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Abstract 

A general, systematic procedure is presented to support the development and statistical verification of 
dynamic crystallization process models. Within this procedure, methods are presented to address the optimal 
design of dynamic experiments for model discrimination among several crystallization kinetics models. The 
problem of designing dynamic experiments is cast as an optimal control problem that enables the calculation 
of optimal discrete sampling points, experiment duration, fixed and variable external control profiles, and 
initial conditions of a dynamic experiment subject to general constraints on inputs and outputs. Within this 
framework, methods are presented to provide experiment design robustness, accounting for parametric and 
thus prediction uncertainty. 
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Introduction 

In this work, we present a general, systematic procedure to 
support the optimal design of dynamic experiments for 
model discrimination. We present an extension to the 
criterion put forth by Buzzi-Ferraris and Forzatti (1984) to 
obtain an information measure for discrimination in the 
dynamic situation, in which the system can be modeled with 
a set of mixed differential and algebraic equations: 

f ( x, x, y, 0, q), t ) = 0 (1) 

where x is a state vector, y a set of algebraic variables, 0 a set 
of parameters that must be estimated from collected 
experimental data, q0 a set of experimental settings, and t is 
time. The problem is cast as an optimal control problem, in 
which one can calculate optimal discrete sampling points, 
final time, fixed and variable external controls with input 
constraints, and initial conditions of a dynamic experiment. 
To mathematically represent time-varying external controls 
to the process, we use the control vector parameterization 
(CVP) technique (see Asprey and Macchietto, 2002). 

We show the application of these statistical techniques 
to the development of a dynamic predictive crystallization 
process model. Embedded within a first-principles-based 
model, three crystallization kinetic sub-models are proposed, 
for which we use model discrimination techniques applied to 
the entire crystallizer model to select the best model from the 
candidate set. The crystallization application is used to 
demonstrate the overall procedure of the proposed techniques 
in their ability to reduce the quantity of experimental work 
required, while increasing the quality of the results. 

Crystallization Modeling 

We use a compartmental modeling approach to model 
the crysCODE 1100-liter DTB crystallizer, an evaporative 
crystallizer with a fines destruction loop (Fig. 1). The 
compartmental modeling approach was selected to account 
for the spatial distribution of process conditions, such as the 
supersaturation, energy dissipation and crystal size 
distribution (CSD) throughout the crystallizer, thus allowing 



separation of the local intrinsic kinetics and the overall  
hydrodynamics. In this work, the well-mixed compartment 
model is the only building block used for the construction of 
compartmental models (for a further discussion on why this 
is so and the compartmentation procedure, refer to 
Bermingham, 2002). All compartments within the 
compartmental model are described with the same 
compartment  model, i.e., the same equations of conservation, 
physical and thermodynamic property relations, kinetic rate 
expressions and parameters. Differences between 
compartments with respect to nucleation, growth, 
dissolution, attrition, breakage, and aggregation rates are 
therefore purely a result of varying process conditions. 
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Figure 1. The compartment  model  network. 
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Figure  2. The compar tment  model  variables. 

A single compartment model is schematically depicted 
in Fig. 2, showing the states within the compartment. An 
arbitrary number of inlet streams and outlet streams, 
respectively, enter and exit the compartment. Each flow is 
characterized by an overall flow rate, component mass flow 
rates(OmLi, i.,k o r  OmL, i, out, k), crystal number densities (ni.,k(L) or 
no.t,k(L)) and an enthalpy flow rate (O~i.,k or O~o.t,k). 

In this study, we focus on the crystallization of 
ammonium sulphate from water. Hence, we have two liquid 
phase components (solute, A [component 1] and solvent, B 
[component 2]), one solid phase (crystals, C) and no liquid 
phase reactions. The crystallization reaction is thus: 

t)s,lA + t)s,2B ~ C (2) 

The stoichiometric coefficients Vs,1 and Vs,2 are equal to one 
and zero, respectively. 

Mass  balances f o r  the solvent~solute and  Energy  Balance  

We can write the liquid phase component mass balances 
for the solvent and solute generally as (see Figure 2): 

mass rate of  
accumulation 

dmL,i ( t ) 
dt 

mass rates in and out via convective transport 

~NI NO " 

~_.OmL,,,i.,k ( t ) -- ~_.OmL,,,o.t,, ( t ) 
k = l  /=1 

interphase mass  flux due to crystal 
growth and due to pr imary nucleat ion 

and dissolution at the critical nucleus size 

-t-~Mil)S,i [ Om,nu ( t ) + ~bm,grow ( t ) - ~bm,dis ( t ) j 

(3) 

for i = 1,2, with initial condition mL,i (t  = O) = mL,i,o. The 

subscripts nu, grow and dis represent nucleation, growth, and 
dissolution, respectively. M~, i = 1,2 are the molecular 
weights for component 1 and 2, respectively. 

The dynamics of the temperature are given by the energy 
balance: 

rate of  enthalpy 
accumulation 

d H ( t )  
dt 

rate of  total enthalpy in net rate 
and out byconvect ion of  heat 

~ ..'~rr NO " addition 

= ZO~,,~,~ (t)-ZO~,o.,,, ( t ) -  o~y,o., (t) + O(t~-~ 
k=l  l =1 

(4) 

With initial condition H ( t = 0 ) = H 0 . 

Populat ion balance f o r  crystals 

The time evolution of a CSD is given by the population 
balance equation (PBE). The PBE for a uniformly mixed 
volume, with the amount and the size of particles expressed 
in terms of number density and particle length respectively, 
can be written as follows: 

number rate of 
accumulation 

~O( n( L,t )V ( t ) i 

rate of number gain due to 
crystal growth and dissolution 

• O ( n ( L , t ) . G ( L , t ) )  = -v ( t )  OL 
number rate in numberrate out 

• NI " ~NO " 
+ ZC<,.,k ( t).,.,k (L,t)-  Z¢<o.,,, (t)~o.,,, (L,t) 

k=l l=l 

number production rate due to 
primary nucleation and dissolution 

at the critical nucleus size 

number production rate due to 
attrition, breakage and agglomeration 

q-i O~,attr ( L , t  ) q- O~,break ( L , t  ) q- O~,aggl ( L , t  ) ] /  

(5) 

with initial condition n( L,t = O) = no ( L ) . Subscripts attr, 

break, and aggl indicate attrition, breakage, and 
agglomeration, respectively. The initial condition can be 
used to express a trivial situation such as a clear liquid (no 
crystals) or a size distribution of seed crystals (often used in 
batch processes). 

The classical boundary condition with respect to crystal 
size for the population balance equation is: 

B0(t) n(L=O,t)=G(L=O,t) 
G(L) >_ 0 V L (6) 

Bo denotes the birth rate of crystals with size zero, and G is 
growth rate. Depending on the employed kinetic model, 



nucleation is either modeled using a birth rate at the 
boundary or as a distributed process with respect to crystal 
size. For a more detailed discussion of these boundary 
conditions, the reader is referred to Bermingham (2002). 

Crystallization kinetic models 

Crystallization kinetics are described using three 
competing models (see Table 1). The reader is referred to 
Bermingham (2002) for further details. 

Table 1. Implemented kinetic models• 

Kinetic 
Model 

Power Law 

0 Meadhra 
(1996) 

Gahn (1999) 

Basis 

Purely 
empirical 
Partly first 
principles 

Largely first 
principles 

Predictive 
Value 

Limited 

Reasonable 

Good 

Kinetic 
Parameters 

Designing Dynamic Experiments for Model 
Discrimination 

The problem of model discrimination occurs when NM 
rival models have been proposed to describe a system and it 
is not certain which of the models is "best". For any 
experiment, it is expected that the "best" model will provide 
the most accurate prediction of the observed measurements. 
Very little past work has been presented for discriminating 
between rival dynamic models (see, e.g., Cooney and 
McDonald, 1995). 

For steady-state models, Buzzi-Ferraris and Forzatti 
(1984) took an alternative approach to model discrimination 
in which they proposed a design criterion as a ratio of the 
average squared difference between predictions to the 
average variance in the predictions. As such, this criterion is 
similar to an F-statistic, and its value can be used to judge 
the ability to discriminate between the models. For instance, 
if it is possible to discriminate between models at a given 
experimental condition, the value of the criterion should be 
greater than M, the number of responses. If the criterion 
value is less than M at all possible experimental conditions, 
no discrimination can be gained, and the sequential design 
for model discrimination stopped. 

In this work, we extend the Buzzi-Ferraris criterion for 
design of dynamic experiments, using the matrix: 

VI,,p - 

OXl,l(tSPl'6l) ~Xl,l(tSPl'6l) ~Xl,l(tSPl'6l) 
001,1 04,2 Obl,P l 

OXl,e(tspl,6l ) OXl,e(tspl,6l ) OXl,e(ts~,6l) 
001,1 001,2 04,P l 

OXl,M(tSpl,6l) OXl,M(tspl,6l) ~Xl,M(tspl,6l) 
00/,1 04,2 Obl,P l _ 

(7) 

where Vz,,p = the sensitivity matrix for model I responses at 
sampling time t,pl. The parametric sensitivity information 
for models comprising a set of differential and algebraic 
equations (cf  Eqs. (2)-(6)) can be obtained by the solution of 
the first-order derivative of the model equations (1) with 
respect to the model parameters: 

O:k Ox 0 f _ 0  (8) 
f, ~--~+ fx 07 + a---O 

Subsequently, we can define: 

-1 T W~ - Vz,,p ~2o, z Vi,,p (9) 

~22 -1 where 0,1 is the inverse parameter variance-covariance 

matrix (non-diagonal). As in Buzzi-Ferraris and Forzatti 
(1984), we still form the criterion as: 

where Sl, r = S + Wl + Wr and S is the (non-diagonal) 
covariance matrix of experimental error. In the case of 
dynamic design, we sum the criteria Eq. (10) over all discrete 
sampling times: 

nsp 
maxZTl,1,,sp(g~,Ol,O1, ) (11) 

q~ sp=l 

With the new dynamic formulation, we extrapolate the 
Buzzi-Ferraris and Forzatti observation mentioned above, 
requiring maximization of (11) above (nspxM) to ensure 
discriminatory power of the designed experiment. 

We embed this criterion in the dynamic optimization 
framework for designing dynamic experiments as presented 
in Asprey and Macchietto (2002). For time-varying inputs to 
the process, we use the control vector parameterization 
technique, using a piecewise constant parameterization. As 
such, the vector of design variables q0 is comprised as: 

E r t,w ~ ~ r I (12) q~- tsp,tsw~,~,..., . . . .  ' Z l , l ' " ' Z n . , n s w ' Y o  

where t~w ~ J correspond to jth times at which the i th input 

switches levels, denoted zij. In this formulation the sampling 
points are the same for all response variables, and we have a 
flexible final time for the end of the experiment, defined by 
the final designed sampling point. The resultant non-linear 
problem is solved using the NAG E04UFF SQP. 

Results and Discussion 

In the ammonium sulphate and water system, an 
accurate measurement of the supersaturation is extremely 
difficult; however, detailed CSD measurements are available 
at two-minute intervals for each experiment by use of light- 
scattering measurements. By using more characteristics of 
the CSD than the median size and/or using the observed 



dynamics in the CSD, the absence of a supersaturation 
measurement can (in principle) be countervailed. For 
parameter estimation purposes, to characterize the CSD, the 
median size (Ls0) and the 10%- and 90%-quantiles (L10 and 
L90, respectively) were chosen. Three existing data sets were 
analyzed using our extended dynamic divergence measure, 
results of which are shown in Table 2 (500 sampling points 
were used in each case). 

Table 2. Dynamic divergence measures (heat input 
of120 kW/m 3 and impeller speed as indicated). 

Data set Div(G, O) Div(O, P) Div(G, P) 
1 (640 RPM) 19038 6209 4077 
2 (775 RPM) 1766 5943 5486 
3 (910 RPM) 13663 5660 25613.7 

Optimal 45134 51861 72560.0 

As can be seen in Table 2, experiment #1 is relatively 
informative for discriminating between the Gahn (G) and 6 
Meadhra (O) models, while experiment #3 is relatively 
informative for discriminating between the Gahn (G) and 
Power Law (P) models. All existing experiments are non- 
informative for discriminating between the 6 Meadhra (O) 
and Power Law (P) models. 

The final row of Table 2 shows results of optimal 
experiment designs obtained using our extended criterion 
(Eqn. (11)) and piece-wise constant control inputs, with a 
maximum experiment duration of 2 days. An a priori 
selection of the number of sampling points (500, based on 
the fixed two-minute intervals of the light-scattering 
measurements), along with the number of switching 
times/constant levels of the input profiles is required. We 
arbitrarily chose five time intervals for the control vector 
parameterization (nswi = 5, i = 1,..,n,; where n, = 2 
corresponding to impeller speed and residence time, 
respectively). We impose the constraints: 

tswji,- - -  tsw/'~-' > 10.0 i = 1...n,; j = 1...nsw (13) 

As can be seen in Table 2, these optimal designs are at 
least three times more informative than the existing data sets 
for the purpose of discrimination. For illustrative purposes, 
the model predictions for the optimal (G, O) model 
discrimination design are shown in Fig. 3, while the 
designed inputs are shown in Table 3. 
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Fig. 3. The model predictions for optimal model 
discrimination between (G) and (0). 

Table 3. The optimally designed inputs for model 
discrimination between (G) and (0). 

tsw, i; /--1,..5 (s) 0 600 1 2 0 0  53400  54000 

Residence time (s) 2000 2000 6 5 0 0  6500 6500 

Impeller Speed (RPM) 600 600 600 600 1080 

Under the optimally designed conditions for 
discrimination between the Gahn (G) and 6 Meadhra (O) 
models, we subsequently simulated additional data using a 
"true" Gahn model under these experimental conditions, 
with a homoscedastic Normal pure error variance of 6.0% for 
all three responses, with 2.13% covariance between each 
response. Subsequent parameter estimation was carried out, 
giving the results in Table 4, in which we report a univariate 
)(;2 lack-of-fit (LOF) test for each model. 

Table 4. Lack-of-fit analyses. Reference 22 -925. 7 

Quantile Gahn 
Xl0 737.1 
Xs0 688.3 
X90 656.3 

Meadhra Power Law 
27517.5 25410.4 
10224.9 11215.2 
7025.2 6413.6 

From inspection of Table 4, as expected, the Gahn 
model is the only model to pass the lack-of-fit test (calculated 
LOF < reference )(;2) among the three candidates, even after 
just one optimally designed dynamic experiment. 

Concluding Remarks 

In this paper, we have presented a general, systematic 
procedure to support the optimal design of dynamic 
experiments for model discrimination. The problem of 
designing dynamic experiments was cast as an optimal 
control problem, where, using our formulation, one can 
independently calculate optimal sampling points, experiment 
duration, fixed and variable external controls with state and 
input constraints, and initial conditions of a dynamic 
experiment. Within this framework, methods for accounting 
for parameter uncertainty were presented to provide 
experiment design robustness. Application of the tools was 
carried out using a compartmental crystallization model, 
demonstrating their effectiveness and power in aiding to 
build a dynamic process model. 
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