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Abstract 

One of the greatest challenges facing life sciences companies is the ability to discover and develop new 
products, which will sustain their long-term economic growth. The problem is difficult because of 
intense competition, the availability of a large number of new product ideas and limited human and 
capital resources. The planning problem is exacerbated by the presence of significant uncertainties in 
development times, development costs, resource requirements and anticipated product sales. In addition, 
the presence of dependencies between products, both in the market place as well as in their development 
adds further complexity. In this paper, a discrete event simulation for the drug development process is 
combined with a Genetic Algorithm (GA) to select the best sequence of projects in the presence of 
uncertainties and dependencies. A graphical tool ,the risk-reward bubble plot is used to arrive at 
heuristics that prune the GA search. The GA then captures the optimal structure of the highest expected  
reward/risk sequences, despite an enormously large combinatorial search space. A risk-reward frontier, 
which illustrates the trade-offs between risks and expected rewards is presented as an output of the 
optimization exercise. For a nine drug example case study, the optimal portfolio is expected to give a 50 
% higher return than the portfolio suggested by the bubble diagram at the same level of risk. A sensitivity 
analysis demonstrates the robustness of the sequence to changes in the levels of uncertainties and 
dependency conditions. 
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Introduction 

New Product Development (NPD) in phamaceutical and 
biotechnology industries is associated with systematic (or 
non-diversifiable) risks due to significant product attrition 
rates (product failures at clinical trial stages) and 
development time, development cost and marketplace 
reward uncertainties (Blau et al, 2000, 2001, Pisano, 
1997). In the fortunate situation, where a large number of 
new drug candidates are available from internal discovery 
or in-licensing opportunities, the problem of selecting 
which drugs to develop and in what order, is a challenge 
because of finite human resources and capital constraints 
(Cooper, 1985, 1998). Effective portfolio management 
aims at: 

• Deciding the Number of Products to develop 
• Selecting the “best” projects for development 
• Arriving at a robust schedule, which ensures a 

high level of expected returns at a reasonable 
risk. 

Pharmaceutical New Product Development consists of the 
following main development activities: 

• First Human Dose (Pre-Clinical) Activities: This 
activity is aimed at assessing the effects of the 
drug on healthy human volunteers. Various 
phamaco-kinetic studies such as absorption, 
distribution and metobolism in the body, are 
carried out. 



 
 

 

• Clinical Trial Stages: There are 3 clinical trial 
stages, also called Phase 1, Phase 2 and Phase 3. 
The scale of these trials in terms of the number of 
tests increases from Phase 1 to Phase 3.  

• Launch and Product Supply Chain Activities: It 
takes about 7-13 years for a compound to be 
successfully launched. Once, the FDA approval is 
granted, there are 3 stages of ramp-Up sales, 
which are followed by mature sales, until the end 
of the patent horizon. 

 
These development stages are also associated with 

activities such as process design, construction of pilot as 
well as large-scale plants (in parallel with phase 3 
activities).  
 

The Discrete Event Simulator (DES) 

A model of the above probabilistic network was 
simulated using a discrete event simulation engine, CSIM 
18 (Mesquite Software). Every activity is associated with 
probability distributions for duration, costs and rewards. 
For the present case study, all the distributions were 
assumed to be triangular. A portfolio of 9 drugs was used 
to demonstrate the utlity of the GA-DES framework. Due 
to the complex uncertainties and comparatively large input 
variances, 10,000 Monte Carlo trials were used for each 
portfolio of drugs. Each trial is a simulated walk of the 
potential product along the probabilistic network. The 
sequence in which projects are developed remains the 
same for all Monte Carlo replicates of a given simulation.  
The output of the simulation is a Net Present Value (NPV) 
distribution. The Expected Return (i.e. rewards) for the 
sequence is approximated by the mean of positive values 

under the NPV probability distribution, while the risk is 
defined as the Probability of Losing Money.  

Drug Dependency Considerations 

A dependency between two or more drug molecules is 
manifested by way of effects on anticipated sales, 
development costs, durations and success probabilities of a 
drug due to events such as launch, failure associated with 
other drugs. For instance, when two drugs targeting  the 
same disease are launched, the sales of each are lower than 
the sales, if only one of them was launched. This 

dependency is called  sales dependency. Technical 
dependency involves changes in the success probabilities 
associated with sequential development of drugs from the 
same families of chemistries. Resource dependencies 
involve reduction in capital requirement when more than 
one drug can be made by the same manufacturing process, 
so that multi-product facilities can be used. All these 
dependencies, have been incorporated into the DES model, 
in order to reflect the variations that charateterize a real 
new product development process. 

Bubble Plot (BP) Heuristics 

An optimum portfolio must not only contain optimum 
number of drugs (too many drugs lead to significant 
queuing for limited resources, while too few projects lead 
to less than optimal capacity utilization), but also, a 
development sequence that ensures high rewards and low 
risk. A graphical tool, called as a bubble plot serves as an 
aid in determining the sequence. It plots the return/risk 
ratio against the probability of success. The size of the 
bubble indicates the capital requirements, while the color 
indicates the disease type. Intuitively, small bubbles with 
high reward/risk and high technical success probabilities 
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Figure 1. Flow Diagram of  steps involved in 
development and commercialization of a new drug 



   

are preferred. From the bubble plot in Figure 2, it is easy to 
see that for the 9-drug portfolio, a preferred development 
sequence is (5,9,3,7,1,4,8,2,6). Several other sequences 
(scheduling drugs by trading-off risk and reward e.g. two 
5-drug sequences could have been (8,5,4,9,1) or 
(5,8,9,4,1)) were inferred from the BP. Since, the 
simulation of each of these sequences established a high 
reward/risk ratio, the BP was used to generate portfolios of 

drugs for the starting population of the Genetic algorithm. 
It was observed that a GA initiated by a majority of high 
reward/risk portfolios leads to faster convergence. The 
algorithm is discussed in the next section. 

The Genetic Algorithm (GA) Search 

The large combinatorial decision space can be 
illustrated by the fact that the total number of possible 
portfolios equal 9!+8!+7!+….+1!. For instance, a 9-Drug 
sequence can have as many as 9! different development 
sequences. Evolutionary search strategies such as GA’s 
(Holland, 1975, Goldberg, 1989) allow robustness with 
respect to the problem definition. A rank ordering of 
projects serves as the encoding for the GA. Two-Point 
crossover operators such as, Order Crossover (OX), 
Position-based Crossover (PBX) and mutation operators, 
such as Insertion Mutation (IM) and Swap Mutation (SM) 
were applied as part of the search procedure (Gen, 1997). 
A crossover probability of 0.8-0.86 and mutation 
probability of 0.08-0.1 were found to yield considerably 
fast convergence to the desired optimal solution. The 
Genetic Algorithm procedure first evaluates all members 
of the population. (for the present case study, population 
size =10). Each member sequence is evaluated by calling 
the discrete event simulation (10,000 
replications/simulation). A statistical procedure called 
Remainder Stochastic Sampling (RSS) is used to select the 
members with the highest normalized fitness. The fitness 
of a member is correlated with a weigted risk-return 
criteria given by: 
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The weight α=0.8 was used for the present case study. RSS 
allows the member sequences with the highest normalized 
fitness to be represented most strongly in the intermediate 
population. The intermediate population is subjected to the 
two-point crossover and mutation operators. A new 
population of sequences is created and the procedure is 
repeated until the search space has been explored to the 
desired level. For the current portfolio study, two sets of 
GA’s were run in order to partition the search space: a GA 
for 8,9-drug sequences and a GA for 5,6,7-drug sequences. 
The GA’s were run on 1000 MHz, 256 MB RAM, Intel 
Pentium Processors. Each  GA required about 50 
generations and consumed a CPU time of ~28 hours.  

Computational Results and Analysis 

Figure 3 shows the risk-reward plane consisting of 
1000 data points, obtained from the two GA runs of 50 
generations each. The figure also shows the risk-reward 
frontier. A point on this frontier represents the maximum 
expected returns for a given level of risk. It is remarkable 
to note that the frontier is U-shaped as against the purely 
increasing frontier of Markowitz’s (Markowitz, 1991) 
mean-variance model frontier. However, the frontier seems 
to be less than intuitive. Further, the same trends are 
observed for the individual GA runs (50 generations) also. 
The Markowitz trend is observed until the point that 
represents an optimal sequence. For this part of the curve, 
as the risk increases, the capacity utilization increases, 
yielding higher returns. A plateau region indicates that 
sequences (5,9,8,3,1), (5,8,9,4,2,3) and (8,5,9,6,3,2) yield 
almost identical returns at widely differing risk levels. The 
reason for this is as follows: A 5-drug sequence leads to a 
substantially high capacity utilization. Hence, the lead time 
for a sixth drug is so large that in a majority of  
replications, the sixth drug is not launched within the 20 
year planning horizon. Beyond, the plateau region, the 
returns reduce drastically as the risk increases. In this 
region drugs with low reward/risk ratio are prioritized. It is 
important to note that for all three optimal sequences, 
determined by the GA, the highest reward/risk drugs 5,8 
and 9 were developed first. Inclusion of a low reward/risk 
drug such as drug 2 increases the risk. The optimal 5-drug 
sequence (5,9,8,3,1) yields an expected return that is ~50 
% higher than the sequence determined from the bubble 
plot. This exercise proves that in the presence of resource 
constraints, a high reward/risk prioritized portfolio yields 
significantly higher returns, even if the work-in-progress 
(or portfolio size) is small. The effect of dependencies is 
manisfested by the fact that the optimal sequence contains 
drugs 5,8 and 9, which target the same disease, thereby 
reducing capital costs and increasing success probabilities.  
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Figure 2. Bubble Plot for 9 New Drug Candidates 



 
 

 

Conclusion 

Pharmaceutical New Product Portfolio Management is 
a complex inter-play of achieving an optimal level of 
capacity utilization, risk diversification and economic 
returns. This is accomplished by controlling the portfolio 
size and schedule, by way of assigning an optimal 
development sequence. The complexities of decision-
making in the presence of development uncertainties and 
dependencies have been addressed in this paper and a 
Genetic Algorithm based framwork that incorporates these 
features is presented. From the 9-drug case study runs, it 

has been proved that the GA is able to capture the optimal 
structure of the sub-sequences that lead to solutions, whose 
performance measures far exceed those of the best 
heuristically generated sequences. In addition, a graphical 
tool, the bubble plot, has been shown to prune the GA 
search, thereby reducing time to convergence. Future work 
in this area includes development of simulation and 
optimization models to incorporate a continuous product-
insertion portfolio. 
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600

800
1000

1200
1400

1600
1800

2000

2200
2400

2600

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Probability of Losing Money

Ex
pe

ct
ed

 P
os

iti
ve

 R
et

ur
n

(5,9,8,3,1) (5,8,9,4,2,3)
(8,5,9,6,3,2

 
 Figure 3. Risk-Return Frontier  

References 
Blau, G.E., Mehta, B., Bose, S., Pekny, J.F., Sinclair G., 

Kuenker, K. and Bunch, P. (2000). Risk Management 
in the Development of New Products in Highly 
Regulated Industries. Computers and Chemical 
Engineering, 24, 659-664. 

Blau, G.E. and Sinclair, G. (2001). Dealing with Uncertainty in 
New Product Development. Chemical Engineering 
Progress, 21, 2. 

Cooper, R.G., Edgett, S.J., Kleinschmidt, E.J. (1998). Best 
Practices for Managing R&D Portfolios. Research 
Technology Management, July-August, 20-33. 

Cooper, R.G. (1985). Selecting Winning New Product Projects: 
Using the NewProd System. Journal of Product 
Innovation Management, 2, 34-44. 

 
 

 
 
Holland, J.H. (1975). Adaptation in Natural and Artificial 

Systems, University of  Michigan Press, Ann Arbor. 
Goldberg, D.E. (1989). Genetic Algorithms in search,               

optimization  and machine learning,  Wiley,    New 
York, NY.   

Gen, M. and Cheng, R. (1997). Genetic Algorithms and 
Engineering Design, Wiley, New York. 

CSIM 18 Simulation Engine (C++ Version, 2000), User’s Guide, 
Mesquite Software, Inc., http://www.mesquite.com. 

Markowitz, H.M., (1991). Portfolio Selection, 2nd Edition, 
Blackwell Publishers. 

Pisano, G.P. (1997). The Development Factory: Unlocking the 
Potential of Process Innovation, Harvard Business 
School Press. 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 249
	02: 250
	header2: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	header3: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	03: 251
	header4: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	04: 252


