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Abstract- This paper presents a model predictive control (MPC) formulation for the planning and scheduling problem
in process industries. The main idea is to use a moving horizon technique as well as a feedback control concept to
continuously update production schedules and plans. In existing planning and scheduling formulations, a mixed in-
teger (non)linear programming is very often solved over a chosen horizon which depends on the level of granularity
considered. To account for new orders or plant disturbances such as equipment failures or some parameters deviations
(production yields, rates or state deviation affecting the production quality), updated production schedule and plan are
needed. In this paper, the process of rescheduling (replanning) is compared to a classical feedback control where the
result of current schedule which is the inventory and/or desired profit.

I Introduction

Due to the growing demand on product quality and range and
the desire to maximize profits, companies have diversified
their product portfolio and developed multi-product plants.
Besides, recent consolidation of industrial activities has brought
together production facilities and reinforced the need for an
advanced management. To use and exploit better relevant
plant information, the decision making process needs to model
the plant operation and use an optimization procedure exploit-
ing this model.

The difference between planning and scheduling depends
on the level of details and time horizon considered. In a typ-
ical planning process, one wants to determine the volumes of
products to be produced so as to make a maximum profit. In
effect, based on demand forecast, confirmed orders and new
product request, a planning exercise consists of deciding on
quantities of products at different subperiods of the time hori-
zon when intermediate deliveries are considered. So doing,
the planning period is divided into block intervals, each block
corresponding to the production of a group of product grades
or customer orders. Here the objective is to determine whether
the production is profitable or not. The details on equipment
capacities, production constraints and recipe rules are consid-
ered in the scheduling task where the goal is to find the right
sequence of grade production within the time horizon, so as
to reduce production cost and/or production lead-time.

Several modelling framework including a continuous model
representation and a discrete-time representation have been
proposed to represent plant operation. The so-called resource
task network (RTN) is a discrete-time formulation contains
both material balances and scheduling formulation [6, 7]. In
this formulation, the scheduling horizon is divided into time
intervals of equal length. In the case where a long horizon
compared to the time intervals is considered, this results in
a very large problem which increases the optimization com-
plexity. Another formulation which has less integer variables
is the continuous-time formulation [9]. It provides a model
for task assignment and sequencing. In [7], the authors pro-
posed a model combining both discrete-time representation

with material balance and continuous-time representation for
sequencing and assignment. This approach allows to deal with
the case where intermediate due dates within the horizon are
considered.

In this paper, we propose to formulate planning and schedul-
ing problems corresponding to the description above as a model
predictive control framework. The motivation comes from the
fact that when frequent changes occur, previous schedules are
modified in the following horizon by adjustment. These ad-
justments may consist of changing the amount of processes
materials and/or assignment and sequences. Recent related
works are on mixed logic dynamic systems [3] and are con-
sidered in this paper in combination with other contributions.

Recent works [2, 8, 11] have proposed a study on the use of
a dynamic approach for supply chain management. In these
articles, the authors propose to use dynamic models and to use
control laws to optimize variables such as customer satisfac-
tion and inventory. The similarity comes from the fact that
in each period, a forecasting tool (if available) provides pos-
sible demand in future periods in relation with market trends
and past demand. Using this information, the planning task
consists of matching this demand to production capacities by
determining volumes of production (orders requests), and as
a result desired inventory profiles. This task makes sure that
the production is profitable. The scheduling task consists of
reducing the cost of production so as to obtain the profit cal-
culated by the planning. At this level, production capacity, se-
quencing constraints, operation rules (cleaning, setup times)
need to be modelled.

The contribution of this paper is to use dynamic models of
plant operation provided by a framework such as the RTN, to
propose a model predictive planning and scheduling. Related
works are also in [8, 11] In this formulation, an initial trajec-
tory generation for inventory profiles within a horizon is used
as input to the dynamic planning and scheduling. This profile
is recalculated whenever a new order arrives or a capacity re-
duction occurs. Next, a quadratic objective function is used
to ensure disturbance rejection (such as failure, or yield and
efficiency variations). The resulting formulation is a MIQP
problem. The main advantage of the formulation is the reduc-



tion of the combinatorial complexity by small modification of
the schedule and plan.

This paper is organized as follows. In section 2, the formu-
lation of the predictive planning and scheduling is proposed.
Some comparisons with current practice are provided. In sec-
tion 3, an illustrative example is proposed and some discus-
sions on the applicability of such framework is propose. The
article ends with some open issues and perspectives.

II Planning and scheduling in the process
industries

This subsection presents how existing modelling frameworks
can be used to derive a straightforward state space model for a
model predictive approach to planning and scheduling. Later,
optimization aspects are discussed.

A Modelling

To illustrate the development in this paper, consider a simpli-
fied example (Figure1) representing a two stage process. This
could be only a part of a larger plant, chosen here for sake of
clarity of the presentation.

Figure 1:Simplified example

In this example,E1, E2, E3 andE4 represent equipments
which are used for processing at the corresponding stages.
RMs, s = 1, 2, 3 are raw materials,IP1, IP2 are intermedi-
ates andP1, P2 are the resulting products. The following ma-
trix summarizes the mapping of units to tasks and variables.

Units Tasks Integer variables constraints
E1 T1, T2 i11(k), i21(k) i11(k) + i21(k) ≤ 1

E2 T2 i22(k)

E3 T4 i33(k)

E4 T3, T4 i34(k), i44(k) i11(k) + i21(k) ≤ 1

Table 1: Unit and task mapping

iij(k) = 1 if task Ti is performed with equipmentEj at
time instantk, iij(k) = 0 otherwise. Writing the mass bal-

ance of the two stages leads to:




IP1(k + 1) = IP1(k) + a5(a1RM1(k) + a2RM2(k))i11(k)
IP2(k + 1) =
IP2(k) + a6(a3RM2(k) + a4RM3(k))(i21(k) + i22(k))
P1(k + 1) = P1(k) + a7IP1(k)(i33(k) + i34(k))
P2(k + 1) = P2(k) + a8IP2(k)i44(k)

where IP stands for Intermediate product, P for product, y is
for measurement, RM for raw material. Thea’s are the pro-
portion of streams used for to each task. When no proportion
is specified, it is assumed to be1. In addition to these con-
straints, one should add capacity limitation of storage.

RMms ≤ RMs ≤ RMMs (1)

IPms ≤ IPs ≤ IPMs (2)

Pms ≤ Ps ≤ PMs (3)

(4)

As suggested in the literature, minimum production runs are
considered, for say forT1, as:

i11(k) = . . . = i11(k + 1) = . . . = i11(k + T1) (5)

whereT1∆t is the minimum run length ofT1, ∆t is the time
interval of discretization. The measured outputs are the prod-
ucts inventory levels. More generally, State Task modelling
leads to a bilinear system of the following form:





x(k + 1) = A0x(k) + B0u(k)+
m∑

s=1
is(k)(Asx(k) + Bsu(k))

y(k) = Cx(k)
x(0) = x0

(6)

wherex andu are respectively the state (inventory of storage
facilities, raw material consumption terms etc.) and the in-
put (raw material) variables,y is the measured output which
corresponds to inventory.is represent a binary variable asso-
ciated to the decision to assign certain tasks to certain equip-
ments at a given timek. MatricesAj contain proportions of
feeds to a task and proportions of resulting products.

To account for equipment constraints and operation rules,
a linear constraint can be derived (this may be a nonlinear
constraint):

Ex(k) + Fi(k) + Gu(k) ≤ Q (7)

Additional equations can be added to account for the time de-
pendent binary variables (e.g. in the case of cleaning of ves-
sel, the task of clean will depend upon the previous task). The
same could be applied to the case where a maintenance task
would be performed after a certain number of operations.

However, this modelling approach induces a large number
of integer variables. To reduce their number, a time aggrega-
tion technique can be used. Another modelling approach is to
use a continuous-time [9] approach which deals mostly with



task assignment and sequencing. When the focus is on track-
ing material and taking into account capacity produced inside
the plant, this model needs to be complemented with a mate-
rial balance as in [7]. It also allows to account for intermediate
due dates of orders.

B Optimization

Due to the presence of the binary variables, the problem be-
comes bilinear and the objective function is nonconvex. To
overcome this difficulty, auxiliary variablesBsj(k) = xs(k)ij
are linearized as follows:xmsij(k) ≤ Bsj(k) ≤ XMsij(k)
wherexms

andXMs
are the lower and the upper bounds of

xs.
In the present approach, it is proposed to use a continuous

formulation for sequencing and assignment. The result is a
determination of the integer variable in the mass balance as in
[7].

The need for a ”predictive-like” formulation for planning
and scheduling arises from the fact that yields (theais), raw
material and product prices may vary. Also, failures on units
may result to presetting the values of some of the binary vari-
ables, thus modifying initial setup in plan and schedule. In
this configuration, only the first few scheduled tasks will be
applied. The rest may not be applied if a change or distur-
bance occurs. Also, a yield or rate estimation should be trig-
gered to update schedule and plan. In the following section,
the formulation of planning and scheduling is revisited to de-
rive an applicable control concept.

III A MPC framework for planning and
scheduling

The discrete-time model leads to a hybrid system in the form
of mixed logic dynamic system [3]. A Mixed Integer Quadratic
Programming optimization has been used recently for the op-
timization of mixed logic dynamic systems [3]. In this paper,
we show how such an approach fit in an overall Solution to
manufacturing operation planning and scheduling.

A trajectory generation

In most industry application (refinery, petrochemicals, pulp
and paper), a long-term planning system is used to determine
which products to make and how much (mostly for a month
to a year). This exercise consists of finding if the current pro-
duction requirements are within the operability of the plant.
If so, the task is find a feasible plan and acceptance of orders.
This results in inventory target generation for each product as
shown in figure (2). Most of current approaches contribute
to off-line trajectory optimization. Very often, the some tools
are used to modify the targets when new orders are requested.
Assuming that derived trajectory is satisfactory and feasible
(if not optimal), the next step is to make sure that in the exe-
cution, one will always be closer to this targets.

Figure 2:Required trajectories

During the execution of derived plan and schedule, one
wants to minimize deviations to the calculated target for:

• Realizing the profit calculated at the planning level.

• Fulfilling due date commitment when possible or alter-
natively reduce penalty cost.

The time horizon used for the execution is shorter that the
planning level. A moving horizon is also considered.

B Implementation

As described in the previous section, one wants to minimize
the following objective function:

JT =
k+N∑

i=k

(y(k)− yr(k))T Q(y(k)− yr(k))+ (8)

(u(k)− ur(k))T R(u(k)− ur(k)) + ∆u(k)T P∆u(k)

Whereyr is the desired profile of inventory,ur the corre-
sponding raw material quantities or others inputs such as en-
ergy. ur and yr are determined through target generation.
The matricesQ andR should contain penalty terms of penal-
ties due to these deviations. For applying a predictive control
strategy, a state space model (6) is used. However, the lin-
earization presented in the previous section is not directly be
used. Instead, the error dynamics are considered:

e(k + 1) = A0e(k)−B0δu(k) +
m∑

s=1

is(k)(Ase(k) + Bsδu(k))

(9)

+
m∑

s=1

(is(k)− irs(k))(Asxr(k) + Bsur(k))

whereδu(k) = u(k) − ur. In the above equation, assum-
ing that the state deviatione are known (measurement of tank
levels or warehouse stocks), the problem is reduced to finding
the inputs deviationsδu(k) and integersis(k) so as to min-
imize the cost function. Determiningδu(k) means finding
which variation to the current throughput should be consid-
ered to correct the deviation. As this might not be sufficient,
changes in sequences and assignments of operation are also
considered. This approach has the merit to reduce the number



of variables dealt with. The linearization presented in the pre-
vious section can also be applied to this error based equation.

Moreover, certain integer variables can be fixed to allow
finishing on started tasks, or for some important tasks to come
(maintenance, important customer orders etc.). In that case
constraint such as (5) may be used whereT1 would be mini-
mum time remaining to finish the task.

Another issue in executing a plan or predetermined sched-
ule is that recipe coefficients in matricesAj vary to to feed-
stock quality or equipment performance. A real-time yield
calculation and data reconciliation tool can be used to update
and maintain the model. This can also result in a change in
execution to catch up the eventual delays.

Here, there should be a safety margin to ensure that stock
will allow dealing with uncertainties such as equipment breaks
or poison in reactor etc. This should be generated by a stochas-
tic tool (this is not covered in this paper). Also, it is assumed
that the trajectory generator exists (This could be from an
overall planning system which makes sure that order taken
are profitable) and that the due dates and quantities of prod-
ucts per orders are already determined.

Figure 3:Control structure

IV Conclusion and future investigations

In this paper, the propose approach deals with the execution of
precalculated plans and schedules. It is proposed a model pre-
dictive scheme to optimize deviations from targets provided
by off-line planning and scheduling. The proposed method
has potential of providing faster solution by solving a reduced
problem, the complete one being solved off-line and taking
into account more complex parameters (economic, tactical,
strategic issues). The proposed approach provides a real time
measurement of deviations of profits and some corrections to
realize initially planned production. Issues such as continu-
ous switching avoidance and study of full operability of plant
(real time plant availability calculation) are not considered in
this paper.
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