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Abstract 

This work  further elaborates on  the steel plant MILP production scheduling method presented  in 
Harjunkoski  and  Grossmann  (2001). The  proposed improvements include a more flexible model for 
the casting step, as well as combining orders from  consecutive weeks to improve one of the main 
targets, which is increasing the number of heats per casting sequence. The paper presents a strategy to 
obtain optimal casting sequences by using an MILP approach. 
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Introduction

Steel making is a very energy-demanding and time-critical 
process where the scheduling decisions are still often 
performed manually, even though the highly complex and 
constrained environment makes this especially difficult. 
The final stage,  continuous casting, is  often considered  
as the  most complex task in  the  production  planning and 
several studies focus only on this part of the process (Lally 
et al. 1987). An overview of commonly used expert 
system approaches is given in Dorn and Doppler (1996). 
The  steel-making process considered in this paper (Fig. 1)  
comprises  two electric  arc furnaces  combining  the  melt  
steel  with  scrap,  an  argon  oxygen decarburation  unit  
for  removing  the  carbon,  a  ladle  metallurgy facility 
where the metal chemistry  and temperature are adjusted 
and a continuous caster  to form  the end product,  steel 
slabs. The casting is normally processed continuously for 
a group, containing up to 8-10 heats, after which the 
equipment needs  regular maintenance.  With the term heat 

we refer to a certain amount of melt steel, a batch, that is 
transported through the process in a ladle. A heat can be 
equivalent to a customer order but large orders may have 
to be split into several heats. There are several strict rules 
for sequencing and grouping the  heats at the casting stage, 
which makes it hard to produce longer sequences that 
would  reduce the number of necessary production stops. 
The approach in Harjunkoski and Grossmann (2001)  
allows only casting in decreasing width order.  In this 
paper we propose a model improvement that makes it 
possible to do the casting in both directions.  This will 
affect both the preprocessing step and the mathematical 
model presented in the earlier work.  Apart from adding 
flexibility these modifications also contribute to 
diminishing the number of casting sequences needed. The 
resulting model is both more realistic and leads to optimal 
caster schedules. 
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Fig 1. Example process 

Another  major improvement  in the proposed model 
is achieved  by combining  two consecutive weeks and   
merging the orders in a near optimal fashion for improving 
the casting efficiency. Considering only  one week at a 
time  typically results in some short “unwanted” casting  
sequences  with only  1-4  products (or heats).  Through  a 
"rolling horizon"   strategy  we will show a  clear 
improvement where the number of casting  sequences can 
approximately be reduced by 10%. 

Casting order 

The strategy for the casting order was already 
discussed in Harjunkoski and Grossmann (2001). Here we 
will use the same type of concept but allow casting to be 
done both in decreasing and increasing width order. The 
main idea lies in first presorting the products into possible 
casting orders and then using mixed integer linear 
programming (MILP) to find the optimal casting 
sequence.  

In the following, we will also use the word “group” to 
denote a casting sequence and define it as active if it 
contains one or more products. The result is not only the 
optimal grouping, but also the correct internal casting 
order for each group. The MILP formulation  assumes that 
the orders are presorted exactly as in Harjunkoski and 
Grossmann (2001), by sorting the products subsequently 
according to their speed, due date, width, grade and 
thickness. All products of the same grade and thickness 
form a product family and the casting sequences are 
created among these. An upper bound for the number of 
groups needed for a product family can be obtained by 
starting from the top of the preordered list and selecting 
products into a group until there is either a compatibility 
conflict or the group has achieved the maximum number 
of products (for instance 8). As before, a compatibility 
matrix, Pii´, is built to represent the most complex or 
nonlinear rules. The elements have the value one, if 
product i´ can be cast after product i, else zero. This matrix 
together with the constraints embedded in the MILP 
formulations provides the full information for a successful 
sequencing. 

Because of the fact that both increasing and 
decreasing casting widths will be allowed, we cannot take 
full advantage of the preordering step. Instead, the 
mathematical model needs to be able to manage this added 
flexibility. In order to clarify the dependencies let us 
assume four major cases, where wi is the width of a 

product, ti is a grade type number ordered such that type 1 
should always be cast before type 2, type 2 before type 3 
etc. By using the compatibility matrix we get four basic 
cases: 

 
C1:  iiiiii ttwwP ′′′ ≤≤= ,,1
C2:  iiiiii ttwwP ′′′ ≤≤= ,,1
C3:   iiiiii ttwwP ≤≤= ′′′ ,,1
C4:  iiiiii ttwwP ≤≤= ′′′ ,,1
 
In C1, a suitable (satisfying the compatibility matrix 

requirement) next product, i´, should be wider than the 
previous one, i, and have a larger grade type. C2 is similar 
but here the following product must be narrower. Cases 
C3 and C4 define the same for a preceding product, which 
also must meet either of the width criterias and be of a 
smaller grade type to be valid for casting. In the following 
mathematical formulation we will refer to these cases for 
readability. 

 
Let zg be a binary variable that is one if a sequence g 

is used, else zero. The objective is to minimize the total 
number of casting sequences (groups) needed. 
 

∑
∈ Gg

gzmin  (1) 

 
The assignment of products i into groups g is handled 

by the binary variables xig. Each product must be assigned 
to exactly one group and there is an upper bound, Mmax, 
for the number of products per group. Also, the variables 
for unused groups should be forced to zero. 
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Let αg be a binary variable that is one if the sequence 

g is increasing with respect to width and qig be a variable 
to relax some of the constraints for the last product in a 
sequence. For an increasing width sequence (α=1) all 
products, except the last one must be followed by at least 
another suitable product. Eq. (5) defines the same 
condition for decreasing width order (α=0). 
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Similarly to Eqs. (4)-(5) the two following constraints 

state that all products in a sequence, except the first one, 
must be preceded by at least one suitable product. The 
constraint is relaxed for the first product by the variable 
rig. 

Ggzz gg ∈∀≤−+ 01  (14) 
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The exception variables for the first and last products 
are real variables ranging between zero and one. 
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Solving the model above will automatically generate 

the optimal casting sequences, taking into account the 
width and grade type constraints, as well as, for instance 
the more complex chemistry constraints  through the 
compatibility matrix. 

 
Since we cannot directly control the order of the 

products as in the case where only decreasing width order 
was allowed, two other constraints need to be formulated 
to eliminate mismatches: the first one eliminates the 
appearance of wider products with a smaller type number 
and narrower products with a larger type number for 
increasing widths. The second one does the same for 
decreasing width order. Note that since the products were 
preordered according to grade type it is sufficient to 
compare them by index in Eq. (9). 

Multi-week approach 
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The method in Harjunkoski and Grossmann (2001) 
focuses on scheduling one week at a time. This is a natural 
choice, not only owing to traditional planning but also as 
certain products need to be delivered always on the same 
weekday. Being able to obtain the optimal grouping for 
one week is not always sufficient for practical production 
requirements, for instance due to unwanted short casting 
sequences. What is often done to deal with these is 
transferring some production orders from a week to the 
previous one, or to the following one. The main goal is to 
avoid rare grades to be sequenced alone by combining the 
order information from two consequtive weeks. 

 
Since the main benefits from considering two weeks 

come from this fact, the following integration procedure is 
proposed:  

Equations (10) and (11) allow exactly two exceptions 
per group: for the first product and the last product in a 
sequence. 

 
1. Optimize casting sequences for week 1. 
2. Optimize casting sequences for week 2. 
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3. Select the short sequences from weeks 1&2 
and solve a new casting sequencing problem 
with their products. 

 
This approach should result in the same or better 

casting strategy. An example of the groups and their 
relations is shown in Fig. 2.  

 
The rest of the constraints are more or less to diminish 

the search space to make the model more compact. The 
flag for the increasing width order is forced to zero for 
non-existing sequences in Eq. (12). The groups are 
ordered by their numbers of products in Eq. (13) and 
additionally Eq. (14) forces the active groups to be the 
first ones. Here it should be noted that the number of 
groups available, |G|, is determined in the presorting step 
and it is common that some of these sequences turn out to 
be redundant after the optimization. 

 

Week 1

Week 2

Week 1

Week 2

 Figure 2. Merging two weeks 

 
Ggzgg ∈∀≤α  (12) 

How these new groups are then scheduled into the 
production plan depends completely on the process itself. 



   
 

 

If, for instance, there are special products that cannot be 
moved from their weekly position this should be taken 
into consideration. Also, the chosen due date tolerance 
plays a key role, since orders with a high tolerance may be 
shifted several times (from week 1 to week 2 and further 
from week 2 to week 3), as in a rolling horizon approach. 

Product Grade Width Thick Seq
P2 101A 44,5 7,5 1
P1 101A 49,8 7,5 1
P5 101 49,8 7,5 1
P4 101C 32,2 7,5 2
P6 101 31,8 7,5 2
P7 101 31,5 7,5 2
P3 101B 27,5 7,5 3  

Example Table 4. Optimal solution of the new approach 
 The optimization steps are illustrated and compared 

using a simple example problem containing only 7 
products. Table 1 shows the products after presorting. 

In this simple case the sequence 3 would be a possible 
candidate for being merged with other weeks. 

  
As stated in Harjunkoski and Grossmann (2001), this 

methodology produces nearly optimal weekly schedules 
(theoretical optimality gap: 0-3%) for the meltshop 
process considered. It is difficult to calculate a valid lower 
bound for the two-week problem but it is evident that it 
can on average only improve the earlier  one-week 
schedules, as the number of casting sequences may be 
further reduced. 

Product Grade Width Thick Seq
P1 101A 49,8 7,5 1
P2 101A 44,5 7,5 1
P3 101B 27,5 7,5 2
P4 101C 32,2 7,5 3
P5 101 49,8 7,5 4
P6 101 31,8 7,5 5
P7 101 31,5 7,5 5  

Table 1. Example orders after presorting Conclusions  
The improvements presented in this paper  lead to a 

minimum number of casting sequences needed to produce 
a set of products. This number has been identified as a 
major bottleneck in many steelmaking processes and is 
also a significant cost factor since the change of casting 
sequences requires timely and costly maintenance 
operations. The combination of some of the products 
within two consecutive weeks has therefore, apart from 
operational efficiency, a significant economical impact, 
especially if this helps in further reducing the number of 
changeover operations. 

The orders resulted in 5 sequences separated by 
horizontal lines in Table 1. Given the fact that grade types 
should be cast in the order: 101A→101B→101C→101 
and a maximum width change of 7,0 between two 
consecutive products the compatibility matrix for these 
products is shown in Table 2. An optimal solution for the 
orders when allowing only decreasing casting width is 
shown in Table 3. 

P1 P2 P3 P4 P5 P6 P7
P1 0 1 0 0 1 0 0
P2 1 0 0 0 1 0 0
P3 0 0 0 0 0 1 1
P4 0 0 0 0 0 1 1
P5 0 0 0 0 0 0 0
P6 0 0 0 0 0 0 1
P7 0 0 0 0 0 1 0  
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Table 3. Optimized with decreasing width 
 
The optimization was able to reduce the number of 

sequences by one. In this particular example a further 
sequence was eliminated by allowing a casting order with 
both decreasing and increasing widths. 
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