
 
 

A REAL-TIME OPTIMIZATION STRATEGY FOR 
PETROLEUM PROCESSES WITH SUCCESSIVE 

ADAPTIVE MODEL REFINEMENT 

Heiko Briesen and Wolfgang Marquardt 
Lehrstuhl für Prozesstechnik 

RWTH Aachen University, Germany 
{briesen,marquardt}@lfpt.rwth-aachen.de 

Abstract 

To enhance models for refinery processes it seems inevitable to increase the level of compositional detail 
to a much higher level than today. In previous work, we have developed a simulation technique for 
steady-state simulation, which pays respect to the particularities of this type of detailed composition 
models. With this new technique, it seems to be possible to significantly lower the computation time for 
obtaining high-resolution results. This work deals with the extension of our previous work to 
optimization problems. Using an adaptive composition representation in combination with a multigrid 
optimization strategy, the time span for the optimization of petroleum processes can significantly be 
lowered. The large potential of this approach for the implementation in real-time optimization schemes is 
illustrated by investigating a simple flash problem. It can be shown that the reduced dead time in which 
the process runs off the optimum operating points, yield a large economical potential. 
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Introduction

The huge number of single components in petroleum 
processes necessitates the use of a suitable model size 
reduction technique. Currently available methods are based 
on the idea to introduce a set of fictitious hypothetical 
pseudocomponents, which is usually set up based on 
heuristic rules (API, 1992). The quality of the model and 
consequently also the results of the real-time optimization 
largely depend on the number of pseudocomponents 
chosen. While low numbers result in a poor quality of the 
optimum and poor controller set points, large numbers lead 
to large computation times, especially if a refinery wide 
optimization is to be considered (Pedersen, 2000).  
Since poor controller set points and therefore poor 
operation is unacceptable from an economic point of view, 
models with high compositional detail are highly desirable. 
To increase the detail by means of molecular information 
seem to be the most promising, if not inevitable way, to 
enhance the performance of all refinery processes (Katzer, 
et al. 2000). Briesen and Marquardt (2002a, 2002b) 

presented a new solution strategy for petroleum processes 
to overcome the limitations of currently employed 
pseudocomponent techniques. This technique seems to be 
superior to pseudocomponent methods with respect to 
accuracy, calculation time demands and robustness. This 
work aims to extend this approach to optimization 
problems and to show the possible benefits in connection 
with real-time optimization schemes.  

Multigrid optimization 

Algorithmic overview 

The method uses a continuous distribution function for 
composition representation. Though this representation is 
not implementable in a straightforward way on a computer, 
it brings large flexibility with respect to the model 
reduction procedure. With the continuous representation 



   
 
the model reduction problem can be considered as a 
discretization problem, for which many techniques are 
available in numerical mathematics. In the approach 
presented a method of weighted residuals has been chosen. 
The use of wavelet functions (Haar-wavelets) for function 
approximation and projection results in a Wavelet-
Galerkin discretization.  

 With the possibility of using different grids for 
discretization, the main prerequisite for the use of 
multigrid concepts (Briggs et al., 2000) is given. Starting 
with an initial guess the optimization problem is solved on 
a quite coarse level of compositional detail (this step 
compares to an optimization with a low number of 
pseudocomponents).  With this coarse approximation a 
residual error is calculated. The residuals are calculated on 
the full grid (high detail discretization). Using a norm of 
the residual error vector, we have a measure for the 
accuracy of the current iterate. If the model fidelity is 
lower than a prescribed value another iteration is initiated.  
The high detail in the residual evaluation allows us to 
localize the basis function, which presumably contributes 
most to the improvement within the next iteration. By this 
localization we can determine the detail in composition 
representation, which needs to be added to improve the 
model fidelity.  Therefore, we have an adaptive selection 
of the composition representation paying respect to the 
current problem and physical state. Before the next 
iteration is performed the low detailed solution is, in the 
terminology of multigrid methods, prolongated to the fine 
grid. The choice of the prolongation techniques is a degree 
of freedom of the particular multigrid method. In this work 
the detailed grid approximation is constructed by a 
linearization of the full detailed nonlinear model equations 
at the reduced approximation. In the following iteration the 
problem does not have to be solved from scratch. In the 
sense of multigrid methods only a correction to the 
previous approximation has to be determined, which 
strongly reduces calculation time. This iterative procedure 
is looped until the bound for the residual error is met. 

This multigrid procedure is particularly beneficial in a 
real-time optimization scheme. In a first step, only a coarse 
model is solved, which provides the controllers almost 
immediately with new, however inexact, set points. In 
subsequent iterations the set points are corrected until they 
attain the correct values. The application of the adaptive 
optimization strategy in a real-time optimization setting 
will be discussed in detail in the following sections. 

Example problem 

As a simple example problem, this work considers a 
flash operation to separate a feed stream given by a 
detailed analysis of a commercial gasoline consisting of 
128 identifiable components. The optimization should find 
a point of operation for a certain separation quality, for 
which the cost is minimized. The objective function 
includes the cost for lowering the pressure below ambient 
pressure and the cost for heating in order to increase the 

temperature. By reducing the pressure of an operation 
point, we only need a lowered temperature to achieve a 
certain separation. However, decreasing the pressure to 
very low values the cost for this pressure lowering will 
become very high. So we can expect a certain optimal 
operation point for which the summed cost of pressure 
lowering and heating is minimal. To specify the desired 
degree of separation a simple quality constraint is used. 
This simple criterion states that κ·100% of the lighter half 
of the components given in the feed stream should be 
removed with the liquid flow. 

Optimization results 

In the optimization studies two different strategies 
have been investigated: First, a direct optimization 
considering all 128 components right from the start in a 
detailed model, and second, an adaptive multigrid solution 
of the optimization problem. The complexity of the model 
is initially equivalent to 8 pseudocomponents and is 
refined to satisfy a given accuracy constraint. 

Table 1 reveals that the calculation time for a full 
detailed direct optimization with all 128 components takes 
almost 1000 seconds. For the adaptive calculation we have 
a first value for the optimal point of operation after 30 
seconds. However, the results with the first coarse 
composition representation still show significant deviation 
from the true optimum values. A virtually exact solution is 
obtained with the second iteration after 118 seconds. So 
with the adaptive calculation we have cut down the 
optimization time roughly by a factor of 8.  

Table 1.   Error in the optimized variables with 
respect to the detailed model versus the time 

needed to obtain the results for an adaptive and a 
direct high-resolution optimization.  

 
Calculation 

time  
[s] 

Relative 
error in Topt 

[%] 

Relative 
error in popt 

[%] 

Direct 
optimization 993 0 0 

Adaptive 
optimization 
1st iteration 

30 0.36 3.22 

Adaptive 
optimization 
2nd iteration 

118 0.0025 0.0269 

 
It is clear that a smaller model size compared to the 

full model optimization would have been sufficient in 
order to obtain reasonable temperature and pressure set 
points in this simple example. However, it should be 
pointed out that the formulation of the optimization 



 

problem in industrially relevant cases may also involve 
quality constraints for certain molecular species. In this 
case a high resolution model is inevitable. 

Real-time optimization strategy 

Algorithm 

Particular potential of this adaptive optimization 
approach lies in the application within a real-time scheme 
as it is frequently employed in petroleum plants.  

A frequent problem in petroleum plant operation is for 
example the change in feed composition. During a dead 
time, in which the optimizer computes the new optimal 
controller set points, the process is not only away from the 
optimum, but the optimum is not even known. When the 
new set points finally have been calculated, the controllers 
of the plant are updated. The controllers then drive the 
process to the new optimum. After updating the controller 
set points, the problem is a standard set point control 
problem to change the operation point. For the loss of 
profit after the controller updates, therefore, only the 
performance of the controllers is important. But the profit 
loss before the controller update must fully be contributed 
to the ignorance of the optimal operation condition. So the 
quicker these updates can be provided, the smaller is the 
profit loss after a feed change. 
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Figure 1.   Adaptive multigrid real-time 
optimization strategy.  

Besides a model, which reflects the plant behavior in 
reasonable detail, the success of the method therefore 
crucially depends on the computation time the optimization 
takes. Today, the optimization cycles for petroleum 
processes take about 1-2 h. Even if perpetually increasing 
computer speed can lower this time span, one has to keep 
in mind that the actually optimized models are still far 

away from a refinery-wide and molecular based point of 
view. For a refinery-wide view with detailed compositional 
description, the complexity, and therefore the calculation 
time, would increase significantly.  

As seen above, the adaptive strategy has lowered the 
computation time by almost an order of magnitude. But not 
only the time needed to reach the “exact” optimum is 
important. As depicted in Figure 1 the controller set points 
can already be updated after the first initial step. Since the 
controllers need some time anyway to drive the process to 
the new optimum, they do not necessarily have to know the 
“final” optimal controller set points right from the start. 
The initial approximation is more a direction in which the 
process has to be moved instead of a final operation point. 
Most likely, the next iterated set point will be available 
before the steady-state for these intermediate set points will 
be reached. For more complex optimization problems this 
may involve a whole series of controller updates, which are 
subsequently generated for more and more detailed model 
formulations. Though this is not necessarily true, it is 
reasonable to assume that with more detailed models also 
the quality of the set points increases with each iteration. 

Example problem 

To use the above outlined optimization strategy in 
anreal-time optimization framework, the plant in Figure 1 
has been replaced by a dynamic simulation of the flash. In 
the beginning the flash is fed with a stream of given 
composition, for which the optimum operation point for a 
separation quality constraint of κ = 0.4 has been 
determined off-line.  After the first 60 minutes the feed 
composition is changed. With this feed change a new 
optimization is initiated considering the feed change and a 
change in the separation quality constraint to κ = 0.6. Due 
to the simplicity of the optimization problem, the 
calculation times are quite low. To have a more realistic 
setting the calculation times for the full grid direct 
optimization is scaled to 1 hour, which is a reasonable time 
for the optimization of a more complex technically relevant 
process. The calculation times for the adaptive calculation 
loops have been scaled accordingly. 

Real-time optimization results 

As shown in Figure 2, the first 60 minutes are used to 
take the process to the given optimal point of operation for 
the initial feed specification. At 60 minutes the process 
shows only weak reaction to the feed change if the 
optimization is performed directly with the full scale model 
accounting for all 128 components. In ignorance of any 
new set points, the process is operated at the old set points 
for the full hour of dead time. This not only leads to an 
increased cost function but also results in a violation of the 
separation quality constraint during the dead time period. 
After the 60 minutes of dead time, the new set points are 
finally provided to the process controllers. The controllers 
then become active and drive the process to the new 
optimum. 



   
 

In the adaptive optimization scheme the controllers are 
provided virtually instantly with a first approximation of 
the real set points causing the process to react almost 
without any dead time to the feed and specification change. 
After the set points have been updated, the controller 
behavior is similar to the full grid case, only that it happens 
much earlier. So the process reaches the new, less 
expensive optimum much quicker. Also the time span in 
which the process is operated off specification is 
significantly shorter. 

 

Figure 2.   Dynamic flash simulation with a 
change in the feed composition at t = 60 min 

coupled with a real-time optimization scheme. 

Conclusions and future perspectives 

This work presents an adaptive model refinement 
strategy for real-time optimization of refinery processes. 
The strategy is based on a continuous problem formulation 

for which adaptive multigrid discretization techniques can 
be employed. With these techniques, the model can be 
formulated easily in various degrees of detail. An initial 
optimization giving only a coarse result for the optimum 
operation point can be obtained quite quickly with a coarse 
model formulation. After providing these initial coarse 
results to the plant control system, another iteration is 
initiated to refine the model and therefore refine the 
accuracy of the optimum operation point. Applying this 
strategy to a simple flash problem reveals that the profit 
loss for example after a feed composition change can 
significantly be lowered. 

Note that the optimizer (NPSOL, Gill et al., 1986) is 
used as a black box in the example presented. Therefore, 
though the optimization strategy can easaily be 
implemented with available software, significant potential 
for improvement is present if optimization and refinement 
algorithms are integrated. 

It should be pointed out that the simple academic 
example provided here can only serve to illustrate the 
potential use of the approach. The next steps of our 
research consitutes the set up of realistic benchmarks. 
These benchmarks should comprise the complexity of 
industrial settings. 
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