) 
(four for R and V each) are used in this case study. The 
first set of decision variables is located at 5 minutes to 
accommodate computation time in the controller. Other 
three sets are located at 15, 30, 60 minutes respectively. 
The result from this case was compared with the 
conventional PI controller (which controls the top and 
bottom product concentrations). The cumulative profit was 
compared on an 8 hours plant operation. See Figure 2.  

 
Figure 2. Cumulative profit comparison 

In the current study, the products are regarded as the 
intermediates or raw materials for next unit operation. The 
purpose of doing this is to test how the economic 
consideration will affect the process operation and the 
profit. When the product purity has the requirement to 
meet the range of the specification, just add the quality 
penalty term in the objective function. An alternative is 
using the Taguchi-based method (Taguchi, et al, 1989) to 
control the quality.  

Figure 3 and Figure 4 show the predicted and plant 
“real” concentrations profiles of the top and bottom 
products for the given location of the DVs. The next step 
of this research will focus on the comparison between the 



  

dynamic oriented CEO and steady state oriented Online 
Optimization, since they are optimizers, while the usage 
will be totally different. Process disturbances and random 
operational parameters’ changes will be incorporated to 
model the real industrial environment. 

 
Figure 3. Predicted top and bottom products 

concentrations profiles 
 

 
Figure 4. Plant “real” top and bottom products 

concentrations profiles 
As the next step of this study, the disturbances will be 

introduced into the process, considered disturbances are 
feed flow rate changes, feed composition changes, and 
other non major random disturbances. 

Experimental Batch Optimization 

Introduction 

Optimization of batch processes has been the focus of 
many studies (Love, 1988) and the use of in-situ 
spectroscopic measurements for characterizing batch 
process has received significant attention in the past few 
years (Dekkers, 1991).  We believe the combination of 
these two technologies can develop the generic approach to 
optimizing batch processes. 

In one experimental optimization of a batch process, 
the parameters of a simple unstructured, un-segregated 

model were dynamically adjusted to maintain an accurate 
representation of the process (Iyer, et al. 1999).  Once the 
model parameters were adjusted, the batch was re-
optimized, whereby inaccuracies in the model were taken 
care of by on-line data reconciliation and model parameter 
adjustment.  Although that work cited focused on a 
fermentation process, the approach is perfectly general and 
is easily applicable to any batch process that can be 
modeled.   

In this project, we propose to use techniques similar to 
the ones cited above; however, the control schemes will 
utilize traditional process measurements like temperature 
augmented with composition profiles estimated by 
multivariate calibration models and self-modeling curve 
resolution (SMCR) from in-situ spectroscopic 
measurements (Gemperline, 1999).  

The batch recipe being taken under consideration here 
is the production of aspirin (acetylsalicylic acid, ASA). 
The process being modeled in this project is shown in 
Figure 4.  

 

Figure 4.   Drawing of a single reactor setup 

Experimentation 

After the Reactor is filled with salicylic acid (SA),  
acetic anhydride (AA) is injected in an impulse to the 
reactor. The reactions that take place are as follows: 

SA +AA � ASA + HA   (k1)                      (R1) 

W + AA � 2HA             (k2) (R2) 

In Reaction 1 SA reacts with AA to give, ASA and 
acetic acid (HA). Reaction 2 is an undesired side reaction, 
which occurs between the water (W) present in the solvent 
and the added AA and gives HA. 

Because of wavelength range limiations,  
concentration of only SA and ASA can be estimated. This 
is done by the use of fiber optic UV/vis spectrometer. The 
spectrum data is used by the computer to generate the 
concentration profile of the reagents using SMCR. 

Injector

Stirrer

 Cooling jacket 

 Heating coil 



  
 

Model Development 

Model equations were developed based on traditional 
mass and energy balances. The experiment is conducted 
isothermally; therefore, the rates of reactions are not 
functions of temperature.  

Four parameters (k1,k2,Cwo initial water concentration, 
and CAAin AA concentration added) were optimized to 
match the model to experimental data. The model has been 
tested to be internally consistent. 

Results and Discussion 

 
Figure 5 shows a very close match between the SA 

concentration predicted by the model and the measured 
concentration.  
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Figure 5.   Plot of SA concentration as a 
function of time 
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Figure 6.   Command Flow Diagram 

 

The next implementation step will be to use the 
adjusted model to predict the optimal addition schedule for 
the remainder of that particular batch.  

Figure 6 shows the strategy that will be used to re-
optimize the batch recipe. 

Conclusions 

The power of today’s computer opens opportunities to 
use optimization within several process control functions. 
Summaries of two industrially sponsored projects are 
presented. 
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