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Abstract 

Dow AgroSciences has supported two pilot plant facilities for development and scale-up of new batch 
agrochemicals for several years. One of the pilot plant facilities consistently obtained higher yields and 
lower run-to-run variability. An improvement project using recently developed data mining techniques 
and Six Sigma methodology was initiated to resolve the operating differences between the two plants.  
The project goal was to decrease the coefficient of variation (CV) of the pilot plant B to 6% and improve 
the mean yields to within 95-100% of pilot plant A. 
 
Therefore, pilot plant datasets were acquired and analyzed using two multivariate statistical techniques, 
Principal Component Analysis (PCA) and Partial Least Squares (PLS). These techniques identified 
variability both between batches and across time for each batch. The most significant input variables for 
overall variability were three raw materials and one operating condition.  Based on this information and 
operator experience, experiments were run at B resulting in lowering one feed rate and raising another. 
Because of these improvements, Dow AgroSciences discontinued the use of plant A, which resulted in 
significant savings per year.  Even greater savings has been leveraged into manufacturing from less raw 
material use. 
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Originally, Dow AgroSciences negotiated studies through 
a contract with pilot plant A that capitalized on their 
extensive expertise. In addition, a pilot plant B was built to 
develop in-house expertise.  The mission of this facility 
was to validate yield improvements and optimize 
production conditions. 

Pilot plant A consistently obtained higher yields and 
lower run-to-run variability than B pilot plant.  An 
improvement project using Six Sigma methodology 
(Wheeler, 2002) was initiated to resolve the operating 
differences between the two plants.  The project goal was 
to decrease the CV of pilot plant B to 6% and improve the 
mean yield for new products to 95-100% of pilot plant A.  
This research paper focuses on the process data analysis 

phase of the project, which helped to determine the 
significant variables affecting the CV and mean yield. 

Over a six-month period, 1500 records were obtained 
over time for both control and production lots at A and B. 
The data were analyzed by using Principal Component 
Analysis (PCA) and Partial Least Squares (PLS).  These 
multivariate statistical techniques accounted for variability 
not only between batches but also across time for each 
batch.  

Organization of Pilot Plant Data 

Batch run data and laboratory sample analysis data 
were collected for both A and B pilot plants during year 



  
 
2000.  Both control lots and normal production lots were 
collected and organized into one data spreadsheet for the 
same product.  Table 1 illustrates the types of lots. 

Table 1.  Number of lots used in the analysis 

Plant Control Lots Production Lots 
A 8 42 
B 25 46 

 
The different types of variables acquired are listed in 

Table 2.  Several batch run variables, in Table 3, were 
identified by the Six Sigma team as possibly significant to 
yield.  These were reformatted from ASCII or spreadsheet 
hourly batch sheets from each plant into a single 
spreadsheet matrix for 12 time steps 1 to 262.  Because of 
the difference in reactor sizes between the two plants, feed 
rates were ratioed by batch size. 

Table 2.  Data matrix variable types 

Type Number 
Batch run variables 16 
Input sample variables 6 
Output sample variables 11 
Final batch size 1 
Total 34 

Table 3.  Batch run variables 

Type Number 
Operating characteristics 9 
Amount of raw material 4 
Raw material feed rate 3 

 
The time steps that were acquired for each batch run 

variable were selected to correspond to the times when 
samples were pulled and assayed from the process; time 
step 1, 22, 46, 70, 94, 118, 142, 166, 190, 214, 238, and 
262. Therefore, input sample (batch characteristics) and 
output sample variables (yield, amounts of intermediates, 
impurities, and product) were added onto the batch run 
data by lot for each of the 12 time points to form the final 
data matrix.  Final batch size in the reactor was also 
recorded.   

Analysis Methods 

Motivation for Multivariate Methods 

Once the pilot plant data were acquired and organized 
into the matrix, the task of analysis began.  The goal was to 
make full use of all the data and to limit the 
misinterpretation of that data.  Several different approaches 
to statistical analysis could be performed on the data.  

However, with large datasets (in this case, 121 total lots x 
12 time steps x 33 total variables), a multivariate statistical 
analysis using PCA/PLS was much more efficient to 
conduct than a traditional linear regression or correlation 
analysis.  Thus, one avoided the trap of "data overload" 
with univariate methods.  The PCA/PLS method could 
model both multiple inputs as well as multiple outputs.  
Some of the advantages to this multivariate analysis were 
that it could handle large dimensionality, collinearity, 
noise, outliers, and missing data.  Thus, this approach was 
used to gain as much insight as possible into the process 
being studied. 

PCA reduced the dimensionality of the large data 
matrix by explaining variance with new Principal 
Components, PCs. The first factor, or PC, was obtained by 
finding the linear combination of variables explaining the 
greatest amount of variability in the data. The second 
principal component was obtained by finding another 
linear combination of patterns that is at “right angles” (i.e. 
orthogonal and uncorrelated with) to the first principal 
component.  Each succeeding PC was similarly obtained.  
Thus, the information in the original large dataset was 
represented by a much smaller number of new PCs.  There 
would never be more PCs than there are variables in the 
data.  PLS reduced the dimensionality of an input matrix X 
and an output matrix Y; this method found PCs that both 
model the variance in X and correlate to Y.  Thus, Y could 
be predicted from X. Kourti, Nomikos, and MacGregor 
(1995) were some of the first researchers to apply this 
method to batch process data; their major research is 
reviewed in Westerhius, Kourti, and MacGregor  (1999). 

Multi-way PLS was a special two-level method that 
could reduce both variables and time steps into new PCs.  
The higher level was a PLS run on all batch variables over 
time as the X matrix, with time as the only variable in the 
Y matrix.  This created a set of new PCs that account for 
both batch and time variability.  Then, a lower level PCA 
was executed to determine variables that were significant 
to the variability (Wold, et al, 1998).  Also, final yield and 
amount of product could be used in a Y matrix in the lower 
level, with the same PCs as the X matrix.  Then, a lower 
level PLS was run to determine variables that affect the 
final lot yield or amount of product (Kourti, Nomikos, and 
MacGregor, 1995).  

Application to Pilot Plant Data 

Because the goal of this analysis was to determine 
which variables affect the yield, the 16 batch run variables 
were combined with 8 of the sample variables that describe 
process conditions to form the input matrix X.  With final 
batch size, the input matrix had 25 total variables for the 
higher level PLS.  The output matrix, Y, for the lower level 
PLS was comprised of four significant sample values 
related to yield, amount of intermediates remaining, and 
final product.   

Figure 1 shows the batch run data as block A being 
combined with sample data B.  Multiway PLS was 



  

performed on this combined dataset with time step as the 
only Y variable.  The results of the PLS were a set of PCs 
for each lot that represent the variability in the original 
input variables over time.  Then the PCs were combined 
with final batch size, yield, and amount of product, block 
C, so that the lower level PLS may be performed to 
determine the significant variables that affect yield.  
SIMCA-P™ 8.1 (Umetrics, 2001) was the software tool 
used in this analysis that incorporates both PCA and PLS 
for analysis of batch chemical processes.  
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Figure 1.   Types of datasets 

The overall flow of information from data acquisition 
to analysis is shown in Figure 2.  Because control lot data 
was available that would represent consistent operation 
inside each plant better than all lots in general, the analysis 
was first performed on just the control lots.   Any 
difference in normal operation between A and B should be 
more apparent in this analysis than in the overall lot 
analysis. 

Summary of Results 

Control Lots 

Significant differences between the 33 control runs at 
B and A were found using multiway PLS. Four principal 
components (at each time step) were found to predict time 
with R2=0.78.  (This value was an indicator that the first 
four PCs model 78% of the variability in the X matrix.)  
Batch size was most different; this result was obvious 
because A utilizes larger tanks.  Then, five variables were 
found to be different at different times during the runs: 
three operating conditions at the beginning and middle, 
then two intermediates at the end of the runs. 

 

Pilot Plant B

Batch run data

Lab sample data

Organize data matrix

Adjust feed rates

Analyze control lots with PLS

Pilot Plant A

Batch run data

Lab sample data

Identify outliers and remove

Analyze all lots with PLS

Results  

Figure 2.   Information Flow 

Then, the B control runs were analyzed separately to 
study the major sources of variability within B.  Again, 4 
PCs were found with almost the same fit: R2=0.76.   
Including all the variables, the four highest contributors 
from the lower level PCA were not controllable in the pilot 
plant, but one of the raw material feed rates was the most 
significant variable that could be controlled.  Plant A did 
not conduct enough control runs for this product to find 
any significant variables. 

All Lots 

The higher level PLS was executed for 121 lots that 
resulted in 1560 observations (all lots at each time step).  
Four PCs (at each time step) were found to predict time 
with R2=0.79.  From the lower level PLS, two PCs were 
found with R2=0.69.  The most significant input variables 
for predicting final product amounts were three raw 
material feed rates and two uncontrolled operating 
conditions.  Q2 was the measure of how well the inputs 
predict the outputs in the lower level PLS.  For this model, 
Q2=0.49; any model with a Q2 of 0.50 or higher can be 
considered good. 

Detailed Results 

Analysis of Control Data 

Four PCs were required to form a significant 
Multiway PLS model for the control lots.  The second PC 
showed A and B lots in two different clusters. The 
separation was easily observed.  By diagnosing the cause 



  
 
of the two clusters, five variables (those with the largest 
difference in weights on the second PC) were identified 
that cause the difference over time.  

Then, A and B control runs were analyzed separately 
to study the major sources of variability within each.  No 
clusters in the PCs could be seen for either plant 
individually.  Because of the low number of control lots at 
A, a good PLS model could not be found.  For B, the lower 
level PCA determined that the top variables that contribute 
to variability are four variables from the batch run data. 
The most significant variable was plotted over time to 
determine if any outliers affected the results.  The value for 
one batch at the end of the run did not increase with the 
other lots; it was removed and the analysis repeated.  
However, the same significant variables were found, 
indicating that this outlier did not affect the results. 

The analysis for B included all variables, so the output 
variables were excluded and the analysis rerun to 
determine if any adjustable inputs would be significant.  
Again the top four variables, from the lower level PCA, 
were the same four batch run variables. The most 
significant was plotted over time again.  Large dips at 
certain times indicated bad probe readings due to possible 
poor calibration.  So this variable was deleted, and one lot 
deleted due to processing problems.  The same top four 
significant variables were found as before.   Therefore, no 
new information was gathered by deleting suspected 
outliers. 

The four significant variables were not directly 
controllable in the plant, but the next significant variable 
that can be controlled was a feed rate.  Potential outlier lots 
(after time 165) were investigated.  Three lots had invalid 
feed rates and were deleted.  The other lots were left in, 
and the analysis was re-run.  No changes in the significant 
variables were detected. 

Analysis of Data for All Lots 

The higher level PLS produced a good model, but the 
121 lots did not cluster together for any of the PCs, as they 
did for the control lots, i.e., the PCs over time were very 
consistent.  Significant variables from the lower level PLS 
model were found. 

Instead of plotting PCs over time for each lot, the first 
PC for the X matrix, from the lower level PLS model, was 
plotted versus the first PC for the Y matrix.  Now clusters 
could be seen where each point represents a lot.   Five B 
lots were clustered closer to the A batches.  By comparing 
the difference in significant variables between those five 
and the A lots, three operating variables were found to 
cause the different clusters.  These five B lots did in fact 
use a different recipe than the other B lots; that recipe was 
closer to A's. 

Because the other lots clustered according to location, 
two separate models were built by location. However, no 
additional information was gained. 

Experimental Runs at the Pilot Plant 

From the Control Lot analysis, three variables were 
identified as potential causes for the lower yields and 
increased variability in pilot plant B.  A design of 
experiments (DOE) was carried out in B to look at these 
three factors. Increasing one feed rate consistently 
produced higher yields.  This rate, along with an operating 
condition, also affected variability. The other feed rate did 
not affect yield and was reduced.  

Conclusions 

Multivariate analysis proved to be a powerful 
statistical tool to evaluate complex batch data generated by 
the two pilot plants.  The results of the analysis allowed the 
team to focus on the critical variables.  Based on operator 
experience, designed experiments were run at pilot plant B 
which found improved yields at B to within 8% of pilot 
plant A. These results were validated over multiple 
batches, and the CV decreased to 4%. 

The Six Sigma process provided structure to address 
the yield discrepancies between the two pilot plants.  
Although statistical tools are used routinely at the pilot 
plants, the novel multivariate modeling tools helped focus 
on the critical variables and confirm that the scientists were 
on the right track toward improving operations.  
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