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The aim of this work is to propose a mathematical programming model for the Economic Lot Scheduling
Problem (ELSP) with performance decay. The main difficulties related to this model are the
nonlinearities and/or nonconvexities associated with the dynamic behavior of the system with time.
Firstly, the problem is formulated as a Mixed Integer Non Linear Program (MINLP), which is found to
be nonconvex. The model is then transformed into a Mixed Integer Linear Programming (MILP) model
through the discretization of cycle time. Therefore, the globally optimal schedule can be obtained. A case
study demonstrates the applicability of the MILP model and its potential benefits in comparison with a
hierarchical approach.
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Introduction

The Economic Lot Scheduling Problem (ELSP) is a
well-known problem in the Operations Research Literature
(Drexl and Kimms, 1997). It can be described in the
following way: given a set of products that have
continuous fixed demand over an infinite planning horizon,
schedule them in a cyclic way in the plant such that the
overall production cost, composed of setup and holding
costs,  is minimum.

Sahinidis and Grossmann (1990) proposed an MINLP
model for multiple lines with sequence dependent setups.
Pinto and Grossmann (1994) studied the case of multistage
plants with intermediate inventory. Recently, Oh and
Karimi (2001) proposed a mathematical programming
model as well as a heuristic solution procedure for solving
the ELSP with fixed planning horizon for a single machine
with sequence dependent setups.

To our knowledge, there is no work in the literature
that considers the ELSP subject to performance decay. Jain
and Grossmann (1998) developed a mathematical
programming model for scheduling the cyclic operation of
multiproduct parallel units with performance decay.

However, this model did not include inventory costs. This
same gap exists in the MINLP model proposed by Alle et
al. (2002), which is aimed at scheduling production and
cleaning operations for multiproduct serial plants. These
works cannot be strictly classified as ELSP studies because
they lack one of its main features, which is the
consideration of holding costs.

The aim of this work is to propose a mathematical
programming model for the ELSP with performance decay.
The main difficulties related to the proposed model are the
nonlinearities and/or nonconvexities associated with the
dynamic behavior of the system along cycle time. The
model is firstly posed as a nonconvex MINLP model
which is further discretized, thus giving rise to an MILP
model, which can provide an approximation of the global
optimum without the risk of being trapped into local
optimal solutions.



Problem Statement

The plant is composed of one single stage
manufacturing NP products. For every product, i, a fixed
demand rate, di, should be satisfied. The plant allows only
one run of each product per cycle.

Process yield, ηi, is assumed to decay linearly with
time as follows:
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As performance decreases, the unit requires cleaning
to restore productivity to its initial state. The decision of
stopping for maintenance interferes with the production
schedule. Therefore, it is important to consider both
production and cleaning scheduling decisions
simultaneously. The overall objective of the planning
model is to minimize overall cost (sum of raw material,
cleaning and holding costs) over cycle time. Cleaning or
setup operations take place when the unit is setup for a
different product campaign. Sequence dependent setup
times and costs are incurred whenever the line changes
from one product to another.

Simultaneous cleaning and production scheduling
involves trade-offs between raw material consumption,
cleaning and inventory costs. A policy of frequent stops
may be adopted to minimize raw material consumption
because the unit operates at larger yields. An added
advantage is that shorter runs mean lower inventory costs.
On the other hand, if the objective is to minimize cleaning
costs, longer cycles are necessary which implies larger
inventory costs. In addition, raw material consumption
increases due to operation at lower yields. Therefore, it is
evident that cleaning decisions should be considered in the
ELSP with performance decay. Overall, this problem can
be stated as follows:

Determine product sequence (Zij), start times (TSi),
processing times (TPi), cycle time (Tc) and
product amounts (Wi) for given demand rates (di),
decay functions (ηi(t)), raw material (Cfi), setup
(Ctrij), inventory  (Cinvfi,) costs, setup times (τij),
and feeding rates (Gi) so as to minimize overall
cost (OC) over Tc.

Mathematical Formulation

Defining Gi as the feed rate of product i, the amount of
product i produced, Wi, is given as follows:

0

1
      

2

iTP
2

i i i i i i i i  iW G dt a G TP b G TP iη= ⇒ − ∀∫ (2)

where TPi is the processing time of product i during the
cycle. The continuous demand, di, over the cycle time, Tc,
must be satisfied:

        i iW d Tc i= ∀ (3)

The inventory behavior of product i, Invfi, during the
cycle is shown in Fig. 1.

Figure 1. Inventory under performance decay.

The cost of holding product i during the cycle, CHi is
proportional to the area below the curve in Fig. 1:
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The overall inventory cost, CH, is given as follows:
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The cost of raw material, CF, is given by:
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Variable Zij defines product ordering as follows (e.g.
Alle and Pinto, 2002): Zij = 1 if product i precedes product
j; 0, otherwise. Thus, the overall setup cost, CT, is given
by:
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Only one product succeeds and precedes the other:
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As shown in Fig. 2, there are two cases for the
inventory level profile Invfi(t). In case A, the maximum
inventory level occurs at the end of production of i, TPi.
After that, inventory is depleted at continuous demand rate,
di. In case B, the maximum inventory level Imaxi occurs at
(tni,IMi), where tni=(aiGi-di)/Gibi and IMi= (aiGi-di)tni-
0.5biGitni

2, which is the null-derivative point of Invfi(t).



Figure 2. Inventory profiles.

In order to determine the maximum inventory level,
Imaxi, a new binary variable, Yi, is introduced to indicate
whether case A occurs together with the following
constraints:
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Storage capacity, up
iImax , must not be exceeded:
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The cycle time must be greater than the summation of
processing and transition times:
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As the schedule is cyclic, product 1 is arbitrarily
chosen as the first one to enter the production line:
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A product only starts to be processed after previous
processing and setup. Thus,
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It must be pointed that (17) prevents solutions from
presenting subcycles (Alle and Pinto, 2002). The model
(M1) of ELSP with performance decay can be stated as:

min
CT CH CF

OC
Tc

+ +
=  (18)

subject to
Cost definition constraints (7), (8) and (9)
Sequencing constraints (10)
Mass balance constraints (2) and (3)
Maximum inventory constraints (11)-(13)
Cycle timing constraints (15)
Timing constraints (16) and (17).

Model M1 has a nonconvex objective function and
nonconvex constraints, (2) and (7). In the next section,
model M1 is reformulated as an MILP by assuming
discrete values for the cycle time.

Model Reformulation

Substituting (3) into (2) and solving the resulting
quadratic equation, it follows that
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Substituting (19), (7) and (8) into (18) yields:
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Objective function (20) is nonconvex and has two
variables: CT and Tc, which can be discretized as follows:
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where Tcl are discrete values and TPil  are given from
direct substitution of Tcl into (19). Defining variable

lCTX  as the product between CT and binary variable Xl,
which can be determined by
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the MILP model (M2) can finally be stated as:
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subject to
Cost definition constraints (9), (23) and (24).
Sequencing constraints (10)
Maximum inventory constraints (11)-(13)
Cycle timing constraints (15), (21) and (22)
Timing constraints (16) and (17)



Figure 3. Schedules for the hierarchical and MILP approaches.

Example

In order to show the effectiveness of the proposed
approach, this illustrative example shows a comparison
between the proposed MILP and a hierarchical procedure
for scheduling a unit that processes 20 products. The
hierarchical approach comprises two steps. At the first
step, the product sequence is obtained by minimizing the
overall setup cost. The second step determines cycle and
campaign time of products for this sequence.

Problem data was randomly generated as shown in
Table 1, where U[a,b] represents a uniformly distributed
random variable in the range [a,b]. The MILP model was
implemented in GAMS and solved in 9.4 s in a PC
Pentium III 500 MHz, 512 Mb RAM with the MILP solver
CPLEX 7.0. Fig. 3 and table 2 compare the schedules
obtained from both approaches.

Table 1. Parameters for the case study.

di = U[15,25] ton/d Gi = U[410,680] ton/d
Cinvi = 0.5.U[1,3] ton/d Cfi = 100.U[1,3] ton/d
ai = 1 bi = 0.01.U[1,3] 1/d

Ctrij = Ctri.U[1,5] $ where Ctri = 104.U[1,3] $
τij = τi.U[1,5] $ whereτi = 0.4.U[1,3] $

Imaxi = IMi.U[0.5,1.5] ton
Tcl = 75 + (360-75).(l-1)/19 where l = 1…20

Table 2. Costs for Hierarchical and MILP approaches.

Costs Hierarchical MILP Benefit
CF/Tc (103 $/h) 84.4 79.0 6.8%
CT /Tc (103 $/h) 2.1 8.2 -74.2%
CH/Tc (103 $/h) 45.1 18.1 150%

OC (103 $/h) 131.7 105.3 20.0%

Fig. 3 shows that approaches yield different
production sequences. The hierarchical approach has the
minimum setup cost whereas the MILP schedule has
shorter cycle time (90 d vs 225 d). As a consequence, the

MILP approach gives higher process yields as well as
lower inventory levels. In fact, Table 2 shows that the
MILP has 74.2% larger setup cost. However, it presents
6.8% less raw material and 150% less inventory costs,
which yields 20.0% lower overall cost per unit of cycle
time.

Conclusions

In this work, the problem of the ELSP with
performance decay has been studied. The overall problem
was formulated as a nonconvex MINLP model that was
transformed into an MILP model. The advantages of the
proposed simultaneous approach were shown by
comparison with a hierarchical approach.
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