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Abstract 

Dynamic data reconciliation can supply consistent data for dynamic optimization, fault diagnosis and 
process control. These applications require that dynamic data reconciliation should complete 
computation in a short time, but existing methods of dynamic data reconciliation cannot meet the 
requirement. In this paper the warm-start technique is extended and an approach to dynamic data 
reconciliation based on this technique is proposed. The aim of this approach is to decrease the scale of 
the discretized model. Based on the extended warm-start technique, the past measurements, which have 
been reconciled once in the previous moving window, will not be reconciled again at the current moment 
but they are still included in the current moving window as fixed values taken from previous calculation 
results directly. Thus, in the current moving window only the measurements at the current time need to 
be reconciled. As a result, the scale of reconciliation model will be reduced greatly. The reconciled 
results of Tennessee Eastman Challenge Problem show that the method not only can obtain good results, 
but also has much less computation time than others. So it could meet the speed requirement of dynamic 
optimization, fault diagnosis and process control. 
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1. Introduction 

Dynamic optimization, dynamic fault diagnosis and 
process control require consistent data supplied by 
dynamic data reconciliation (DDR). Among existing 
methods of dynamic data reconciliation, the constrained 
non-linear programming method is more robust than 
extended Kalman filtering (Jang, 1986), but the non-linear 
programming method requires much longer computation 
time than extended Kalman filtering (Karjala, 1996) 
because of the large scale of the discretized model. The 
computation inefficiency presents the bottleneck of the 
application of non-linear programming method. 

Although there are some methods of dynamic data 
reconciliation proposed to accelerate the reconciliation 
(Kong, 2000; Liebman, 1992; Binder, 1998), their speed 
could not meet the requirements of dynamic optimization, 
fault diagnosis and process control. These methods all 
adopted a moving time window approach in order to 
capture the process dynamics contained in the 
measurements. In this case, if the length of moving 
window is too small, there may not be enough dynamic 

information available for estimation. If it is too large, the 
formulated nonlinear programming (NLP) problem will be 
very large (Liebman, 1992). Because in current moving 
window, only measurements at current time need to be 
reconciled, the warm start technique (Liebman, 1992; 
Binder, 1998) is extended and used to decrease the scale of 
the discretized model. In the proposed method, the past 
measurements, which have been reconciled within 
previous moving window, will not be reconciled again at 
current moment, and the reconciled results of past 
measurements are fixed and taken from previous 
calculation results directly. Thus, only variables at current 
time are included in the discretized dynamic data 
reconciliation model. By using this technique, the scale of 
the model is reduced greatly. As a result, the computation 
time of reconciliation will be shortened. This method was 
used on the Tennessee Eastman Challenge Problem (TE) 
(Ricker, 1995a; 1995b). The reconciliation results of TE 
problem show that the method can obtain good results and 
its calculation speed can also meet the requirements of 



dynamic optimization, fault diagnosis and process control. 
In section 2, the method will be illustrated in detail. 
Tennessee Eastman Challenge Problem will be used to test 
the method in section 3. 

2. Approach based on extended warm-start technique 

2.1. Characteristic of dynamic data reconciliation and 
disadvantages of existing methods 

The main purpose of dynamic data reconciliation is to 
supply consistent reconciled results for online fault 
diagnosis, dynamic optimization, process control, etc. 
These applications often require that reconciled results of 
current measurements should be obtained before next 
sampling time. 

There are differential equations in the model of 
dynamic data reconciliation, so the existing dynamic data 
reconciliation approaches (Kong, 2000; Liebman, 1992; 
Binder, 1998) based on non-linear programming method 
all adopted moving window techniques (Liebman, 1992). 
This window must be long enough to capture relevant 
process dynamics but brief enough to keep the 
computation load for the NLP problem tractable. In order 
to reconcile the current measurements, the past 
measurements are included within the moving window and 
are reconciled again (Karjala, 1996). Namely, there are 
overlaps in the calculation horizons, which is very time 
consuming. The computation time required for the NLP 
solution method for dynamic data reconciliation can be 
significant, and is much longer than Kalman filtering 
(Karjala, 1996). It is obvious that the basic reason of 
calculation inefficacy is that the scale of the discretized 
model is too large. To effectively accelerate the dynamic 
data reconciliation, here we propose an approach to DDR 
based on the extended warm-start technique (EWST). 

2.2. Extended warm-start technique (EWST) 

Warm-start technique is a kind of method to accelerate the 
optimization. It utilizes the former calculation results to 
speed up the current computation. At present, the methods 
of dynamic data reconciliation (Liebman, 1992; Binder, 
1998) usually adopted non-linear programming method 
based on moving window technique. These methods all 
used warm-start technique in which the reconciled results 
of former moving window are taken only as the initial 
values of variables in current moving window. In this case, 
the scale of reconciliation model is unaltered. 

Actual physical processes are all causal system, 
namely, the state variables at the current time are 
determined by their historical states and are not affected by 
future states. It is reasonable not to reconcile the 
previously reconciled measurements again in the current 
moving window. Here the extended warm-start technique 
is proposed that the previously reconciled results are taken 
as fixed values rather than initial ones of variables. 
Because of the overlaps of the moving windows, in this 
extended warm-start technique, the reconciled values of 

previous measurements in the current moving window are 
taken from the calculation results of last moving window 
directly. The calculated reconciled values at the current 
time should not have great bias, which can be seen from 
the reconciled results of the following example. 

2.3. Approach to dynamic data reconciliation based on 
EWST 

The general model of the dynamic data reconciliation is: 

min g(y) 

st. dY-h(y..) 
d, 
f (y , . ) -o  
c(y..)_< 0 

(1) 

Where all variables are all functions of time, y 

represents the reconciled variables that need to be 

calculated, u represents unmeasured variables, g(y)  is 
f \ 

the objective function, and in dynamic data reconciliation, 

it is usually a least square function, h ( y , , )  is the right 

item of differential equation, f ( y , , ) ,  c ( y , , )  are 

equality constraint and inequality constraint respectively. 
In existing methods (Kong, 2000), in order to solve 

the model, it needs to convert the differential equations to 
algebraic ones. After discretization by using collocation 
method, the above model became: 

min g(Y~ ) 

st. (M. Yr )i - h(yi, ui ) (2 )  

f(Yi,Ui) - 0  
c(Yi,Ui)~O 

(3) 

Where M is a constant coefficient matrix, 

Y~ - [Yl ,  "" ", YK ]r , K is the amount of sampling. 

In the existing method that adopted collocation 
method on finite elements (Kong, 2000), the expression of 
y for each finite element is: 

N 

y(t)-Zai( t) .Y(t i )  (4) 
i=0 

Where, t/ is sampling time, y(ti) is the reconciled 

value that needs to be calculated at the time of t/, N is 

the number of collocation points, ai(t ) is a known 

function of time, in the following approach, it is lagrange 
base function. After the model of dynamic data 
reconciliation is discretized using collocation method, its 
scale is very large. On the other hand, if the current time is 



t N ,  the measurements between t o ~ t N _  1 have already 

been reconciled, but they are reconciled repeatedly at t x . 

So based on the extended warm-start technique, the 
function expression of the last finite element in the current 
moving window can be represented as follows: 

N - 1  

y(t)- Z ai (t)" ?(t  i )n t- a N (t). y(t N ) (5) 
i=o 

Where, f(t i ) is the known reconciled result at the time of 

t i which is taken from the calculation results of previous 

moving window, y(t N) is the unknown reconciled value 

that need be calculated at the time of t N, ai(t ) is a 

known function of time. Namely, the known reconciled 
results of past time and unknown reconciled values at 
current time are used together to approximate the 
estimated functions. According to the collocation method, 
we substitute the expression (5) for differential equations 
and the residual of the constraints at the current time is set 
to zero. In this way, there are only equations associated 
with the variables at the current time in the model, so the 
scale of the model is reduced greatly. If the length of the 
moving window is m, the scale of the model using the 

proposed method is about 1/m of the previous one. The 
reduction of model scale will accelerate the calculation 
obviously. 

The main difference between existing method and the 
proposed oneis the difference of component element s of 
Yr. In existing method, all elements of Yr are required to 

be calculated, so in equation 2, i=  2 , - . . ,N and for 

equation 3, i=  1 , - . . ,N,  but in proposed method, all 

elements of Yr except for the last one are the reconciled 

results obtained from previous moving window and fixed 
in the current horizon, so in equations 2 and 3, i = N.  
Only variables associated with current time are unknown 
in the model. 

Because the proposed approach needs to utilize the 
previous reconciled results, it is necessary to reconcile 
measurements within a moving window using existing 
method at the beginning and continue the reconciliation 
using the proposed method. The algorithm is illustrated in 
detail as follows: 

1. At the beginning, the length of moving 
window is N (N=7) and the measurements 
within the moving window are reconciled. 

2. For the next sampling time, the function is 
approximated by equation 5 which is 
substituted for the differential constraints to 
obtain a set of algebraic equations. The 
dynamic reconciliation problem is solved by 
using an improved SQP method (Kong, 
2001). 

3. Repeat step 2. 

3. Tennessee Eastman Challenge Problem 

Downs and Vogel have proposed an "industrial challenge 
problem" for researchers in process control and related 
fields (Downs, 1993). The problem is based on a 
Tennessee Eastman Company process, as shown in Figure 
1. It is used as a classic example for testing different kinds 
of algorithms. (Downs, 1993; Ricker, 1995a, 1995b) 

The Tennessee Eastman industrial process mainly 
includes four units that include a reactor. The process 
streams have no more than eight components, which are A, 
B, C, D, E, F, G, and H. The components of G and H are 
products. 

The detailed process model is shown in Ricker and 
Lee's paper (Ricker, 1995a). The model has 76 algebraic 
equations, 26 differential equations and 112 variables 
including 68 measured ones. These variables are all 
functions of time. The measurements include flowrate of 
streams (No.l-No.10), temperature and pressure of reactor 
and separator, concentrations of streams (No.5-No.ll). 
Measurements are simulated using the simplified model 
(Ricker, 1995a) and a random amount of error is added to 
each measurement. The sampling time is 27 minutes long. 
The interval of sampling is 1 minute. 
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Figure 1 Flowsheet of  TE Problem 

The extended warm-start technique was used to 
reconcile the measurements of the TE process. The 
reconciled results are shown in following table. 

The calculation results show that the proposed method 
can obtain good reconciled results and the reduction of 
model scale does not make results deteriorated (Table 1). 
The reason is that the reduction of model scale is carried 
out on the reuse of former reconciled results and not on the 
simplification of the process physical model. 

Table 1 is the comparison of the proposed method 
with the one without using the warm-start technique (Kong, 
2001) for the same TE problem. In the table, the number of 
constraints and variables refer to the number of 
corresponding item for the discretized model. The 



calculation expression of error mean is equation 6. From 
the table, it can be concluded that the scale of model is 
reduced and the speed of calculation is accelerated greatly. 
It should be noted that the total time of the proposed 
method includes the time used for calculating the first 
moving window by using existing method, which is 
115.636 seconds. It is obvious that the time which the 
following calculation requires is only 16.894 seconds, so 

the proposed method has great superiority in speed, and 
the accuracy of reconciliation by using the proposed 
method has no apparent change relative to existing 
method. 

ABS( reconciledvariance- measurement / 

error mean = (6) 
count of measurements 

Table 1 Comparison of  reconciled results 

Method 
Number 

Number Total time 
of Error mean 

of variables (s) 
constraints 

Method without 688 
EWST 

Method with 102 
EWST 

784 0.0954646 2415.563 

112 0.1323271 132.530 

4. Conclusions 

According to the characteristic of dynamic data 
reconciliation, the warm-start technique is extended and a 
new approach is proposed based on this technique. 
Through reusing the previous reconciled results, the scale 
of reconciliation model is reduced greatly, so the time used 
to solve the reconciliation model is shortened. On the other 
hand, the accuracy of the reconciled results only has little 
deterioration compared with that obtained by using 
existing method. The approach could meet the speed 
requirement of dynamic optimization, dynamic fault 
diagnosis, process control etc. 
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