
A BILEVEL PROGRAMMING FRAMEWORK FOR 
ENTERPRISE-WIDE SUPPLY CHAIN PLANNING 

PROBLEMS UNDER UNCERTAINTY 

Jun-hyung Ryu and Efstratios N. Pistikopoulos* 
Centre for Process Systems Engineering, Department of Chemical Engineering, 

Imperial College, London, U.K. SW7 2BY 

Abstract 

Enterprise-wide supply chain planning problems inherently exhibit multi-level decision network 
structures, where for example, one level may correspond to a local plant control/scheduling/planning 
problem and another level to a plant-wide planning/distribution network problem. Such multi-level 
decision network structures can be mathematically represented using multi-level mathematical 
programming principles. In this paper, we address bilevel decision-making problems under uncertainty 
in the context of enterprise-wide supply chain optimization with one level corresponding to a plant-
specific planning problem and the other to a distribution network problem. We first describe how such 
problems can be modelled as bilevel programming problems and then present an effective solution 
strategy based on parametric programming techniques.  
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Supply chains typically involve multiple 
enterprise-wide activities, from the procurement of the raw 
materials, through a series of process operations, to the 
distribution of end-products to customers. It is not 
surprising that their design and operation issues pose a 
number of important theoretical, technical and practical 
challenges, which have started to receive increasing 
attention in academia and industry (see representative 
publications in Table 1). However little attention has been 
given to actual supply chain principles, particularly (i) 
hierarchical decision structures from local, independent to 
global, centralized objectives, which are often conflicting 
each other, and (ii) incomplete data and information to 
significant uncertainty involved in characteristics at the 
various levels of the hierarchy i.g. demand forecasts, raw 
material availabilities, etc.  

In order to bridge the gap between the industrial 
practices and the lack of corresponding research, we 

propose an approach that directly captures their multilevel 
and uncertainty aspects based on bilevel optimization 
principles. The solutions of the resulting stochastic bilevel 
programming problems are obtained by proposing an 
effective solution strategy based on parametric 
programming techniques.  

Supply chain planning - a bilevel optimization model 

Bilevel programming problems refer to hierarchical 
optimization problems (leader’s or outer problems) that 
are constrained by another optimization problem 
(follower’s problem or inner problem). It is often used to 
describe situations involving several indifferent groups 
which are inter-connected in a hierarchical structure (see 
some of representative references on bilevel programming 
in Table 2). Each group may correspond to an individual 
or an agency, often with a corresponding independent 

 
   



  
 
objective. The two problems are inter-connected: the outer 
problem sets parameters influencing the inner problem; the 
outer problem, in turn, is affected by the outcome of the 
inner problem. Bilevel programming problems are 
challenging since even they typically involve non-
convexities for linear models and attention has been given 
to only deterministic ones (see, for example, Visweswaran 
et al., 1996). 

Table 1. Recent research on Supply chain 
planning problem  

Researcher 
Solution 
Method 

Uncertainty Key issue 

Bose and Pekny 
(2000) 

Simulation 
Optimization 

Demand 
Model predictive 

control (MPC) 

Zhou et 
al.(2000) 

Optimization 
(multi-

objective) 
no. Refinery example 

Gupta and 
Maranas (2000) 

Optimization Demand 
Stochastic 

programming 
Flores et 
al.(2000) 

Simulation Demand MPC 

Gjerdrum et 
al.(2001) 

Optimization 
(MILP) 

no. 
Profit distribution 

Game-theory 
Perea-Lopez et 

al.(2001) 
Simulation Demand 

Decentralized  
Control 

Papageorgiou et 
al.(2001) 

Optimization 
(MILP) 

no 
Tax, scale-up cost 

Phamaceutical 
 

Table 2. Representative applications of the 
bilevel programming 

 
Area Reference 

Economy Cassidy et al. (1971) 
Hobbs and Nelson (1992) 

Civil Eng. Clegg et al. (2000) 
Boyce and Mattsson (1999) 
Chiou (1999), Migdalas (1995) 

Environ. 
Eng. 

Amouzegar and Moshirvaziri (1999) 

Finance Bard et al. (2000) 
Chem. Eng. Clark and Westerberg (1983, 1990)  

Grossmann and Floudas (1987) 
Brengel and Seiderm (1992) 
Visweswaran et al. (1998) 
Floudas et al. (2001) 

 
In view of multiple enterprise activities in actual 

supply chains, their planning problems can be naturally 
posed as bilevel optimisation models. Consider the 
following manufacturing supply chain that consists of a 
production part involving two plants, PL1, PL2 and a 
distribution part, involving an inventory warehouse, WH 

for two products A and B, as shown in Figure 1. Based on 
the mathematical notation in Table 3, its individual 
production and distribution problem can be 
mathematically modelled separately as follows: 

Table 3. Notation 

    Indices 
I Product (1,…,NM) 
L Plant (1,…,NL) 
    Variables 
Yli Production amount of product I at plant l(ton) 
Xi Inventory holding amount of product I (ton) 
    Parameter 
DMi Demand of product i(ton) 
pcli, pdi ,CRSli, CRSB, IRSli, IRSBl, dci, ddli, 
b2,INVRSi,,INVB : cost parameter 

 
 

D istribution  centre C  
(X A,X B) 

P lant B 1(Y 1A,Y 1B) 

P lant B 2(Y 2A,Y 2B)

D em and A
D em and B

 

Figure 1 Process configuration of                    
an illustrative supply chain 
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where the objective function (1) is to minimize production 
/ delivery costs; (2) denote that commonly used resources 
at each plants can be shared; (3) represent that allocations 
of some resources may be controlled by individual plant 
conditions; (4) indicate that the production should exceed 
the inventory warehouse levels. 



  

DISTRIBUTION MODEL 

(7)                         

(6)              ,..

(5)    min

1

1 11

iDMX

INVBXINVRSts

YddXdcZ

ii

i

NM

i
i

NL

l

NM

i
lili

NM

i
iiDC

Xi

∀≥

≤

+=

∑

∑∑∑

=

= ==

 

where (5) represents the minimization of warehouse 
distribution costs; (6) are bounds for the inventory levels; 
(7) denote that inventory levels should meet demands. 
 
Note that the decisions of the distribution part are 
generally based on those of the production part: for 
example, inventory policies are made using the outcome of 
production decisions. Similarly, decisions on the 
production part are affected by decisions of the 
distribution part: for example, production levels are 
decided from the given information regarding the 
inventory conditions. Therefore the overall supply chain 
planning model can be posed as the following bilevel 
optimization problem:  
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where the inner problem corresponds to the production 
optimization problem and the outer problem to the 
distribution problem. By denoting Xli as x, Yi as y and by 
also including uncertainty (present in, i.g. demand 
forecast, equipment availability etc.) denoted as θ , (8) 
may be recast as the following bilevel programming 
problem under uncertainty:  
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where ,,, RRYyRXx ⊆Θ∈⊆∈⊆∈ θ      

 , are constant vectors and   

are constant matrices. 
212 ,, cc 2121 ,,, ctctdd

21212 ,,,, KKBBA
1,bb

1,A

Parametric programming-based solution methodology  

There is little research on methodology for stochastic 
bilevel programming problems like (9) to the best of our 
knowledge. We therefore propose a novel solution 
methodology involving the following three steps: 

Step 1 

Formulate the inner optimisation problem as a multi-
parametric linear programming (mp-LP) problem by 
regarding the variables of the outer problem and the 
uncertain parameters as parameters: 
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 (10)                  

Step 2. 

Solve problem (10) using multi-parametric LP algorithms 
(refer to Dua, 2000 and POP software). The corresponding 
parametric solutions are of the following form: 
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where k denotes the number of the computed parametric 
solutions, lk is a constant parameter, Hk and Ik are constant 
matrices and hk is a constant vector.  

Step 3. 

Using the parametric expression in  (11), the outer 
problem is then transformed into a family of single 
parametric optimization problems. By solving those single 



  
 
problems, all local optimal solutions of the original 
problem are obtained and the global optimum may be 
determined consequently.  

 
A typical solution for the illustrative example is 

shown in Table 4, where uncertainty in demands is 
incorporated as BA θθ , . The proposed methodology is 
novel because it provides a complete set of optimal 
planning strategies of individual supply chain elements as 
a function of uncertain parameters and other design 
variables which are decided in advance hierarchically.  

Conclusion 

This paper has proposed a bilevel programming 
framework to address industrial supply chain planning 
problems under uncertainty. The solutions of the resulting 
problem are computed using a novel methodology based 
on parametric optimization. 
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Table 4. A typical Result of the illustrative example 

 
Optimal operation plan 
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