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Abstract 

Ever-changing production campaigns complicate the management of recovery and treatment options for 
unavoidable effluents at pharmaceutical plants. Each campaign produces large amounts of by-products 
differing in their number, amount as well as composition. Future business strategies designed to address 
changing market demands add uncertainty to this already challenging design problem. In such a dynamic 
and uncertain environment, the selection of operating policies as well as decisions to support future 
business operations by plant investments such as new reactors and separators is a formidable task. This 
paper will propose a systematic methodology for long-range, site-wide management strategies for batch 
manufacturing sites. Rigorous modeling of future regulatory changes will allow decision-makers to 
anticipate the monetary, infrastructural and ecological impact such new legislation may have on their 
businesses at a specific sites or an entire regions. The methodology will be illustrated by means of 
industrial case studies. 
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Introduction

A novel combinatorial process synthesis methodology was 
introduced by Linninger and coworkers (Chakraborty and 
Linninger, 2002a & b). This methodology aimed at 
constructing optimal recovery and treatment policies for 
entire manufacturing sites using a two-step procedure. The 
first step, superstructure synthesis, synthesized a 
superstructure of all feasible recovery and treatment 
options for effluents on a plant-wide level. Step two of the 
methodology, superstructure optimization, searched for the 
best operating policy embedded within the superstructure.  

 
This paper will propose the application of the 

combinatorial process synthesis methodology for finding 
optimal long-range waste management and plant 
investment strategies for entire manufacturing sites for a 

planning horizon of 5 years. This methodology will not 
only propose the best treatment and recovery options for 
the entire planning horizon but will also guide decision-
makers in making optimal investment decisions. In our 
novel framework, optimal infrastructure and waste 
management is regarded as an uncertain multi-period 
optimization problem.  

 
Optimal long term waste management strategies must 

satisfy site-specific regulations during each time period. 
Future regulations are anticipated by a regulatory forecast. 
Moreover, investment decisions made in any time period 
(e.g. a fiscal year) to augment a plant infrastructure should 
sustain future business and market demands for the entire 
manufacturing site, as obtained from business and market 



   
 
forecasts. Hence a dynamic vision of the changing market 
demands and regulations are necessary. Figure 1 outlines 
the schematic of our long term planning methodology for a 
multi-purpose batch manufacturing site. In our model, 
business and regulatory forecasts are used as input to the 
combinatorial process synthesis methodology. Our 
solutions synthesize a network of process operations to 
recover useful raw materials and solvents, treat 
unavoidable effluent streams to compliance, and suggest 
optimal capacity and timing of investment decisions for 
new facilities or process technology. In addition, the 
expected environmental discharges are measured annually 
and the plant wide technological capacities of available 
treatment capacities are updated dynamically in 
accordance with every plant investment. Our strategy is 
very similar to closed looped model predictive control 
scheme depicted in Fig. 1.  
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Figure 1. Overview of the Multi-Period 
Planning Methodology,  

Outline. Sections 2 and 3 will briefly outline the 
proposed plant models and investments, and introduce the 
mathematical programming framework. Section 4 will 
discuss industrially relevant case studies. The article will 
close with conclusions. 

2. Plant Model and Investment 

The plant model represents the available plant-
infrastructure for different treatment or recovery options 
within a batch manufacturing facility. The purpose of the 
plant model is to represent mathematically significant 
inventory and track its evolution due to investment 
decisions. The plant has to handle all waste loads from all 
batch production campaigns by either recovery or 
destructive waste treatment. Materials or excess loads that 
cannot be treated onsite may also be sent to specialized 
offsite facilities. 

 
Tables 1 and 2 exemplify relevant properties of 

standard industrial equipment types available for 
distillative solvent recovery and thermal incineration. The 
purchase cost for the different equipment types are 
approximated using Gutherie’s correlation (Gutherie, 
1969). The installed cost are typically five times that of 

purchase cost (Lang factor = 5). The economy of scale for 
choosing optimal equipment sizes is typically following a 
6/10th rule (Peters and Timmerhaus, 1980). 

Table 1. Investment Portfolio for Solvent 
Recovery - Installed Cost of Distillation Columns. 

Diameter 

(in) 

Height  

22ft 

Height 

35ft 

Height 

82ft 

Height 

200ft 

12 $ 329,840 $ 368,510 $ 493740  

18 − $ 440,280 $ 642,080 − 

24 − $ 516,800 $ 801,120 $ 1,432,230 
36 − − − $ 2,182,878 

Table 2. Investment Portfolio for Incinerators. 

Thermal Rating 

(MBtu/hr) 

Approx Hourly 

Capacity (lbs/hr) 

Installed Cost 

($) 

30 7,500 3,195,780 

50 12,500 4,933,420 

80 20,000 7,356,140 

120 30,000 10,383,110 

 
Figure 2 depict simple plant inventory model for two 

hypothetical industrial sites A and B located at different 
geographical locations. Site A has superior plant 
infrastructure as compared to site B and is therefore termed 
the flexible site. Site B, on the other hand, is termed the 
bottleneck site.  
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Fig. 2. Plant Models for two Hypothetical Sites 

Phase two of the combinatorial process synthesis 
methodology is applied for long term planning. Optimal 
long term operating and investment decisions will be 
derived by solving a rigorous multi-period mixed integer 
linear program (MILP). Similar mathematical models for 
obtaining long-term investment decision have been 
extensively discussed in the literature (e.g. Sahinidis et al, 
1989; Liu and Sahinidis, 1996). 



   
 
3. Multi-period Decision Making: Mathematical 
Formulation 

In the multi-period mixed integer linear program of (1) 
– (8), the objective is to minimize the net present cost, 
NPC, representing annualized capital (investment) and 
operating cost, for the entire planning horizon. Typically, a 
planning horizon of n = 5 - 10 years is considered 
(e.g. Henn and Fava, 1994). Investments made in the 
planning horizon, n, must optimize the plant operation cost 
for entire economic horizon, N (20 – 30 years). The 
objective function also considers penalties for capacity 
constraint violations. δmax and µ make up penalties for 
exceeding available capacities at the site, see (2) and (7). 
These penalties may account for additional cost of 
transportation and/or off-site handling. Investment 
decisions counting the number of new modules, y(t), may 
be taken at each period [c.f. Equ. (3)]. Emission constraints 
of inequality (4) may be subject to a change over time as 
anticipated by the regulatory forecast. The original 
infrastructure of the plant is expressed by dmax(0). 
Investments increment the available capacity, dmax, of the 
respective technologies at the site by y(t) (t) ⋅= SdC , 

equation (6). Note that new equipment comes in discrete 
size increments as expressed by constant S. Emission 
constraints are hard, i.e. no violations allowed, The matrix 
D(t) stores the waste load sent to each plant. Similarly, 
E(t), captures the amount of final emissions caused by 
terminal waste residuals. Both matrices are computed in 
the superstructure generation step and may change in 
different time interval (t = 1 … n) due to uncertainties in 
the waste streams. The design variables in this 
optimization include choices for recovery and treatment 
operations expressed by the binary variables, x(t), in the 
superstructure generated in phase one of the methodology. 
The logical path constraints of equation (8) enforce correct 
connectivity of the flowsheets as it was found in phase one 
of the methodology. 
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4. Case Study:  

Four waste blends from a synthetic organic medicinal 
plant are considered to demonstrate our methodology. The 

components in these blends are extraction and wash 
solvents used in pharmaceutical manufacturing and 
therefore the effluents possess potential for solvent 
recovery. W2 is waste water with trace organics. The 
superstructure of treatment and recovery options for these 
four waste blends implicitly embeds a total of 160 different 
waste treatment policies. More details are discussed 
elsewhere (Chakraborty and Linninger, 2002a). 

 
Waste Forecast: The market and business forecasts 

lead to expected plant production data for the planning 
period. From production figures projected over typically 5 
years or so, one can infer the expected waste loads and 
compositions, called the waste forecast. Figure 3 visualizes 
the forecast for 4 waste blends over 5 years. The waste 
blend, W4, is associated with a manufacturing campaign 
whose product is expected to have a very high market 
demand in the near future. Therefore a high growth in 
business activities (and hence waste generation) is 
estimated for the same campaign.  
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Fig. 3. Waste Load Forecast obtained from 
Business and Market Forecasts 

Plant Model. The plant models of Figure 2 represent 
the available equipment inventory at two fictitious sites A 
and B. These sites are equipped with process units similar 
to the infrastructure available at real industrial plants.  

 
Regulatory Forecast: In this case study it is assumed 

initially that there are no limits on CO2 emissions. We want 
to study the possible impact of a future regulatory change 
that caps total CO2 emission of the site to 70 KTons per 
year. This new regulation of this fictitious scenario is 
assumed to take effect after three years.  

 
Results: The MILP of (1) – (8) was applied for both 

sites, A and B. Table 3 shows the different levels of CO2 
emissions of both these sites for the entire planning 
horizon. The regulatory change in the third year forces a 
swap in operating policy in both sites. For the flexible site 
A, the operating policy changes from π1 to π2 in year 3 and 
π3 in year 5, involving more recycle instead of waste 
incineration. Hence, policies π2 and π3 burn less wastes 
(thus emitting less CO2) as compared to π1. The capacity 
increment of the solvent recovery plant at site A is 
illustrated in Figure 4. Site A is flexible enough to change 
operating policies in order to meet the high growth in the 



   
 
waste loads and the future regulations without having to 
make any capital investments. 

Table 3. Annual CO2 emissions for Sites A and B. 

CO2 Emissions (KTons/Yr) Period 

Site A Site B 

0 106.66 (π1) 50.89(π4) 

1 120.04(π1) 58.53(π4) 

2 139.97(π1) 66.16(π4) 

3 62.52(π2) 20.32(π5) 

4 68.98(π2) 22.42(π5) 

5 24.53(π3) 24.53(π5) 

* π1 - π5 are different policies in the superstructure 

38 % available 
Capacity
(in year 5)

 8 % Usage
(Yr 0)

 Yr 3 
(+18.6 %)

 Yr 4 
(+3.7%) 

 Yr 5
(+29.7%)

 Yr 1 (+0.8%)
 Yr 2 (+1.2%)

 

Fig. 4. Increment in Solvent Recovery Capacity for 
Site A (Tot Capacity = 16500 KTon/Yr) 

Figure 5 plots the annual operating cost at different 
time period for site A. It also projects the operating 
costs if no change takes place in the environmental 
regulations. Without changes in regulation, policy 
π1 can handle all wastes with a small cost 
increment due to higher waste outputs. Limits on 
CO2 emission for that site require different 
operating policies, π2 and π3 associated with higher 
operating cost due to more expensive physical 
separations.  
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Fig. 5. Annual Operating Costs for Site A. 
Total Cost (20 yrs Economic Horizon): 81.04 M$ 

Site B (the bottleneck site) requires capital investment 
in order to sustain the future business demands and meet 
future regulatory constraints. Figure 6 plots the annual 

operating cost and the capital investments at different time 
period for site B. This site needs two additional separation 
columns (82 ft × 24 inches; 35 ft × 12 inches) in year 3 and 
4. There is a change in operating policy in year 3 due to 
environmental regulations.  

Figure 6 also displays the evolution of the annual cost 
for no limits on CO2 emission. In this case, the operating 
policy is maintained at π4 all throughout the planning 
horizon. This policy, π4, burns more wastes and therefore 
needs an extra incinerator (~ 30 MBtu/hr) in year 2 and a 
distillation column (35 ft × 12 inches) in year 4. 
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Fig. 6. Operating & Capital Cost for Site B. 
Total Cost (20 yrs Economic Horizon): 89.66 M$  

Conclusions 

In this paper, a novel multi-period decision making 
strategy is proposed by means of two industrial problems. 
Mixed integer optimization programs are deployed for 
finding long term plant wide operating policies and 
propose investment decisions for plant equipment. The 
effect of future regulatory changes on plant-operation has 
also been discussed. Using our computer-aided 
methodology, decision makers can examine a variety of 
different business and regulatory scenarios and arrive at 
plant-wide optimal strategies with little manual effort.  
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