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Abstract

World wide crude transportation is the central logistics operation that links the upstream and
downstream functions and plays a crucial role in the global supply chain management in the oil
industry. In this work, we develop a decision support system to investigate and improve the combined
inventory and transportation system in a representative world-wide crude supply problem. The decision
support system is based on the integration of discrete event simulation and stochastic optimal control of
the inventory/transportation system. A unifying simulation framework that integrates the simulation
model and controller is constructed to simulate the controlled inventory/transportation system. It
provides the decision makers valuable insights into the behavior of the dynamic and stochastic system
and also a powerful tool to evaluate strategies and policies for the design and operation of the system.
We formulate the optimal design/control problem rigorously as a Markov decision process that
incorporates such uncertainties as travel time and crude demand. Due to the overwhelming
computational requirements of the rigorous methods, approximate methods based on dynamic
programming principles are needed to determine the near-optimal control policies that minimize the
expected total cost. We propose an approximation architecture that involves two stages: decomposition
of the system into individual subsystems and use of parametric function approximators for the cost-to-
go functions. We also provide future directions on computationally practical approaches to solve large
scale industrial problems.
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Introduction
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Crude transportation is regarded as transporting crude oil
from producing fields to the facilities where it is
processed. It is the central operation between the

"upstream" and "downstream" functions of the oil
industry. There are several methods that are used to
transport crude oil: pipeline, tank trucks, railroad tank



cars, barges and tankers. The determination as to which
method is to be used depends on such factors as distance,
crude type, cost and availability of suitable alternatives.
For example, pipelines are very economical and can be
used to cover long distances, but are limited as to route
and destination. Tankers are used to carry large volumes
of crude oil across international waters to link exporting
and importing nations. As we are concerned with the
crude transportation within the worldwide range, we
consider tankers and pipeline as the major transportation
methods, which provide lower cost transportation of large
volumes over long distances either across the oceans or on
the land.

A typical large oil company operates many tens of
refineries in the world, which process several million
barrels of crude oil every day. Crude is delivered from the
production locations to the consumption locations mostly
by a fleet of tankers, pipeline transportation or a
combination of them. Figure 1 shows the major routes for
tanker crude oil transportation in the world. Typical total
unitary crude transportation cost is in the range of  $1.50
~ 3.00 per barrel of crude. Therefore the total yearly
world-wide crude transportation cost in a large oil
company can be as much as several billion dollars.
Despite of the enormous complexity and cost involved, the
whole transportation system is mostly managed manually
without much assistance of systematic tools. It is our
incentive to study and understand the transportation
system and improve the system performance through
systematical approaches.

Figure 1. The world-wide major tanker
transportation routes

The system we are concerned with is a dynamic
stochastic system that consists of a transportation system
(tankers, pipeline) and inventory storages at different
locations. We recognize two crucial characteristics of the
combined inventory and transportation system, "dynamic"
as the state of the system changes over time, and
"stochastic" as there involves uncertainties in some
elements in the system, such as crude prices and demand,
and tanker travel time. The decisions involved in
managing the system include the sizing and composition
of a tanker fleet, and the investment decisions as well as

operation decisions on dynamical dispatch and routing of
tankers.

Literature Review
The control of transportation systems has been the

focus of much research in the past. A comprehensive
report on the survey of vehicle routing, scheduling and
combined routing and scheduling problems is provided by
Bodin et. al. (1981). There are also many online resources
for vehicle routing research, for example, a rich list of
references on vehicle routing can be found at
http://www.imm.dtu.dk/or/vrp_ref/vrp.html.

An increasing amount of attention has been paid to
the combined inventory and vehicle routing problems,
which addresses the coordination of inventory and
transportation management. A comprehensive review on
this subject is provided by Federgruen and Simchilevy
(1995). In the context of this class of problems, a central
decision maker is responsible for replenishing inventory
at the different demand locations by managing a fleet of
vehicles that make the deliveries. The decision maker
monitors the inventory levels at the demand locations and
relocates existing vehicles dynamically. The questions of
interest in the operation of vehicles include "When to
deliver?", "How much to deliver?" and "Which routes to
use?"

In the operations research and management science
literatures, this type of problem is called "inventory
routing problem" (IRP), which is one of the core problems
that have to be solved when implementing the emerging
business practice called "vendor managed inventory
replenishment" (VMI) (Kleywegt et al., 2000). The
inventory routing problem (IRP) addresses the
coordination of inventory control and vehicle routing. IRP
differs from conventional inventory control problem in
terms that the orders will not be available immediately
after they are placed because of the delay in
transportation. On the other hand, IRP is more general
than classical vehicle routing problem since it
incorporates inventory buffers to hedge against the
uncertainties in prices, demand and transportation. Van
Roy et al. (1997) present a model of two-echelon retailer
inventory system that evolves in discrete time. They
formulate the problem into the framework of dynamic
programming and develop approximate algorithms to
generate near optimal control strategies. The near optimal
control strategies are substantially superior to the
heuristics, reducing inventory costs by approximately ten
percent.

Although combined inventory control and vehicle
routing problems have been extensively investigated in
literature, we are not aware of any previous work that has
systematically addressed design and control of the
inventory/transportation system in a global crude supply
chain in the oil industry. We propose a decision support
system based on simulation and optimization in this work
to meet this need. This research work also intends to



integrate investment decisions on sizing and composition
of the vehicle fleet with operating decisions on utilization
of the fleet. The capacity of a transportation system is
directly related to the number of available vehicles.
Determining the optimal number of vehicles for a
particular system requires a tradeoff between the
ownership or renting costs of the vehicles and the
potential costs or penalties associated with not meeting
some demands. Beaujon and Turnquist (1991) formulate
an optimization model that includes the interaction
between fleet size and vehicle allocation, as well as the
dynamic and uncertain elements of the problem. The
expected value formulation is approximated as a
nonlinear network programming problem that is solved
using the Frank-Wolfe algorithm.    

Problem Description

In the current context of this paper, we consider only
one large supply location, which provides several million
barrels of crude supply on average each day. We also
assume only four major demand regions around the world,
Unites States, Europe, Singapore and Japan, each
consuming from 0.3 to 1.0 million barrels of crude on
average each day. The company manages a fleet of
tankers that consists of owned, chartered and spot tankers
to deliver crude oil from supply location to consumption
locations, as shown in Figure 2. There are one or more
routes from the supply location to different demand
locations. For instance, in order to transport crude from
the Arabian Gulf to Europe, we can have tankers voyage
around South Africa to Europe. As an alternative, tankers
can travel through the Suez Canal and the Mediterranean
to Europe. Or, we can unload crude from tankers to a
pipeline in North Africa and load crude at the other end of
the pipeline in the Mediterranean, from which tankers
will deliver the crude to Europe. There is a substantial
amount of uncertainty involved in the combined
transportation and inventory system, such as the crude
price, demand, supply availability, tanker travel time,
pipeline availability, etc. In this paper we will only
consider the uncertainty in crude demand and tanker
travel time and can always generalize the results to
situations with other kinds of uncertainty.

Figure 2. The inventory/transportation system in the
global crude supply problem

Methodologies
This section will first provide definitions of some

fundamental concepts in the methodologies discrete event
simulation and stochastic optimal control. Based on that
we will construct a decision support system to assist
decision makers to study and improve the combined
inventory and transportation system.

Discrete Event Simulation

"Simulation is the process of designing a model of a
real system and conducting experiments with this model
for the purpose either of understanding the behavior of the
system or of evaluating various strategies (within the
limits imposed by a criterion or set of criteria) for the
operation of the system". (Shannon, 1975) In a discrete
event simulation model, the state of the system can only
change at a discrete set of points in time.

Figure 3 shows an example of a queuing system,
which is a fundamental component in a discrete event
simulation model. If a tanker arrives and finds a dock is
available, it will be processed by the personal at the
harbor immediately; otherwise, it will wait in a first-in
first-out (FIFO) queue until a dock is available.

A simulation model of the queuing system can be
represented by combining a flowchart of processes which
entities (tankers) undergo with the data required to
characterize the system. Figure 3 also shows the process
flowchart of the queuing system. An Entity that represents
a tanker is created by the CREATE module and enters the
system at the appropriate intervals. It first comes to the
SEIZE module, seizing the resource (dock) it requires to
proceed if a dock is available, or waiting in the queue if
all docks are busy at that time. After seizing the resource,
the entity will undergo a delay of a process time sampled
from a predefined probability distribution. When it returns
to the system after the delay occurs, it will release the
resource it occupies (changing the state of the resource to
idle), and leave the system through the DISPOSE module.

Figure 3. Logic structure and process
flowchart of a queuing system

In our simulation study, we formulate a simulation
model that describes the complexity of the real system,
e.g., the dynamics and randomness in the system. We
need to verify the model so that the computer simulation
represents the conceptual model faithfully and validate the
model so that the behavior of the simulation model
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corresponds to a real system. Based on the verified and
validated simulation model, we can design and run
different experiments with the model to gain some insight
into the behavior of the system and evaluate different
strategies for operation of the system. For example, we
can change the size or composition of the tanker fleet to
assess the response of the system to those changes, or we
can specify different control policies to evaluate
performance of the system in different conditions. The
simulator helps analyzing “what if ...”  scenarios. We
implemented our discrete event simulation model in
Arena®, which is a commercial discrete event simulation
modeling and analysis package developed by Rockwell
Software (Kelton et al., 2001).

Stochastic Optimal Control

Stochastic optimal control is concerned with
situations where decisions are made sequentially under
uncertainties. At a specified point in time, a decision
maker or controller observes the state of the system. Based
on this state, the decision maker chooses a control action.
The action choice produces two results: the decision
maker receives an immediate reward or incurs an
immediate cost, and the system evolves to a new state at a
subsequent point in time according to an underlying
probability distribution determined by the action choice.
Stochastic control problems are also often referred to as
stochastic dynamic programming problems (Bertsekas,
1995) or a kind of Markov decision processes (Puterman,
1994).

Figure 4. Information flow in optimal control

Figure 4 shows the information flow in the iterative
decision process. At the beginning of time period t , the

decision maker observes the state of the system ts , which

is comprised of such information as the inventory levels at
different consumption locations, tanker positions, etc. The

decision maker then applies the control ( )tt sµ  with the

knowledge of the current state ts . tµ  is a control policy

corresponding to a mapping of state ts  to control tu , i.e.,

( )ttt su µ= . The control actions in this problem include

design of size and composition of tanker fleet through
renting and returning, and manipulation of tankers
through dispatch and routing. A typical example of a
control policy would be the so called s-type policy (i.e.,
"order-up-to" policy) that is to order inventory at each
time period such that all inventory at, and expected to
arrive a, the demand location is equal to the order-up-to

level. After control action tu  is implemented, the system

transits to a new state 1+ts  according to a transition

probability ( )tupij , , where

( ) =tupij , { }uuisjsP ttt ===+ ,|1 , or according to

a system equation ( )ttttt usfs ω,,1 =+  where tω  is a

disturbance that reflects the randomness in the system.
As a result of choosing and implementing a sequence

of policies ( )Nµµµπ ,,, 21
�= , the decision maker

incurs a sequence of costs ( )Nggg ,,, 21
� , where tg

is the cost at time period t  as a function of state ts ,

control tu  and realization of disturbance tω  at time

period t , i.e., ( )ttttt usgg ω,,= . The optimal control

problem is then to find a sequence of control policies such
that the expected total cost,

( ) ( )� �
�

�� �
+

� −

=

1

1

,,
N

t
NNtttt sgusgE ω , is minimized.

Dynamic programming (DP) offers a very general
framework for stochastic control problems (Bertsekas,
1995). The foundation of dynamic programming is the
"principle of optimality" that was stated by Bellman
(1957) as "An optimal policy has the property that
whatever the initial state and initial decision are, the
remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision."
Based on this principle of optimality, the original multi-
period problem can be decomposed into a sequence of
single-period problems. At each time period, having

observed the state of the system ts , in order to compare

the available control decisions tu , we have to consider

not only the one-period cost tg  but also the consequence

of the decision, i.e., how desirable the next state 1+ts  is.

We thus need to rank state 1+ts  by using the optimal cost

over all remaining periods starting from state 1+ts , which

is denoted by )( 11 ++ tt sJ  and is called "cost-to-go"

function. The cost-to-go functions can be shown to satisfy
the Bellman's equations

( )
( )

( ){ }tttttsUutt ussJgEsJ
tt

,|min 11 ++∈
+=    

(1)

tstu

tω

Control State

tµ - Control policy

Uncertainty

System

( )ttttt usfs ω,,1 =+

Controller

( )ttt su µ=



where { }tt usE ,|⋅  denotes the expected value with

respect to tω , given ts and tu .

The Bellman's equations are solved recursively
backward in time and an optimal policy for the entire
problem is constructed.

( )
( )

( ){ }tttttsUutt ussJgEs
tt

,|minarg 11 ++∈
+=µ

(2)

Dynamic programming offers a suite of algorithms
for generating optimal control policies. However, because
each optimization has to be carried out for each possible
state in the state space and most practical problems
involves a large state space, the overwhelming
computational requirement associated with these
algorithms render them inapplicable in practical
situations. This dilemma, called by Bellman the "curse of
dimensionality", suggests the need for approximating
solutions generated by dynamic programming in a
computationally feasible manner.

The recent emergence of neuro-dynamic
programming (NDP) puts forth an exciting new
possibility. The main idea of neuro-dynamic
programming is to approximate the cost function

( )11 ++ tt sJ  using an approximation architecture, e.g., a

neural network or a parametric function. (Bertsekas and
Tsitsiklis, 1996). Tsitsiklis and Van Roy (1996) develop a
methodological framework and present a few different
ways in which dynamic programming and compact

Figure 5. A feature-based approximation
architecture

representations can be combined to solve large-scale
stochastic control problems. They design an
approximation architecture involving two stages: a feature
extractor and a function approximator (see Figure 5). The

feature extractor uses the state ts  to compute a feature

vector tz . The components of tz  are values that capture

key information concerning states of the system. The
feature vector is used as input to the second stage, which
involves a generic function approximation parameterized
by a vector θ . The function approximators commonly
employed in research are a linear combination of basis

functions and multilayer perception neural network (Van
Roy et. al., 1997).

Decision Support System

Based on the simulation and control of the combined
inventory and transportation system, a decision support
system is developed to assist decision makers
investigating the behavior of the system, evaluate
decisions on the
design and control of the system and improve the system
performance through systematic approaches.

Given the understanding about and the investigation
into the system, a simulation model is formulated to
represent the behavior of the real system faithfully. The
decision makers then can analyze the performance of the
system in different conditions and obtain insight into the
characteristics of the system. Therefore, before actually
implementing any design or control decisions, e.g.,
chartering more tankers, the decision makers can evaluate
or predict the influence of the decisions on the system
performance. Decision makers can also evaluate different
control policies and select appropriate plausible policies to
implement on the real system. For example, a typical
heuristic control police is the so called “order-up-to”
policy as illustrated earlier. On the other hand, an optimal
control problem can be formulated and solved to find the
optimal or near-optimal control policy more
systematically and efficiently. Decision makers can use
the optimization solutions as a reference and improve the
performance of the inventory/transportation system by
making more informed decisions.

The real system in practice involves enormous
complexity and uncertainty, and it is obviously also
changing over time. It is critical to keep updating and
validating the simulation model and the optimization
model as the real system evolves. As the decision makers
interact with and learn from the system, more insightful
understanding and accurate information can be obtained
to improve modeling of the system, which in return
improves the system performance by assisting decision
makers make better decisions.

Discrete Event Simulation

In this section, we are going to discuss the discrete
event simulation of the controlled inventory/transportation
system. A framework to integrate the simulation model,
controller and simulation input/output will be presented.
Then we will provide some details about the simulation
model and controller design. Finally, results of the
simulation including graphic animation and simulation
reports and examples of analyzing statistical results will
be demonstrated.

Feature
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Feature

Vector tz
State
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Parameter

Vector tθ
Cost-to-go
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An Integrated Framework

To provide the decision maker with a decision
support system based on simulation, we developed a self-
contained framework that integrates the simulation model
and controller such that the decision maker is able to
manipulate the system model through the controller. The
simulation architecture also consists of a simple interface
so that users can specify initial conditions and parameters
and obtain results during the simulation or at the end of
the simulation.

As shown in Figure 6, the simulation model that
represents the behavior of the real
inventory/transportation system is constructed in Arena,
together with ad-hoc and built-in Visual Basic for
Application (VBA) modules.

Figure 6. The framework for simulation

 Through the VBA modules, the controller, which is
implemented in a Visual Basic code, can access the state
variables in the simulation model during the course of
simulation run and can manipulate the simulation by
changing control variables and entity attributes, sending
signals, etc. Another functionality of the VB based
controller is that it can automate other desktop
applications such as Microsoft® Excel. Therefore, we can
automatically create a user input/output (I/O) interface
through Excel inside the Arena environment. For
example, at the beginning of the simulation run, users can
specify the input to the simulation such as parameter
value and initial conditions via Excel. When the
simulation starts, the real time state of the system can be
displayed through Excel and updated as the simulation
proceeds. At the end of each replication, the cost
information and system statistics collected and calculated
by the controller can be stored in an Excel file. Therefore,

an statistical analysis can be conducted at the end of the
simulation after all replications are completed.

 Simulation Model

We define the simulation model for the inventory and
transportation system using a process approach, laying out
the sequence of activities required to move the entities
through the system, supplying the data required to support
entity actions, etc. Figure 7 presents the process flowchart
of the simulation model in Arena®. The simulation model
is comprised of modules, which are the system and data
objects that define the process to be simulated. All the
information required to simulate a process is stored in
modules (Kelton et al., 1998). System modules are placed
in the modeling window and connected to form a
flowchart, describing the logic of the process. For
example, the CREATE module represents entities
entering the system and can be used to model the
generation of new tankers or arrivals of crude supply,
etc.  Data modules are presented and edited via a
spreadsheet interface. For example, the VARIABLE
module defines a list of variables with their dimensions
and initial values that can be used globally throughout
the system.

Arena supports hierarchical modeling, which is
possible because of the ability to formally separate Arena
models into hierarchical views, called submodels. Each
submodel has its own full workspace for defining entity
flow and displaying graphical animation. Submodels can
contain any object supported in a model window (logic,
static graphics, or animation). An example of a
submodel in our simulation model is the submodel that
represents the harbor at a consumption location. Instead
of detailing the activities of tankers at a harbor, e.g.,
docking and unloading, we can aggregate all modules
associated with those activities into a submodel. The use
of submodels in the model not only increases the amount

of available workspace, but also allows modelers the
ability to better organize the model.
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Controller Design

In order to simulate the inventory/transportation
system that is monitored and controlled by a controller,
we need to integrate the simulation model with the
controller. The controller should be able to access the
state information and manipulate variables or perform
actions anytime during the simulation run. This is made
possible through ActiveX automation, which allows
applications to control each other and themselves via a
programming interface.
 The controller and related components, such as the
"recorders" that keep track of position of each tanker, and
"accountants" that calculate cost information and collect
system statistics, are all implemented in a Visual Basic for
Application (VBA) project. They are two major sources of
events hosted by VBA project within Arena: the VBA

Table 1. Firing events in the VBA object

Firing
Event

Occurrence Actions

Control
Entity

Every time
period

�  Access state info
�  Determine control
�  Implement control
�  Collect statistics

Tanker
Entity

Arrival of
tanker

�  Record the tanker
positions

ThisDocum
ent Event

Beginning/
end of
simulation
or each
replication

�  Initialize simulation
�  Input parameters from
Excel

�  Output results to Excel

module defined in process flowchart, and
"ThisDocument" object that has a collection of standard
events containing VBA code, e.g., the event fired when a
simulation starts. When an event is fired in Arena (for
example, an entity enters the VBA module), the
corresponding VBA code in the Visual Basic project will
be executed. Table 1 presents different events that trigger
the VBA project and corresponding actions performed by
the VBA project:

(1) Design of the tanker fleet
Design decisions have to be made on sizing and

composition of the tanker fleet. This is realized by
dynamically renting and returning tanker to/from harbors
at different locations. A CREATE module is built to
create new tankers at the beginning of each day when
needed according to the control policy. Then the next
VBA module will call the method of Arena object
"EntityInsertIntoQueue" or "EntitySendToStation" to
allocate the tanker to a tanker pool at a harbor or a
specific position on a route. The design decisions are
made on a daily basis to determine the number and type of

tankers to rent or return, as well as where to rent or
return.

(2) Operation of the tanker fleet
Operating decisions include dispatch and routing of

available tankers in tanker pools, which is represented by
HOLD modules. The tankers will be held in the pools
until a dispatch signal, indicating the number and type of
tankers to be released, is sent by the controller at the
beginning of each day. The controller also changes the
attribute "route" of the tankers to be dispatched according
to the control policy. As the tankers come to a route
"switch", modeled by a DECIDE module, they will be
assigned to different routes according to their attribute
"route".

Simulation Output

After building the simulation model and the
controller, and specifying the system parameters and
control policy, we can run the simulation and view the
results. There are three types of results that we are
interested in: graphical animation, real-time state-space
report and summary report.
(1) Graphical animation

Animation provides a mean of viewing the entities
flow throughout the system. As shown in Figure 8, which
is a snapshot of the animation when the simulation is
running, the modeler is able to see tankers traveling en
route and gathering at pools according to a control policy
predefined. The animation can also visualize the flow of
other entities such as crude that is either stored in the
tanks or moving in the pipeline, and the orders for crude
waiting in a queue which indicates a demand shortage.
Besides entity flows, Arena is also capable of visualizing
some system information, e.g., the simulation date/time,
the system variables such as inventory levels, size of pools
and demand shortage.

Figure 8. Animation of the inventory and
transportation system

(2) Real-time state-space report
Animation provides only limited capability to report

the state-space information dynamically. In order to have
a more detailed and flexible report on the real-time system
state, we utilize ActiveX automation to create an Excel
spreadsheet and display the real-time state information via



the spreadsheet. At the beginning of the simulation run, a
new Excel object is created and a spreadsheet is opened.
The VBA code representing the "controller" is triggered
by a control entity at the beginning of every day. It
accesses the current state of the system, updates the state
variables and writes them into the spreadsheet. Therefore,
users can view the real time state information of the
system which is updated dynamically via the spreadsheet.
An instance is shown in Figure 9, where the spreadsheet
at the right upper corner displays state information
including inventory levels, demand shortages, tanker
positions (at pools or en route) and crude parcels in the
pipeline.

(3)  Summary report
During the simulation run, the VBA code in the

"controller" calculates the cost information and collects
system statistics such as utilization of the different types
of tanker. This information reflects the system
performance measure of interest, which is stored in
another Excel spreadsheet at the end of each replication.
The spreadsheet

Figure 9. Real time state-space information
and summary output in Excel spreadsheet

on the left in Figure 9 gives an example of the summary
report, which stores the cost information including total
cost, cost per route, cost per type of tanker and cost per
barrel of crude, and system statistics including tanker
utilization.

Statistical Analysis

After setting up experiments and running thousands
of replications, we can collect a significant amount of
information about the system behavior and performance
measure in a particular condition. As discussed in a
previous section, at the end of the simulation, a summary
report will present the performance measure or system
statistics, e.g., total cost and tanker utilization of each
replication. The replications represent the scenarios that
could physically happen in reality, by using independent
sampled random numbers. Therefore, the performance
measure and system statistics of all replications

reasonably represent the possible performance and
behavior of the system given a certain condition. From the
performance measures in the summary report, we can use
statistics to analyze and interpret the simulation results,
which is one of the objectives of the simulation study. The
chart at the right lower corner in Figure 9 shows the
histogram of the distribution of the total cost.

Consider a situation where the decision makers are
deliberating on how to design the tanker fleet to meet the
demand. One of the questions that they have to answer is
"How many spot tankers shall we hire?" The answer to
this question involves a trade off between the costs of
renting and maintaining the tankers, and the potential
costs of penalties for not satisfying the demands. It is
impossible to
find quantitative answers to such questions by simply
using intuition, as the nature of the system is too complex
to predict its behavior through intuition. Simulation
provides a valuable tool to help decision makers evaluate
the alternative decisions, e.g. “what if ...”  For example,
the decision makers could consider three alternatives for
sizing the tanker fleet, renting 0, 10 or 20 more spot
tankers, given that there are already 40 owned tankers, 60
chartered
tankers and 14 spot tankers in the current fleet. We input
the different decisions into the simulation model and run
three different experiments for a length of 90 days, each
with the same initial conditions, control policy and
replication number. After running a specified number of
replications, the distributions of the performance
measures can be plotted and other statistical measures,
such as the estimate of expected value and confidence
intervals can be estimated from the samples. Table 2
compares the expected value of the total cost (in
thousands of dollars), demand shortage penalty and tanker
utilization in three different conditions.

Table 2. Comparison of decision alternatives

Number
of

tankers

Total cost Shortage
penalty

Ship
Utilizatio

n

1 0 784656.50 122665 59%

2 10 775240.81 8603 60%

3 20 841588.52 8578 52%

From the performance measure comparison we can
see that as we have more tankers in the fleet, or the
capacity of the tanker fleet is higher, the penalty for not
meeting demand decreases. However, on the other hand,
the cost for renting and operating tanker increases and the
utilization of spot tankers decreases as tankers are idle
more frequently. The slight increase of tanker utilization
in alternative 2 is because of more usage of spot tankers at
the pipeline exit. Tankers maintained at the pipeline exit



are idle most of time in alternative 1 due to the shortage
of tankers to deliver crude to the pipeline. For this case, a
proper decision on the capacity of the fleet would be the
one that balances those factors appropriately. Therefore,
the second alternative performs better than the other two
in terms of the expected total cost.

Stochastic Optimal Control

This section is concerned with the formulation and
solution of the optimal control problem for the

inventory/transportation system. We develop a rigorous
formulation of the optimal control problem as a Markov
decision process. Due to the large state-space in the
problem, the rigorous methods of dynamic programming
are too computationally intensive for practical
implementation. We propose an approximation algorithm
that is based on problem decomposition and function
approximation to solve the control problem.

Problem Definition

We define the inventory/transportation system as a
dynamic system where inventory is stored at different
stages and also flows throughout the system. Figure 10
illustrates the dynamics of inventory flow in the system
evolving in discrete time. Each square represents a buffer
where inventory (or empty tankers) may be located at a
particular point in time. Inventory of crude may be stored
in different stages or forms, for example, it may be stored
in tanks at supply or consumption locations, it may be in
the tankers moving toward demand locations or it may be
in transport through the pipeline. The form in which
inventory exists will be changed dynamically whenever
tankers load/unload crude from/to tanks or pipeline. We

consider delays in transportation to be multiples of a fixed
unit of time which we will take to be a day. Hence, the
model represents a dynamic system that evolves in
discrete time, e.g., each day. The movement of inventory,
or empty tankers between buffers is synchronized by a
single clock that "ticks" once per day. Inventory and
empty tankers enter and exit buffers only when the clock
ticks. At each clock tick, inventory and empty tankers
proceed from one buffer to the next, as transportation
progresses.

The entrance of inventory into the system is

determined by crude demand, and inventory exits the
system upon consumption point demands. Inside the
system, the movement of inventory or empty tankers is
either automatic as determined by constraints or
manipulated by a controller. For example, whether
arriving tankers loaded with crude can be unloaded or not
at a harbor is determined by the availability of storage
space at that harbor. If the inventory level in total
dynamic storage exceeds the storage capacity, then full
tankers have to wait at the harbor and can not proceed to
the next buffer until more inventory is consumed and
enough storage space is available. The entrance of
tankers, either loaded or empty, to the buffers of routes is
controlled by the decisions of a central controller, which
are made just prior to each clock click. The total number
of tankers assigned to routes is limited by the number of
tanker available at that harbor.

The dynamic inventory system described above
assumes that the travel times of tankers are fixed and
known. However, in most real systems, travel times are
inevitably uncertain due to equipment failure and or
external interferences such as weather. One of the major
contributions of this work is to incorporate uncertainties
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Figure 10. Dynamics of inventory in the transportation/inventory system



in travel time into the inventory and transportation
system. Rather than introducing travel time directly, we
choose instead to model the travel process in terms of
tanker arrivals. We define a stochastic variable to indicate
probability of tanker arrival,

( )
otherwise

  arrives days for  ,on  nger traveli      tank
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1 τ
τα

kn
nk �

� �
=

τα nk  follows a probability distribution defined by

{ }1== ττ α nknk Pp , which represents the probability

that the tankers on route ( )kn,  dispatched τ days ago

will arrive today given that they have not arrived before.

Denote ( )tFnk  the probability distribution of the travel

time on route ( )kn, . Then the conditional probability
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As the system clock "ticks" each day, the tankers in
each buffer could move to the next buffer indicating
continuation of the voyage, or move to the arrival buffer
representing the destination. For example, during day t,

tankers that have been traveling for ka  days could arrive

at the destination with probability 
knkap  or continue

traveling with probability 
knkap−1 .

 Mathematical Formulation

We develop a rigorous formulation of the optimal
control problem as a Markov decision process problem, or
a discrete dynamic programming problem (Puterman,
1994). The qualifier "Markov" is used here because the
transition probability and the cost function depend on the
past only through the current state of the system and
through the control action selected by the decision maker
in that state. A Markov decision process is referred to as a
collection of objects:

( ) ( ){ }usguspUST tts ,,,|,,, ⋅

where
T = set of decision epochs, or the planning horizon
S = set of possible system states

sU = set of admissible controls in state s

( )uspt ,|⋅ = transition probability, or equivalently,

system equations

( )usg t , = cost function

A formal mathematical formulation of the optimal
control problem is given as follows:

(1) Index and parameters:

i = index for supply and consumption locations
j = index for type of tanker (1-owned; 2-chartered;

3-spot)
k = index for tanker transportation routes
n = index for directions on tanker routes (1-

inbound; 2-outbound)
τ = index for system time in days

ka , kb = lower bound and upper bound on the travel

time on route k , assuming that both directions
take same amount of time,

pτ = transportation time of a crude parcel in the

pipeline
c = nominal capacity of tanker

CT  = operating cost per tanker per day when tanker
is en route

iCH  = holding cost at harbor i  per tanker per day

CR  = rental cost for spot tanker per tanker per day

CC  = cost for chartering tanker per tanker  per day

CM  = canal toll per pass of a tanker

CP   = pipeline toll per unit of crude

iCI   = storage cost per unit of crude at location i

iCS   = penalty for demand shortage per unit of crude

at location i

jMT = upper bounds on the number of ships j

iMC = capacity of the crude storage at location i

iMS = upper bound on demand shortage at location i

)( τ−tMP = upper bound on the pipeline scheduled

capacity, pττ ,,2,0 �=

(2) System state ( )ts :

System state describes the number of tankers and
amount of crude in each buffer in the system depicted in
Figure 10.

( )twij = number of tankers j  at location i

( )tz i = inventory level at location i

( )txnkjτ = number of tankers j  traveling on route ( )kn,
for τ days



( )tpτ = amount of crude transported through the

pipeline for τ days

(3) Control action ( )tu :

Control actions include design parameters (sizing and
composition) and operation (dispatch and routing) of the
tanker fleet.

( )tynkj = number of tankers j  sent to route ( )kn,

( )trij = number of tankers j  rent/returned at location

i

(4) Stochastic variables ( )tω :

Stochastic variables capture randomness and
uncertainty in the system.

( )td i = crude demand at the consumption locations i

( )tnkτα =1 if tankers that have been traveling on route

(n, k ) for τ days arrive;
=0 otherwise

(5) System equations ( ) ( ) ( ) ( )( )ttutsfts t ω,,1 =+ :

System equations describe the transition of the system
state, i.e., the movement of the tankers and crude in the
system shown in Figure 10.

(a) Tanker pool ( 3,2,1=j )

( ) ( ) ( )

( ) ( )trtx

tytwtw

j
k

b

a
kjk

k
kjjj

k

k

0

7

1
22

7

1
100 1

+

+−=+

� �
�

= =

=

τ
ττα

                 (5)

( ) ( ) ( ) ( )�
=

+−=+
1

1

11112111 1
b

a
jjjj txtytwtw

τ
ττα    (6)

( ) ( ) ( ) ( )�
=

+−=+
2

2

12122222 1
b

a
jjjj txtytwtw

τ
ττα    (7)

( ) ( ) ( ) ( )�
=

+−=+
3

3

13132333 1
b

a
jjjj txtytwtw

τ
ττα     (8)

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )���
===

++

+−−−=+
7

7

5

5

4

4

171715151414

28252444 1
b

a
j

b

a
j

b

a
j

jjj

txtxtx

tytytytwtw

τ
ττ

τ
ττ

τ
ττ ααα

   (9)

( ) ( ) ( ) ( )

( ) ( )��
==

+

+−−=+
7

7

8

8

17172828

271855 1
b

a
j

b

a
j

jjj

txtx

tytytwtw

τ
ττ

τ
ττ αα

(10)

( ) ( ) ( ) ( )�
=

+−=+
6

6

16162666 1
b

a
jjjj txtytwtw

τ
ττα (11)

(b) Inventory storage
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(c) Tanker traveling ( 2,1=n , 8,2,1 
=k , 3,2,1=j )

( ) ( )tytx nkjnkj =+11  (17)

( ) ( )txtx nkjnkj ττ =++ 11  1,,2,1 −= ka�τ (18)

( ) ( ) ( )txtx nkjnknkj τττ α−=++ 111

1,,2,1 −= kb�τ (19)

(d) Pipeline transit
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( ) ( )tptp ττ =++ 11  pττ ,,2,1 �= (21)

(6) One-stage cost function ( ) ( )( )tutsg t , :

Cost function calculates the one-stage cost incurred in
one day. It includes operating cost (fuel, crew,
maintenance, etc), holding cost at harbors, rent/contract
cost, canal toll, pipeline cost, inventory cost and demand
shortage penalty.
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(7)  Set constraints ( ) Sts ∈ , ( ) ( )( )tsUtu ∈ :

The set constraints define constraints on the state

space ( ) Sts ∈ , e.g., total dynamic inventory level at

each location should be lower than the capacity, and the

control space ( ) ( )( )tsUtu ∈ , e.g., the number of tankers

to dispatch is limited to the number of available tankers in
the pools, the number of tankers to load/unload and
dispatch is limited by the storage availability.

The problem formulation described above is a typical
Markov decision process. The objective of the control
problem is to find a set of control policies

( )Nµµπ ,,1 �= , in which tµ  prescribes control

selection tu  in each state ts  at a specified time period t ,

such that the expected total cost in the inventory and

transportation system during a time horizon ( )T,,1 �  is

minimized
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0 ,,min* ωµ
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where Π  is the set of all admissible control policies.
As discussed in the section on stochastic optimal

control, the cost-to-go functions ( )tt sJ  satisfy the

Bellman's equations

( )
( )

( ) ( ){ }{ }tttttttsUutt ussJEusgsJ
tt

,|,min 11 ++∈
+=

(24)
and the optimal control policy is given by

( )
( )

( ) ( ){ }{ }tttttttsUutt ussJEusgs
tt

,|,minarg 11 ++∈
+=µ

                          
(25)

Solution Strategies

The state space in this control problem is extremely
large. For example, as far as the buffers associated with
transportation are concerned, there are about 400 buffers
due to the delay. If each buffer could have 0 to 20 tankers,
then the number of all possible configurations would be

around 520400 1058.220 ×≈ . In order to solve the
dynamic programming problem to optimality, the cost-to-

go functions ( )tt sJ  have to be calculated via Bellman's

equations (24) for each possible state. This large
computational requirement renders rigorous solution to
the control problem intractable.

In order to tackle the optimal control problem in a
computationally feasible manner, we need to design an
approximation architecture to approximate the cost-to-go

functions ( )tt sJ , based upon our understanding about

the characteristics of the problem. There are two factors
involved in the approximation architecture we proposed:
(1) decomposing the whole system into several
subsystems; (2) approximating the cost-to-go function of
each subproblem using a linear function approximator.

(1) Decomposition of the system:

Figure 11. Decomposition of the system

One of the characteristics about the structure of our
system is that it is composed of several subsystems, one
for each demand location. The subsystems are nearly
independent from each other. This feature brings up the
possibility that we could decompose the whole system into
several individual subsystems according to the demand
location. Therefore, instead of having a central controller
for the whole system, we can have one sub-controller for
each subsystem, with coordination at a higher level.
Figure 11 illustrates the decomposition of the system into
a distributed system with four subsystems.

The only consideration that prevents the complete
decomposition of the original problem into individual
subproblems, is the limited number of tankers available at
the supply location to be assigned to each demand
location at each time period. We introduce a new state
variable for each subsystem in order to alleviate this
problem and enhance the independence between the
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subsystems, ( )tvm , which stands for the size of the tanker

pool (number of tankers of each type) for demand location
m  at the supply location. Therefore, each subsystem has
its own state and control defined as (taking the subsystem
of region 1 as an example):

(a) System state ( )ts1 :

( )tw j1 = number of tankers j  at location 1, 3,2,1=j

( )tz1 = inventory level at location 1

( )tx jn τ1 = number of tankers j  traveling on route )1,(n

for τ days, 2,1=n , 1,,2,1 b�=τ
(b) Augmented state ( )tv1 :

( )tv j1 = number of tankers j  at supply location for

demand location 1, 3,2,1=j

(c) Control action ( )tu1

( )ty jn1 = number of tankers j  dispatched to route

( )1,n , 2,1=n , kb,,2,1 �=τ
The optimal control problem for each subsystem is

much easier to solve, because the state spaces of the
individual subsystems are much smaller than the state
space of the whole system.  For instance, if the state
spaces of four integrated subsystems have around 100
states, then the central controller for the whole system

needs to carry 84 10100 =  calculations of the Bellman
equations; while the distributed controllers only need

4004100 =×  calculations in total. After solving the
subproblems, we can obtain cost-to-go functions for each

subproblem ( )mtmtmt vsJ , .

In order to combine the optimal cost-to-go

( )mtmtmt vsJ ,  of the individual subproblems to find a

good approximation of the cost-to-go of the whole

problem, appropriate values of mtv  have to be chosen for

each m , that is, the fleet capacity has to be assigned
rightly to the individual subsystems. The cost-to-go

function ( )tt sJ  can be approximated by assigning the

number of available tankers, at the supply location to the
four subsystems in order to minimize the sum of cost
functions of all subsystems plus the cost to charter tankers
at the supply location. This is realized by solving the
following knapsack problem:
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Then a near-optimal control policy can be obtained by

( )
( )

( ) ( ){ }{ }tttttttsUutt ussJEusgs
tt

,|ˆ,minargˆ 11 ++∈
+=µ

(27)

(2) Approximation of the cost-to-go functions:
Even though the individual subproblems are much

smaller than the original problem, the computing
requirements to solve them is still overwhelming due to
the large delay in the transportation system. The second
stage in our approximation architecture is to use some

parametric function approximator ( )tmtmtmt vsJ θ,,
~

 to

approximate the cost-to-go functions in the subproblems

( )mtmtmt vsJ , , where tθ  is a vector of parameters. One

type of parametric function approximation with
computational advantages is a function such as

( ) ( )
( )mtmtKKt

mtmtttmtmtmt

vs

vsvsJ

,

,,,
~

11

φθ
φθθ

+
+= �

                (28)

which is linear in the parameters tθ , where kφ s are some

chosen basis functions. For example, if the state vector

( )mtmt vs ,  is a n -dimensional vector, the parameter

vector tθ  consists of a n -dimensional vector tα  and a

scalar tβ , then

( ) ( ) tmtmtttmtmtmt vsvsJ βαθ +′= ;,,
~

(29)

 Van Roy et al. (1997) used a similar approach to
develop an approximation method for a retailer inventory
management problem. Parametric value function
approximations are discussed in detail by Bertsekas and
Tsitsiklis (1996).

In order to approximate the cost-to-go functions

( )mtmtmt vsJ ,  using the compact representation

( )tmtmtmt vsJ θ,,
~

, we may choose the parameters θ  in

such a way that mtJ
~

 approximates mtJ  according to a

probabilistic norm-measure minimization, e.g.

( ) ( )
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mtmt
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γ

θ
     (30)

where ( )mtmtmt vs ,γ  indicates the probability that state

( )mtmt vs ,  is observed at the time period t . If no



knowledge about the system state is available, we can

assume that ( )mtmtmt vs ,γ  follows uniform distributions.

Problem (30) is actually a weighted least square
regression problem and can be solved in closed form.

A finite set of representative states or randomly
generated states are prepared in advance to represent all
of the states in the state space. The cost-to-go function

( )mtmtmt vsJ ,  of those states is approximated by solving

the Bellman's equations
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(31)
Equations (30) and (31) are solved recursively

backward in time from the end of the horizon to time

period t  so that ( )tmtmtmt vsJ θ,,
~

 can be calculated and

used to replace ( )mtmtmt vsJ ,  in the knapsack problem

(26).
The following procedure presents the algorithm based

on the approximation architecture, that we propose to
solve the optimal control problem

(a) Initialize the problem. ( ) ( )mNmmNmN shsJ = . Set

1−= Nt ;
(b) Generate representative states

( )I
mt

I
mtmtmt vsvs ,,,, 11 �

Calculate cost-to-go functions ( )i
mt

i
mtmt vsJ ,ˆ  using

equation (31) for Ii ,,1 �= ;

(c) Solve optimization problem (30) to estimate

parameters tθ ;

(d) Solve knapsack problem (26) using function

approximator ( )tmtmtmt vsJ θ,,
~

;

(e) Obtain the near-optimal control policy ( )tt sµ̂  from

equation (27);

(f) tt →−1 . If 0=t , end; otherwise, return to (b).

Computational Results

For a quick first-pass computational experiment, we
implemented the approximation algorithm above in
Matlab, in which a mixed-integer linear program (MILP)
is solved for each representative state of each individual
subsystem. The algorithm was able to estimate the

parameter vector tθ , and also propagate the cost-to-go

functions backward in time, based upon which near
optimal control polices can be computed.  However,
Matlab is not efficient enough to solve such a large-scale

problem in a reasonable computing time. In order to solve
realistic industrial size problems, we still need to
implement the algorithm on other platforms. With a view
toward this goal, our recent work on stochastic optimal
control (Cheng and Duran, 2002) has opened another
possibility to tackle this class of problems. We are
developing a rolling horizon control strategy, which is
essentially a suboptimal control scheme, to optimize the
dynamic refinery system operation, from crude supply to
product delivery. The control algorithm is being
implemented in a C environment together with Cplex
callable library. The preliminary computational
experience with this implementation has shown that the
new proposed control strategy is computationally efficient
and practical to implement on a real refinery operation
environment.

Conclusions and Future Work

This work is concerned with developing a decision
support system (DSS) to assist decision makers with the
study, design and control of the inventory/transportation
system in a world wide crude supply chain. The
integration of discrete event simulation and optimal
control of the combined inventory and transportation
system provides the foundation for the decision support
system. The simulation model and the mathematical
model are formulated in a consistent and interactive
manner so that the insight and results obtained from
either one can be utilized to validate and improve the
other.

We developed a unifying framework that integrates
the simulation model with a built-in controller through
ActiveX automation. The simulation model is formulated
to represent the real inventory/transportation system. The
controller is designed to access system information and
implement control actions on a real time basis. We also
created an interface for users to input system
specifications and view reports on the real time
information as well as system performance measures. The
decision makers can investigate the behavior of the system
and evaluate the performance of different strategies
through simulation of the controlled system.

We formulated the optimal control problem as a
discrete time Markov decision process which incorporates
uncertainties in crude demand and tanker travel time.
Because of the large state space in the optimal control
problem, dynamic programming based methods are
intractable in practical situations. We proposed an
approximation architecture that consists of two factors:
decomposition of the whole system into individual
subsystems for each demand location, and parametric
function approximators for the cost-to-go functions.

The simulation model has been verified so that the
model behaves as expected. However, more experiments
should be conducted to validate the model using the data
and observations collected from the statistics of the real



system. Although the optimal control problem has been
formulated and an approximate algorithm has been
developed to solve the control problem, there are still
three major computational tasks needing further study in
order to solve realistic size problems:

(1) Approximation of the cost-to-go functions. We use a
parametric linear approximating function to
approximate the cost-to-go functions in individual
control problems, which may not be adequate if the
value functions are highly nonlinear. There are other
possible surrogate approximators such as low order
polynomials that can be tailored to the problem at
hand.

(2) Estimation of the expected value in Eqn. (23) or Eqn.
(31). In this work we assume demands follow discrete
probability distributions so that we can enumerate all
possible scenarios. In the case that stochastic variables
follow continuous distributions our estimation of
expected value needs calculation of a high
dimensional integral, randomized methods using
random sampling are preferred over conventional
deterministic numerical methods.

(3) Optimization on the right hand side of Eqn. (23) or
Eqn. (31). The single-period optimization problem in
Eqn. (23) or Eqn. (31) is usually hard to solve when it
involves integer decisions.

A quick first-pass implementation of the algorithms
in Matlab does not provide the computing capability to
solve problems in reasonable time. In order to increase the
computational efficiency, so that the control scheme can
be implemented in practice, we need to implement the
algorithm in other environment, such as C and Fortran
using optimization libraries. At the same time, our recent
progress on a rolling horizon control scheme, which
intends to find near optimal solutions to optimal control
problems, provides a potential future direction for
practical solutions to large scale optimal control industrial
problems (Cheng and Duran, 2002).
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