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Abstract

The retrofit of multiproduct batch plants treats the modification of the original configuration of the plant
to satisfy new production conditions (new products, new demand pattern, etc.). A disjunctive model is
presented to solve this problem that includes all the usual alternatives in this kind of problems. A
disjunction is generated for each batch stage considering all the feasible configuration alternatives for
old and new units. Each disjunction term contains all constraints to model the batch stage options:
operation time, units sizing and cost, etc. In a similar way, a disjunction is generated for the allocation
of intermediate storage tanks. Several examples were solved, the computational performance of this
approach is compared with the conventional formulation.
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Introduction

In the retrofit problem the batch plant structure is changed
in order to satisfy the new production requirements due to
the development of new products, new demands, etc. The
options considered include the allocation of new units, the
sale of useless old units and the configuration of new
units.

The differences between previous works (Vaselenak
et al., 1987; Fletcher et al., 1991and Yoo et al., 1999) are
the available options to configure the units at each batch
stage. The objective is to maximize the plant benefits
subject to a new demand pattern. Previous papers solve a
MINL P model, except Van den Heaver and Grossman
(1999) whose proposed disjunctive multiperiod program,
but they do not include all the options of the work of Yoo
et al (1999). Finally , Montagna et al. (2001) present a
model considering storage tanks.

A general model using the Generalized Disjunctive
Programming (GDP) approach is presented for the retrofit
problem. All the available alternatives to configure the old
and new batch units are maintained; the allocation of
intermediate storage tanks is included. The advantages of

the new model are analyzed and the performance of the
conventional versus the GDP approach is compared.

Generalized Disjunctive Programming

The Generalized Disjunctive Programming (GDP)
problem is shown (Lee and Grossmann, 2000):
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In this model, x∈Rn are continuous variables and Yjk

are boolean variables. ck ∈R1 are continuous variables and



γjk are fixed charges. f: Rn→R1 is the term of the objective
function that depend on the variables x. r: Rn→Rq are
constraints that hold regardless of the discrete decisions.
This general model assumes that f(x) and r(x) are convex
functions. Finally Ω(Y) =True is a logical constraint set
relating the boolean variables Y.

Multiproduct batch plant retrofit

In a multiproduct batch plant i=1,...,P products are
processed following the same sequence over the j=1,…,N
batch stages of the plant. A set of Nj units is available in
stage j, with Nj

OLD existing units and Nj

NEW new units to be
added in the plant, so:
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j

OLD
jj ∀+=                    (2)

The units configuration in stage j can be different for
each product i. The units can be arranged in phase or out
of phase. In the last case, the batch is separated among all
the units that conform the group operating in phase. Figure
1 shows stage j with four units. V jk is the size of unit k in
stage j. The superposed units operate in phase, like units 1
and 3 conforming the group 1 and units 2 and 4 in the
group 2. Both groups operate out of phase.

 

Group 1 
 V j1 

 V j3 

 V j2 

 V j4 Group 2 

Figure 1. Groups in stage j

The configuration of the batch units must be
determined at each stage for every product. A
configuration option h is an arrangement of units. Fig. 1 is
one option for a stage with 4 units arranged into two
groups. For example, in a stage with 3 units, there are 14
feasible options:
h1 = [1];   h2 = [2];   h3 = [3];   h4 = [1,2];   h5 = [1,3];
h6 = [2,3];   h7 = [1,2,3];   h8 = [1]+[2];   h9 = [1]+[3];
h10 = [2]+[3];   h11 = [1,2]+[3];   h12 = [1]+[2,3];
h13 = [1,3]+[2];   h14 = [1]+[2]+[3]

Considering that the units between brackets belong to
a group, there are 7 options with an only group (h1 a h7), 6
options with 2 groups (h8 a h13) and one option with 3
groups (h14). The designer a priori can discard options not
optimal or not feasible.

To represent the available options the following
disjunction is proposed for each product and stage, where

the Boolean variable Y ij h indicates the term h of the
disjunction that is true. Only one of them can be true:
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 The first constraint in the disjunction corresponds to
the sum of the unit sizes included in the group g that must
be large enough to produce a batch of product i. Bij is the
batch size of product i in stage j, and Sij the size factor.
The second constraint is the limiting time TL i of product i,
meaning that the time between two consecutive batches of
product i must be greater than the operation time of the
stage Tij, divided by the number of groups in option h, Mh.
This expression is modified considering that the same
production rate Pri must be satisfied in all the stages to
avoid accumulation of material in the intermediate storage
tanks. Finally the last equation defines the cost of this
alternative CQij. In the first summation, CBjk is the buying
cost of unit k that is determined using the same expression
of previous works. In the second summation, CSjk is the
selli ng value of the useless units that is a constant defined
a priori for each old unit.

Another discrete decision is to allocate new storage
tanks between batch stages. There are j=1,…,N-1
positions. Position j is between batch stage j and j+1. The
sale of useless tanks is also considered. The HTj available
options in position j depend on the number NTj of tanks
available in that position. Only one new tank can be
allocated at position j. For example, if NTj=1, there are
HTj= 4 options: 1) Two tanks, the old and the new, 2) The
old tank (no tank is added), 3) The new tank (the old tank
is sold),  4) No tanks (the old tank is sold).

The following disjunction consider all the available
options in the position j, where the Boolean variable YTij ,ht

is true in only one term of the disjunction:
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This is the general form of the terms of this
disjunction. The option with no tanks is different from (4).
For example, the first constraint relates the batches of
consecutives stages (Ravemark, 1995). If a tank exists at
position j, then the batch sizes downstream and upstream



of the tank can be different. θ is the maximum ratio
allowed between consecutive batch sizes. In the option
with no tanks both batch sizes (up and downstream) must
be equal. The second constraint determines the size VTj,kt

of the storage tank kt at position j, where STij is the size
factor for product i and position j. In the term with no
tanks this constraint is not included. The last constraint is
the cost of the disjunction, TQij. In the first term, TBj,NT+1 is
the cost of the new tank, which is considered only when it
is included in the option ht. In the last term, TSj,kt is the
value of the useless storage tanks that are sold.

The objective function of the problem is:
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where pi is the net profit per unit and Qi is the production
of product i. CEj and CETj are the value of the units in the
batch stage j, that result from the following constraints:

N1,j i;          CQ  CE ijj =∀∀≥                                        (6)

1-N1,j i;         TQ  CET ijj =∀∀≥                                     (7)

The batch units included in a stage must be used for
all the products, so the options considered are reduced
through the following constraint:
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Nij is the number of batches of product i in stage j. Qi

must not overcome the amount processed in each stage:

j i,     BNQ ijiji ∀∀≤                                                       (9)

All the products must be produced in the available
time horizon H:
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To solve this model, the disjunctions are transformed
into mixed integer constraints using the relaxation by
convex hull (Balas, 1979). Transformations are introduced
to avoid non-convex term in Eq. 9 (Vaselenak et al.,
1987). Then, the first term in the objective function is
concave. To overcome this problem, the same authors
have proved that the negative exponential functions in that
term can be approximated by a system of piecewise linear
underestimators. This approximation overestimates the
objective function so it can be employed to find the global
solution of this model.

Finally a MINLP is obtained that has been solved
using the OA/ER/AP method.

Table 1. Example data

STij

Product A Product b KTj Ctj

Position 1 1 1 10,000 10

Table 2. Results of the example

Yoo et al. (1999) Our approach

Product A B A B

Qi/1000 2,000 4,000 2,000 4,000

New units New units

Stage 1 1,000
-

-
-

(u2,u3) (u2)-(u3) (u2) (u2)

Stage 2 - -

(u2) (u2) (u3) (u3)

Storage Tank
Position 1

- - 3,600

Sold units Sold units

Stage 1 u1 u1
-

Stage 2 u1, u3 u1, u2

Profit ($) 752,000 759,400

Examples

Several examples have been solved with this
formulation. The results obtained depend on the size
factors and the costs of the intermediate storage tanks that
have not been considered in previous approaches of the
retrofit problem. The values have been selected to show
the potential applications of this approach. Here, the
example 5 of Yoo et al. has been selected. Table 1 presents
the data added to example 5 of Yoo et al. (1999), where
KTj and ctj are the parameters required to determine the
cost of the storage tanks.

Table 2 shows the result of this problem, where u2
means unit 2. In both formulations old units are sold. Units
between brackets operate in phase. Figure 2 shows the
solution for the Yoo et al. (1999) approach. Units in grey
are new. Figure 3 corresponds to the optimal solution with
the proposed formulation. A storage tank is allocated
between both batch stages. Although the optimal profits
are very similar, both plants look very different.

Computational performance

Table 3 show the CPU time for the 5 examples
presented by Yoo et al. (1999) that have been solved using



both approaches. The first column corresponds to the
number of discrete variables before the linearization of the
objective function. The following two columns shows the
CPU times for these examples using the formulation by
Montagna et al. (2001), that also considered storage tanks,
and for this approach, respectively. All the times were
obtained using a PC with a Pentium Celeron processor of
650 Mhz. With the present formulation a considerable
reduction has been obtained in the CPU time required to
solve the MINLP.
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Figure 2. Solution with the Yoo et al. approach

Table 3.Computational performance

Discrete
variables

CPU time Mon-
tagna et al. (2001)

CPU time for
this approach

Ex. 1 60 3 3

Ex. 2 128 60 33

Ex. 3 120 21 15

Ex. 4 134 97 28

Ex. 5 208 144 28

Conclusions

A disjunctive model has been presented to solve the
retrofit of multiproduct batch plants. This formulation
considers all the feasible options for this kind of problems.
Disjunctions have been formulated for the discrete
decisions about the structure of the new and old units. The
sale of useless units was included. Intermediate storage
tanks were also considered with a similar formulation.

The problem solution has been obtained by
transforming the problem into a Mixed Integer Nonlinear
Program (MINLP) using the convex hull relaxation of a
disjunctive set.

Using this approach several advantages can be
obtained. The first and more remarkable is that the
problem formulation is easier to generate, and the model is
more understandable than the previous proposed by Yoo et
al. (1999) and Montagna et al. (2001). The inclusion of
intermediate storage tank produces better optimal
solutions with lower costs. Besides, important CPU time
reduction is obtained with this approach compared to the
previous one.
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Figure 3. Solution with the proposed approach
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