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Abstract 

This paper discusses several theoretical developments related to financial risk management in the 
framework of two-stage stochastic programming for planning under uncertainty.  The well-known 
capacity planning problem is used to illustrate the concepts. A probabilistic definition of financial risk is 
used in the framework of two-stage stochastic programming and its relation to downside risk is analyzed. 
Thus,  new two-stage stochastic programming models that manage financial risk are presented. 
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Planning under uncertainty is a common class of 
problems found in process systems engineering.  Some 
examples are capacity expansion, scheduling, supply chain 
management, resource allocation, etc. The first studies on 
planning under uncertainty can be accredited to Dantzig 
(1955) and Beale (1955), who proposed the two-stage 
stochastic models with recourse. The industrial importance 
of planning under uncertainty has been discussed by 
Murphy et al. (1982), Eppen et al. (1989), Sahinidis et al. 
(1989), Berman and Ganz (1994), Lui and Sahinidis 
(1996) and Ahmed and Sahinidis (2000). Several 
approaches were proposed to formulate and solve this kind 
of problems (Charnes and Cooper, 1959; Bellman and 
Zadeh, 1970; Zimmermann, 1987, Ierapetritou and 
Pistikopoulos, 1994). A major limitation of all these 
approaches is that they do not consider the variability of 
the solutions explicitly. This shortcoming was first 
discussed by Eppen et al (1989), who proposed the use of 
downside risk to measure the cost variability. More 
recently, Ahmed and Sahinidis (1998) proposed to use the 
robust optimization framework, which had been introduced 
by Mulvey et al. (1995). They use the upper partial mean 
(UPM) as a measure of the variability of the recourse cost. 
However, the UPM may unnecessarily penalize favorable 

scenarios, resulting in non-optimal solutions that provide 
misleading information about the variability  (Error! 
Reference source not found.). 
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Figure 1. Expected Profit vs. Upper Partial Mean 
 
Consequently, solutions that are considered “robust” 

may exhibit high levels of financial risk due to the non-
optimality of the second-stage decisions. Other approaches 
to financial risk management were proposed by 



   
 
Ierapetritou and Pistikopoulos (1994); Cheng et al (2001); 
and Applequist et al. (2000).  

Financial Risk 

The financial risk associated with a planning project 
under uncertainty is defined as the probability of not 
meeting a certain target profit (maximization) or cost 
(minimization) level referred to as Ω. That is, the risk 
associated with a design x and a target profit Ω is therefore 
expressed by the following probability: 

( ) ( )Ω<=Ω )(, xProfitPxRisk  (1) 

where Profit(x) is the actual profit, i.e., the profit resulting 
after the uncertainty has been unveiled and a scenario 
realized. Since profit can be related to a summation over a 
set of independent scenarios, we have 

( ) ∑
∈

Ω=Ω
Ss

ss xzpxRisk ),(,   (2) 

where ),( Ωxzs  is a new binary variable that takes the value 
of 1, when Ω<)(xProfit s , and zero otherwise. Equation (2) 
constitutes a formal definition of financial risk for two-
stage stochastic problems. When profit has a continuous 
probability distribution, financial risk –defined as the 
probability of not meeting a target profit Ω– can be 
expressed as: 

∫
Ω

∞−

ξξ=Ω dxfxRisk ),(),(   (3) 

where ),( ξxf is the profit probability distribution function.   
The interpretation of this equation is given in Figure 2. 
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Figure 2. Probabilistic definition of risk 

Alternatively, in the discrete scenario case, financial 
risk is given by the cumulative frequency obtained from 
the profit histogram. Figure 3 depicts the cumulative 

probability curves for both the discrete and continuous 
cases.   
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Figure 3.  Cumulative  risk curves 

In this article, it is assumed that continuous probability 
density functions of uncertain parameters give rise to a  set 
of infinite number of scenarios, which in turn give rise to a 
continuous Profit PDF. Thus, the technique of scenario 
sampling is considered to converge to a continuous Profit 
PDF and consequently to a smooth risk curve.  

For a given design x, the cumulative risk curve shows 
the level of incurred financial risk at each profit. Handling 
the shape and position of the curve are the main interests of 
the decision maker. A risk-averse investor may want to 
have low risk for some conservative profit aspiration level, 
while a risk-taker decision maker would prefer to see lower 
risk at higher profit aspiration level, even if the risk at 
lower profit values increases. Figure 4 illustrates a 
hypothetical example with these two types of risk curves. 
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Figure 4. Different kinds of financial risk curves 

Barbaro and Bagajewicz (2002a) proved that no 
feasible design or plan can have a risk curve that lies 
entirely beneath the risk curve of the optimal solution that 



   

maximizes the expected profit. Consequently, both risk 
curves either cross at some point(s) or the latter lies 
entirely above the former. This behavior is depicted in 
Figure 5. 
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Figure 5. Possible risk curves 

Using the definition of risk given by Eq. (2) a multi-
objective model for risk management were developed. This 
model considers that the intention of the decision maker is 
to maximize the expected profit and at the same time 
minimize the financial risk at every profit level. 
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Two multi-parametric representations of this model 
are possible.  The first one includes a goal programming 
weight ρi≥0 in the objective function, which is then varied 
in order to obtain different solutions. The second one 
imposes a limit (upper bound) εi≥0 to financial risk in 
order to satisfy the decision maker’s criterion (Barbaro and 
Bagajewicz, 2002a,b). However, the inclusion of new 
integer variables represents a major computational 
limitation for large-scale problems. 

Downside Risk 

To tackle the mentioned computational difficulties, 
the concept of downside risk (Eppen et al., 1989) was 
examined. Downside risk is defined as the expected value 
of the positive deviation from the target, ( )Ωδ ,x : 

( ) ( )[ ]Ωδ=Ω ,E, xxDRisk   (5) 

where ( )Ωδ ,x  is continuous and equal to ( )xProfit−Ω  
when Ω<)(xProfits , and equal to zero otherwise. Thus, 

( ) ∑
∈

Ωδ=Ω
Ss

ss xpxDRisk ),(,   (6) 

In turn, the definition downside risk for continuous 
distributions is:  

( ) ∫
Ω

∞−
ξξ=Ω dxRiskxDRisk ),(,  (7) 

Therefore, downside risk is defined as the area under 
the cumulative risk curve from profits ξ=-∞ to ξ=Ω, as 
shown in Figure 6. 
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Figure 6. Different kinds of financial risk curves 

Notice that downside risk is defined as an expected 
value (in $), while financial risk is a probability. In 
addition, DRisk(x,Ω) does not require the use of binary 
variables in the second stage, reducing the computational 
burden.  Using DRisk(x,Ω) as a measure of Risk(x,Ω), a 
new model for risk management is presented (Barbaro and 
Bagajewicz, 2002a,b), where risk is addressed at various 
levels, as above, depending on the attitude towards risk of 
the decision makers.  

Thus, a full spectrum of solutions with different levels 
of risk exposure is generated, which is then presented to 
the decision maker, who makes the final choice. Barbaro 
and Bagajewicz (2002a,b) showed that this model is very 
effective for risk management purposes using a series of 



   
 
test capacity planning problems. Risk curves obtained for 
one of these problems are shown in the figure below. 
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Figure 7. Spectrum of solutions 
 
Barbaro and Bagajewicz (2002b) also studied the 

effect of inventory and option contracts on risk, showing 
that even when these risk-mitigating instruments are 
considered, the standard stochastic formulation with the 
maximization of the expected profit as single objective 
yields solutions that exhibit high risk exposure at low 
aspiration levels. It is only after risk is penalized using the 
models presented here that less risky solutions are 
obtained. 
 
Conclusions 

The cumulative risk curves were found to be very 
appropriate to visualize the risk behavior of different 
alternatives.  Furthermore, the concept of downside risk 
was examined, and a close relationship with financial risk 
was discovered. It is suggested that downside risk, limited 
at different aspiration levels, be used to present alternatives 
to decision makers. 
 
 
Nomenclature 
A:  Matrix of coefficients of first-stage constraints  
b:  Vector of independent terms of the first-stage 

constraints  
c:  Vector of first-stage cost coefficients 
hs:  Stochastic terms of the second-stage constraints 
ps:  Probability of occurrence of scenario s 
qs:  Vector of recourse function’s stochastic coefficients 
Ts: Technology matrix of the second-stage constraints 
Us: Upper bound of the profit under scenario s 
x:  First-stage decision variables.  x∈X. 
ys:  Second-stage decision variables for scenario s 
zsi:  Binary variable for financial risk definition  
δs: Profit positive deviation for scenario s 
µ:  Penalty weight for the expected profit in model SP-DR 
ξ:  Profit  
Ω:  Profit target 
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