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Abstract 
Global competition has made it imperative for the process industries to manage their supply chains optimally. The 
complexity of the supply chain processes coupled with large computational times often makes effective supply 
chain management (SCM) difficult. This paper introduces a novel approach for aggregate planning in supply 
chains. The approach derives inspiration from pinch analysis, which has been extensively used in heat and mass 
exchanger network synthesis. By representing demand and supply data as composites, it gives planners greater 
insight into the SCM process and thus facilitates re-planning and quick decision-making. Two case studies are 
solved, one involving a single product and another involving multiple products on a single processor. For the first 
case study, optimal production plans are obtained and matched with the results obtained by solving equivalent 
optimization problems in GAMS®. For the second case study, an algorithm is proposed to determine the sequence 
of production of the multiple products. The initial guess obtained by following the algorithm reduces the 
computational time to one-sixth of the time otherwise taken by the solver. It may be concluded that plans obtained 
by pinch analysis provide either the best aggregate plans or excellent starting points to reduce the computational 
time for solutions by mixed integer programming formulations.   
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Introduction 

Supply chain for a business consists of all the stages 
involved directly or indirectly in fulfilling demand from a 
customer. Production planning, scheduling and distribution 
are some of the operations performed in a supply chain. In 
most cases, a planning model is developed and an 
equivalent optimization problem is solved using standard 
optimization algorithms (McDonald and Karimi, 1997). 
One of the difficulties faced with discrete mathematical 
programming is combinatorial complexity, which increases 
dramatically with the size of the problem.  
  The aim of this work is to introduce the approach of 
pinch analysis in aggregate planning and optimization of 
supply chains. Aggregate planning (Chopra and Meindl, 
2001) aims at maximizing profit over a specified time 
horizon while satisfying demand.   
  Pinch analysis has been extensively used in chemical 
engineering for the optimization of various resources such 
as energy and water (Linnhoff and Hindmarsh, 1983; 
Shenoy, 1995; and Wang and Smith, 1994). Pinch is 
defined as the most constrained point in the process. The 
proposed approach determines an aggregate plan taking the 
pinch into consideration through graphical representation. 
At the pinch, the material flows in a supply chain are 
balanced and problem decomposition is possible. The 

method helps in setting targets, i.e., predicting optimal 
performances based on fundamental principles prior to 
actual scheduling of processes.  

Representation:  Time vs. Material Quantity  

  The power of pinch analysis lies in the physical insight 
it provides into the supply chain process. Material flows, 
material holdup and time form the three important 
indicators of a supply chain. Pinch analysis elegantly 
handles these parameters by plotting demand and 
production composites on a time vs. material quantity plot 
(Singhvi, 2002). During aggregate planning (required to 
service demand in a time interval ∆t = tk − tk−1), some of the 
decision variables are:  
Pk  =  Cumulative in-house production (number of units) 
   at time tk 
Ck  = Cumulative number of units outsourced 
   (subcontracted) at time tk    
Dk  = Cumulative demand (number of units) at time tk as 
  per demand forecast 
Ik  = Inventory at time tk 
pk  = Production rate (i.e., in-house production during  
  the period tk−1 ≤ t ≤ tk in time ∆t) 



   
 
ck  = Outsourced amount during the period tk−1 ≤ t ≤ tk  
dk  = Demand rate (i.e., demand during the period  
  tk−1 ≤ t ≤ tk in time ∆t) 

A simple balance of the flow of materials at time tk in 
a particular stage of the supply chain with Io as the initial 
inventory can be  written as  
Io + Pk + Ck = Dk + Ik        (1) 
In an analogous manner, a material balance over a time 
interval ∆t yields 
Ik-1 + pk ∆t + ck = dk ∆t + Ik       (2) 
It must be noted that both inventory and stockout cannot 
occur in the same time period; therefore, stockout can be 
simply viewed as negative inventory. Figure 1 shows how 
Eq. (2) can be elegantly captured through typical 
composite curves used in pinch analysis. Some of the 
salient features of the composite curves are listed below. 
• The demand composite curve D(t) is simply a plot of the 

cumulative demand as a function of time, and needs to 
be matched by a supply composite curve P(t). The 
demand has to be met by supply of products, some by in-
house production and rest by outsourcing. This is based 
on the fundamental principle of material balance. 
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Figure 1. Typical Composites by Pinch Analysis 

• The vertical difference between the demand and supply 
composites is the lead time. Here, it is the time interval 
between producing an order and servicing the demand. 
Lead time can, in general, include the time consumed in 
various activities like processing and transportation. 
There is a lower limit T to the lead time. The point at 
which P(t-T) = D(t) is the pinch. The two composites are 
separated by the minimum lead time at the pinch. When 
T = 0, the pinch will be the point where P(t) = D(t). 

• The horizontal distance between the two composites at 
any given time gives the total inventory in the system. 
This also includes the work in process (WIP). The pinch 
is defined as the point of minimum inventory. The area 
between the two composites gives the measure of 
inventory in the system, which when multiplied by the 
inventory holding cost factor provides the actual 
inventory costs. 

• A linear composite assumes constant and continuous 
demand or supply in a given time period. The demand 
composite will be a series of step functions, if actual 
demand has to be met at definite time intervals, and the 

corresponding composite for continuous servicing of 
demand will then depict the limiting case and provide 
the lower bound. 

Planning for Single Product Scenario 

 The pinch analysis approach is illustrated for the 
single product scenario using data of an example from 
Chopra and Meindl (2001). The demand for the product is 
seasonal and the company has the option to hire and lay-off 
workers, outsource some of the work, and build up 
inventory or backlogs. The company sells the product at 
$40 per unit, but plans to give a discount of $1 per unit in 
April. Table 1 shows the demand forecast. 

Table 1. Demand Data for Single Product Case Study 

Time Period k Month Forecasted Demand (units) 
1 January 1600 
2 February 3000 
3 March 3200 
4 April 5060 
5 May 1760 
6 June 1760 

 
 The production capacity is determined mainly by the 
size of the workforce and not the machine capacity. At the 
beginning of January, there is a starting inventory of 1000 
units and a workforce of 80 workers. The plant has a total 
of 20 working days in each month. Each employee works 
for 8 hours per day, and no worker can work overtime for 
more than 10 hours per month. Four hours of labor are 
needed to produce one unit. As the company desires high 
customer service level, the aggregate plan should meet all 
the demand and also result in an inventory of at least 500 
units at the end of June. Table 2 gives relevant cost data. 

Table 2. Cost Data for Single Product Case Study 

Item Cost 
Material cost $10/unit 
Inventory holding cost $2/unit/month 
Penalty for stockout / backlog $5/unit/month 
Hiring cost $300/worker 
Layoff cost $500/worker 
Regular time cost $4/hour 
Overtime cost $6/hour 
Cost of subcontracting $30/unit 
 
Preliminary Analysis 
    The cost of producing a unit during regular time is $26 
[$4x4 + $10]. The cost increases to $34 [$6x4 + $10], 
when produced with overtime. Since it is higher than the 
cost of subcontracting ($30), overtime is not required. 
Since inventory holding cost is $2/unit/month, inventory 
should not be maintained for more than two months [($30-
$26)/2]. The total amount of production required is 15880 
units (16380 – 1000 + 500). The demand over the time 
periods 0 to 4 is monotonically increasing, and is followed 



   
 
by a decrease in demand in periods 4 to 6. As the cost of 
varying capacity (hiring and lay-off) is high, it is better to 
operate with constant capacity (level strategy). A worker 
can be laid-off any time, since regular time wage is 
$640/month whereas layoff cost is $500.  
 
Initial Aggregate Plan with No Stockout 
     The demand composite is plotted in Figure 2 based on 
the cumulative demand calculated from Table 1. As lead 
time is not specified, it is taken as zero. This implies, that 
for the case of no stockout, the demand composite provides 
an upper bound to the production composite. 
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Figure 2. Composites for Single Product Case Study 

 To determine the minimum production rate with no 
stockout, the starting inventory (1000 units) is taken as the 
pivot point and a constant production line is rotated till it 
just touches the demand composite. The point (12860, 4) is 
the pinch point. This approach is similar to the rotation of 
the water supply line proposed by Wang and Smith (1994) 
for the determination of the minimum freshwater target. 
The reciprocal of the slope of the production composite 
gives the minimum production rate to be 2965 units/month 
[i.e., (12860-1000)/4] for the first four months. For the 
period after four months, the demand rate is lower and the 
terminal inventory is to be kept at 500 units. To meet the 
requirements for this period, the production composite is 
rotated from the pivotal point (12860, 4) till it passes 
through the terminal point (16880,6).  The resultant 
production rate turns out to be 2010 units/month for the 
last two months. The production composite is closest to the 
demand composite with a constant manpower deployment 
resulting in minimum inventory. For the given cost data, 
the production plan given above is optimal and exactly 
matches the solution obtained by solving an equivalent 
linear programming (LP) formulation. 
 
Initial Aggregate Plan with Stockout 
    Stockouts result in delayed customer delivery, but lower 
inventory costs. Consider the task of determining the 
minimum production rate with stockout. This rate equals 
the reciprocal of the slope of the steepest line, which 
begins at the starting inventory and passes through the 
terminal point of the demand composite with the required 

ending inventory. Based on this minimum production rate 
of 2646.67 units/month (i.e., 15880/6), Table 3 gives the 
plan with stockout and this matches the LP solution 
reported by Chopra and Meindl (2001). 

Table 3. Initial Aggregate Plan 

Period 
 
k 

Cumulative 

Demand 
Dk 

In-house 

Production 

pk 

Out- 

source 

ck 

Invent-

ory 

Ik 

Stock- 

out 

Sk 

Work-

force 

Wk 

Number 

Laid- 

off 

0 0 0 0 1000 0 80 0 
1 1600 2646.67 0 2046.7 0 66.167 13.833 
2 4600 2646.67 0 1693.3 0 66.167 0 
3 7800 2646.67 0 1140 0 66.167 0 
4 12860 2646.67 0 0 1273.3 66.167 0 
5 14620 2646.67 0 0 386.7 66.167 0 
6 16380 2646.67 0 500 0 66.167 0 
$ 650140 158800 0 10760 8300 254080 6916.7 

  Profit = $650140 - $438857 = $211283 
 
Final Aggregate Plans 
     In Table 3, the number of workers is 66.167 (i.e., 
2646.67/40), which may be rounded off to the nearest 
lower integer. Over the six-month horizon, 66 workers will 
produce 15840 units, which is 40 units less than the total 
production required. These 40 units will be subcontracted 
in the month when stockout occurs (April). The final plan 
based on the above reasoning is given in Table 4 and is the 
optimal solution in terms of total costs. It gives a profit of 
$211220 and can be validated by solving a mixed integer 
linear programming (MILP) formulation in GAMS®.   

Table 4. Final Aggregate Plan 

Period 
 
k 

Cumulative 

Demand 
Dk 

In-house 

Production 

pk 

Out- 

source 

ck 

Invent-

ory 

Ik 

Stock- 

out 

Sk 

Work-

force 

Wk 

Number 

Laid- 

off 

0 0 0 0 1000 0 80 0 
1 1600 2640 0 2040 0 66 14 
2 4600 2640 0 1680 0 66 0 
3 7800 2640 0 1120 0 66 0 
4 12860 2640 40 0 1260 66 0 
5 14620 2640 0 0 380 66 0 
6 16380 2640 0 500 0 66 0 
$ 650140 158400 1200 10680 8200 253440 7000 

  Profit = $650140 - $438920 = $211220 
 
Alternatively, the number of workers can be rounded off to 
the next higher integer. Over the planning horizon, 67 
workers will produce 16080 units, which is 200 units more 
than the total production required. So 200 units or 5 man-
months may be reduced by laying-off one worker in the 
second month. In this plan, subcontracting is not needed. 
However, it gives a marginally lower profit of $211140. 

Planning for Multiple Products Scenario 

 This section briefly deals with planning for the case of 
multiple products on a single processor. The demands of 



   
 
all products are added and a demand composite is plotted.  
Since the demand is to be serviced only at the end of the 
planning horizon, the demand composite will be a step 
profile. It is assumed that the changeover times are not 
significant compared to the planning horizon. Fixed costs 
for production of a product are high, so any product is 
produced only once. For these conditions and assumptions, 
the following algorithm (Singhvi, 2002) can be 
theoretically proven to give minimum inventory.  
1. List all the products in order of increasing production 

rates, and produce the products in that order. 
2. For products with the same production rate, produce the 

product with lower inventory holding cost first.  
3. For products with the same production rate and the same 

inventory holding cost, produce the product with lower 
demand first.  

The algorithm will now be validated with a paper and pulp 
industry case study. Five qualities of paper have to be 
manufactured on a single machine. Demand for each 
quality of paper is given (Table 5) and has to be met by the 
end of the day, which results in the demand composite 
having a step profile (Figure 3). 

Table 5. Data for Paper and Pulp Industry Case Study 

Quality Product-

ion Rate 

(Tons/hr) 

Selling 

Price 

(Rs/ton) 

Inventory 

Cost 

(Rs/ton/hr) 

Change-

over Time 

(hr) 

Demand 

 

(Tons/day) 

Bleach- 

ed Pulp 

(%) 

Newsprint 12.5 22000 1760 0.1 150 22 
Cream wove 12.5 31000 2480 0.1 60 75 
Super print 15 34000 2620 0.1 45 75 
Maplitho 15 32000 3840 0.1 30 75 

Azure 15 33000 3960 0.1 15 75 
 
 Application of the proposed algorithm results in 
minimum inventory holding cost and the optimal 
production plan. Figure 3 shows the production composite 
for the case.  More details are available in Singhvi (2002). 
As production capacity is able to meet the demand, 
production is not started at time zero. The discontinuity in 
the production composite is due to changeover times, 
during which no production takes place. The sequence of 
production of the five products is as follows: Newsprint, 
Cream wove, Super printing, Maplitho and Azure. 

The mathematical formulation of the case study results 
in a MINLP problem. The initial guess obtained by 
following the algorithm reduces the computational time to 
one-sixth of the time otherwise taken by solver. 
Furthermore, the solution thus obtained is the global 
optimum, compared to the local optimum obtained when 
no initial guess is given. The approach needs to be further 
developed for a generalized scenario related to different 
changeover times and associated costs.   

Conclusions 

Pinch analysis proposed as a graphical procedure 
involving production and demand composites is shown to 

provide not only a good qualitative understanding of the 
production planning problem but also optimal to sub-
optimal solutions. In the case of problems following chase 
strategy, the approach can be shown to provide optimal 
solutions as it ensures minimal inventory. 
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Figure 3. Composites for Multiple Products Case Study 

Since cost factors are not explicitly incorporated in 
pinch analysis, it cannot always guarantee cost-optimal 
solutions for other cases. In the case of level strategy with 
no stockout, the cost influences are incorporated implicitly 
in the disposition of the composites. Depending on the cost 
data and demand profile, the solution can be either optimal 
or sub-optimal. This is also true for the stockout case. For 
multiple products, the approach can solve the product 
sequencing problem when all product demands are at the 
terminal time and product changeover effects (time and 
cost) can be neglected.  

Pinch analysis helps in achieving targets by 
minimizing inventory for a given strategy. A hybrid 
approach, where pinch analysis provides a good starting 
guess, can assist considerably reduce the computational 
time during planning in SCM. 

Pinch analysis brings in the much-required flexibility 
into quick re-planning. For minor changes, the effects can 
be observed on the composites without running 
mathematical formulations (Singhvi, 2002).  
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