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Abstract: One of the most important challenges facing control system engineers is the 
design and implementation of next-generation control systems that can assist operators in 
making  supervisory control decisions such as in abnormal events management (AEM), 
start up and shut down, controller performance assessment and so on. Operator failure to 
exercise the appropriate supervisory control decisions often have an adverse effect on 
product quality, process safety, occupational health and environmental impact. The 
economic impact of such abnormal situations is enormous; an estimated $20 billion/year 
in losses in the petrochemical industries alone in the US. Furthermore, process safety, 
occupational health and environmental hazards are ever increasing in importance in 
response to heightening public concern and the resultant tightening of regulations. Thus, 
there exist considerable incentives in developing intelligent control systems that can 
provide automated operator assistance for supervisory control situations for complex 
process plants. People in the process industries view this as the next major challenge in 
control systems research, design and application. Since fault detection and diagnosis is an 
important first step in AEM,  I start with an overview of the various approaches to fault 
diagnosis, before discussing the challenges and the encouraging emerging trends. Recent 
progress in this area has promising implications on the use of intelligent systems for 
inherently safer design, operator training, abnormal events management, and process 
hazards analysis. 
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1. INTRODUCTION 
 
The discipline of process control has made 
tremendous advances, both in theory and practice, in 
the last three decades with the advent of computer 
control of complex processes. Low-level control 
actions, called regulatory control, which used to be 
performed by human operators are now routinely 
performed in an automated manner with the aid of 
computers with considerable success. With progress 
in distributed control and model predictive control 
systems, the benefits to various industrial segments 

such as chemical, petrochemical, cement, steel, 
power and desalination industries have been 
enormous. However, a very important control task in 
managing process plants still remains largely a 
manual activity,  performed by human operators. This 
is the domain of supervisory control, where operators 
have to make quick decisions based on complex 
causal reasoning about the control of abnormal 
process situations, start up and shut down of 
processes/systems, optimal control strategies and so 
on. 
 



 

However, this complete reliance on human operators 
to cope with such abnormal events and emergencies 
has become increasingly difficult due to several 
factors. It is difficult due to the broad scope of the 
diagnostic activity that encompasses a variety of 
malfunctions such as process unit failures, process 
unit degradation, parameter drifts and so on. It is 
further complicated by the size and complexity of 
modern process plants. For example, in a large 
process plant there may be as many as 1500 process 
variables observed every few seconds (Bailey, 1984) 
leading to information overload. In addition,  often 
the emphasis is on quick diagnosis which poses 
certain constraints and demands on the diagnostic 
activity. Furthermore, the task of fault diagnosis is 
made difficult by the fact that the process 
measurements may often be insufficient, incomplete 
and/or unreliable due to a variety of causes such as 
sensor biases or failures. 
 
Given such difficult conditions, it should come as no 
surprise that human operators tend to make erroneous 
decisions and take actions which make matters even 
worse, as reported in the literature.  Industrial 
statistics show that about 70% of the industrial 
accidents are caused by human errors. These 
abnormal events have significant economic, safety 
and environmental impact. Despite advances in 
computer-based control of chemical plants, the fact 
that two of the worst ever chemical plant accidents, 
namely, Union Carbide's Bhopal, India, accident and 
Occidental Petroleum's Piper Alpha accident (Lees, 
1996), happened in the 1980s is a troubling 
development.  
 
Recent events have shown that such large-scale plant 
accidents are not just things of the past but continue 
to haunt us even today. In this regard, I would like to 
bring your attention to three important major 
incidents. The first was the explosion at the Kuwait 
Petrochemical's Mina Al-Ahmedhi refinery in June of 
2000. Fortunately, the human casualties were 
relatively low but financially the incident ranks 
among the top ten worst accidents with an estimated 
damages of about $400 million. The next major 
recent  incident was the explosion at the offshore oil 
platform of Petrobras, Brazil, and its subsequent 
sinking into the sea in March 2001.  The estimated 
losses in this case are about $5 billion. And last, in 
Sept 2001, the AZF chemical plant, Toulouse, had a 
large explosion that killed dozens of people and 
hundreds were treated for various kinds of injuries. It 
also disrupted the operations of the local university 
and its chemical engineering department which were 
situated near the plant site. All these accidents were 
covered extensively by various news organizations 
including CNN, and hence the public awareness of 
the potential accidents in chemical plants and their 
consequences continues to remain heightened.  
 
Further, industrial statistics show that even though 
major catastrophes and disasters from chemical plant 

failures may be infrequent, minor accidents are very 
common, occurring on a day to day basis, resulting in 
many occupational injuries, illnesses, and costing the 
society billions of dollars every year (Bureau of 
Labor Statistics, 1998; National Safety Council, 
1999). It is estimated that the petrochemical industry 
in the U. S. incurs approximately $20 billion in losses 
due to poor abnormal events management 
(Nimmo,1995). The cost is much more when one 
includes similar situations in other industries such as 
pharmaceutical, specialty chemicals, power, 
desalination and so on. As a very recent example, 
Nucor Corporation Inc. is paying $100 million 
towards fines and remedies in a  pollution control 
lawsuit. Similarly, accidents cost the British economy 
up to $27 billion every year (Laser, 2000).  
 
All these concerns, and the lessons learnt from these 
accidents, have led the federal agencies in the U.S. to 
create tighter safety, health and environmental 
regulations. The Occupational Safety and Health 
Administration (OSHA) passed its PSM standard 
Title 29 CFR 1910.119, which requires all major 
chemical plant sites to perform process hazards 
analysis (PHA) (OSHA, 1992). In addition, EPA 
instituted the Risk Management Program (RMP) in 
1995. Similar regulations are coming up in Europe as 
well (Laser, 2000). All these require the systematic 
identification of process hazards, their assessment 
and mitigation. Process Hazards Analysis is the 
systematic identification, evaluation and mitigation 
of potential process hazards which could endanger 
the health and safety of humans and cause serious 
economic losses. The importance of performing a 
comprehensive PHA is illustrated by Kletz (1988; 
1991) with examples of industrial accidents that 
could have been prevented if only a thorough PHA 
had been performed earlier on that plant.  AEM and 
PHA are two sides of the same coin. Both are 
concerned with process safety: AEM is concerned 
about diagnosing abnormal causal origins of adverse 
consequences while PHA deals with reasoning about 
adverse consequences from abnormal causes. 
Intelligent, real-time, operator support systems are 
seen as a way to address both AEM and PHA. The 
automation of process fault detection and diagnosis 
forms the first step in automating supervisory control 
and AEM. 
 
Thus, here in lies the next grand challenge for control 
engineers. In the past, the control community showed 
how regulatory control can be automated using 
computers thereby removing it from the hands of 
human operators. This has led to great progress in 
product quality and consistency, process safety and 
process efficiency. The current grand challenge is in 
the automation of supervisory control using 
intelligent control systems, thereby providing human 
operators the assistance in this most pressing area of 
need. People in the process industries view this as the 
next major challenge in control systems research and 
application. There are, of course, a number of 



 

practical challenges in designing such systems due to 
several factors such as the complexity of process 
dynamics, lack of adequate models, incomplete and 
uncertain data, diverse sources of knowledge, amount 
of effort and expertise required to develop and 
maintain the systems etc. However, considerable 
progress has been made in all areas of this field. One 
is in the development of multiple state estimators 
technology that combines several dfferent approaches 
to process monitoring and diagnosis. The other is the 
progress made in the development of intelligent 
systems for PHA.  
 
In this paper, I briefly review the various approaches 
for fault diagnosis. I will discuss a framework for 
comparing the different approaches to understand 
their relative strengths and weaknesses. I will also 
discuss the recent trends and speculate about future 
work. Due to the volume of literature on this subject 
and the limited length of this paper, this review is 
necessarily brief. For a more exhaustive treatment, 
the reader is referred to the review papers by 
Venkatasubramanian et al. (2002a; 2002b; 2002c). 
Recent progress in this area has promising 
implications on the use of intelligent systems for 
inherently safer design, operator training, abnormal 
situation management, process hazards analysis and 
optimal process operations. Intelligent control 
systems are poised to define the nature of process 
control research and application for the coming 
decade. 
 
 
2. FAULT DIAGNOSTIC SYSTEMS: Some 

Preliminaries 
 
The term fault is generally defined as a departure 
from an acceptable range of an observed variable or a 
calculated parameter associated with a process 
(Himmelblau, 1978). This defines a fault as a process 
abnormality or symptom, such as high temperature in 
a reactor or low product quality and so on. The 
underlying cause(s) of this abnormality, such as a 
failed coolant pump or a controller, is (are) called the 
basic event(s) or the root cause(s). The basic event is 
also referred to as a malfunction or a failure. Since 
one can view the task of diagnosis as a classification 
problem, the diagnostic system is also referred to as a 
diagnostic classifier. Figure 1 depicts the components 
of a general fault diagnostic framework.  The figure 
shows a controlled process system and indicates the 
different sources of failures in it.  In general, one has 
to deal with three classes of failures or malfunctions 
as described below: 
  
Gross parameter changes in a model: Parameter 
changes arise when there is a disturbance entering  
the process from the environment through one or 
more exogenous variables. An  example is the change 
in the heat transfer coefficient due to fouling of a heat 
exchanger.  
 

Structural changes: Structural changes refer to 
changes in the model itself.  They occur due to hard 
failures in equipment.   An example is a controller 
failure which would imply that the manipulated 
variable is no longer functionally dependent on the 
controlled variable.   
 

  
 
Fig. 1. A general diagnostic framework 
 
Malfunctioning sensors and actuators: Gross errors 
usually occur with actuators and sensors. These could 
be due to a fixed failure, a constant bias (positive or 
negative) or an out-of-range failure.    
 
Outside the scope of fault diagnosis are unstructured 
uncertainties, process noise and measurement noise.  
Unstructured uncertainties are mainly faults that are 
not modeled a priori. Process noise refers to the 
mismatch between the actual process and the 
predictions from model equations, whereas, 
measurement noise refers to high frequency additive 
component in the sensor measurements. 
 
 

3. DESIRABLE FEATURES OF A FAULT 
DIAGNOSTIC SYSTEM 

 
In order to compare various diagnostic approaches, it 
is useful to identify a set of desirable characteristics 
that a diagnostic system should possess.  Then the 
different approaches may be evaluated against such a 
common set of requirements or standards.  Though 
these characteristics will not usually be met  by any 
single diagnostic method, they are useful to 
benchmark various methods in terms of the a priori 
information that is needed, reliability of solution, 
generality and efficiency of computation. In this 
context, one needs to understand two important 
concepts: completeness and resolution, before 
proceeding to the characteristics of a good diagnostic 
classifier. Whenever an abnormality occurs in a 
process, a general diagnostic classifier would come 
up with a set of hypotheses or faults that explains the 
abnormality. Completeness of a diagnostic classifier 
would require the actual fault(s) to be a subset of the 
proposed fault set. Resolution of a diagnostic 
classifier would require the fault set to be as minimal 
as possible. 
 
(1) Quick detection and diagnosis:  



 

The diagnostic system should respond quickly in 
detecting and diagnosing malfunctions. However, 
quick diagnosis and tolerable performance during 
normal operation are two conflicting goals (Willsky, 
1976).  A system that is designed to detect a failure 
(particularly abrupt changes) quickly will be sensitive 
to high frequency influences.  This makes the system 
sensitive to noise and can lead to frequent false 
alarms during normal operation, which can be 
disruptive.  This is analogous to the trade-off between 
robustness and performance noted in the control 
literature. 
 
(2) Isolability:  
Isolability is the ability of the diagnostic system to 
distinguish between different failures.  Under ideal 
conditions free of noise and modeling uncertainties, 
this means that the diagnostic classifier should be 
able to generate output that is orthogonal to faults 
that have not occurred. There is also a trade-off 
between isolability and rejecting modeling 
uncertainties. 
 
(3) Robustness:  
One would like the diagnostic system to be robust to 
various noise and uncertainties. Its performance 
should degrade gracefully instead of failing totally 
and abruptly. This implies that the thresholds should 
be tuned conservatively.   However, as noted earlier, 
this can affect performance.  
 
 
(4) Novelty Identifiability: 
One of the minimal requirements of a diagnostic 
system is to be able to decide, given current process 
conditions, whether the process is functioning 
normally or abnormally, and if abnormal, whether the 
cause is a known malfunction or an unknown, novel, 
malfunction. This criterion is known as novelty 
identifiability. 
 
 (5) Classification error estimate: 
An important practical requirement for a diagnostic 
system is in building the user's confidence on its 
reliability.  This could be greatly facilitated if the 
diagnostic system could provide a priori estimates on 
classification error that can occur. Such error 
measures would be useful to project confidence 
levels on the diagnostic decisions by the system 
giving the user a better feel for the reliability of the 
recommendations by the system.  
 
 (6) Adaptability: 
Processes in general change and evolve due to 
changes in external inputs or structural changes due 
to retrofitting and so on. In order to be useful and 
practical, the diagnostic system should be adaptable 
to changes.  
 
(7) Explanation Facility: 
A diagnostic system should also provide explanations 
on how a fault originated and propagated to the 

current situation. This is very important for building 
credibility with operators. One would like the system 
to not only justify why certain hypotheses were 
proposed but also explain why certain other 
hypotheses were not proposed. 
 
 (8) Modeling Requirements: 
The amount of modeling required for system 
development is an important issue. For fast and easy 
deployment, the modeling effort should be as 
minimal as possible. 
 
 (9) Storage and Computational Requirements: 
Usually, quick real-time solutions would require 
algorithms and implementations which are less 
computationally complex, but might entail high 
storage requirements. One would prefer a diagnostic 
system that is able to achieve a reasonable balance on 
these two competing requirements. 
 
(10) Multiple Fault Identifiability: 
The ability to identify multiple faults is an important 
but a difficult requirement.  It is a difficult problem 
due to the interacting nature of most faults. In a 
general nonlinear system, the interactions would 
usually be synergistic and hence a diagnostic system 
may not be able to use the individual fault patterns to 
model the combined effect of the faults. On the other 
hand, enumerating and designing separately for 
various multiple fault combinations would become 
combinatorially prohibitive for large processes.  
 

4. CLASSIFICATION OF DIAGNOSTIC 
APPROACHES 

 
The two main components in a diagnostic classifier 
are: (i) the type of knowledge used and (ii) the type 
of diagnostic search strategy. Diagnostic search 
strategy is usually strongly dependent on the 
knowledge representation scheme which in turn is 
largely influenced by the kind of a priori knowledge 
available. Hence, the type of a priori knowledge used 
is the most important distinguishing feature in 
diagnostic systems. In this review, I classify 
diagnostic systems based on the a priori knowledge 
used. 
 
The basic a priori knowledge that is needed for fault 
diagnosis is the set of failures and the relationship 
between the observations (symptoms) and the 
failures.  A diagnostic system may have them 
explicitly (as in a table lookup), or it may be inferred 
from some source of domain knowledge.  The a 
priori  domain knowledge may be developed from a 
fundamental understanding of the process using first 
principles knowledge. Such knowledge is referred to 
as deep, causal or model-based knowledge (Milne, 
1987).  On the other hand, it may be gleaned from 
past experience with the process. This knowledge is 
referred to as shallow, compiled, evidential or 
process history-based knowledge. 
 



 

The model-based a priori knowledge can be broadly 
classified as qualitative or quantitative. The model is 
usually developed based on some fundamental 
understanding of the physics of the process. In 
quantitative models, this understanding is expressed 
in terms of mathematical functional relationships 
between the inputs and outputs of the system. In 
contrast, in qualitative model equations, these 
relationships are expressed in terms of qualitative 
functions centered around different units in a process. 
 
In contrast to the model based approaches where a 
priori knowledge about the model (either quantitative 

or qualitative) of the process is assumed, in process 
history based methods only the availability of large 
amount of suitably annotated historical process data 
is required. There are different ways in which this 
data can be transformed and presented as a priori 
knowledge to a diagnostic system. This is known as 
feature extraction. This can proceed as either 
quantitative or qualitative feature extraction. In 
quantitative feature extraction one can perform either 
a statistical or non-statistical feature extraction. This 
classification of diagnostic systems is shown in 
Figure 2.  
 

 

 
Fig. 2. Classification of diagnostic methods 
 
 
 

5. QUANTITATIVE MODEL-BASED 
APPROACHES 

 
This section briefly reviews quantitative model-based 
fault diagnosis methods. I briefly summarize and 
evaluate the most frequently-used fault detection and 
isolation approaches, such as observers, parity 
relations, Kalman filters and parameter estimation. 
For the sake of brevity, I have included only some of 
the many techniques available and therefore the 
references listed in this review paper are by no means 
exhaustive. Once again, for a more complete review 
the reader is referred to Venkatasubramanian et al. 
(2002a; 2002b; 2002c). 
 
In automatic control, change/fault detection problems 
are known as model-based fault detection and 
isolation (FDI). Relying on an explicit model of the 
monitored plant, all model-based FDI methods (and 
many of the statistical diagnosis methods) require 
two steps. The first step generates inconsistencies 
between the actual and expected behavior. Such 
inconsistencies, also called residuals, are “artificial 

signals” reflecting the potential faults of the system. 
The second step chooses a decision rule for 
diagnosis. 
 
The check for inconsistency needs some form of 
redundancy. There are two types of redundancies, 
hardware redundancy and analytical redundancy. The 
former requires redundant sensors. It has been 
utilized in the control of such safety-critical systems 
as aircraft, space vehicles and nuclear power plants. 
However, its applicability is limited due to the extra 
cost and additional space required. On the other hand,  
analytical redundancy is achieved from the functional 
dependence among the process variables and is 
usually provided by a set of algebraic or temporal 
relationships among the states, inputs and the outputs 
of the system  (Chow and Willsky, 1984; Basseville, 
1988; Frank, 1990). The essence of analytical 
redundancy  is to check the actual system behavior 
against the system model for consistency. Any 
inconsistency, expressed as residuals, can be used for 
detection and isolation purposes. The residuals 
should be close to zero when no fault occurs but 
show “significant” values when the underlying 
system changes. To generate the diagnostic residuals 



 

requires an explicit mathematical model of the 
system. The model may be obtained either 
analytically using first principles or empirically as a 
black-box model. Also, statistical methods are often 
required for the decision making.  
 
Although dynamic systems are continuous processes, 
all the diagnostic tools use sampled data,  and hence 
only discrete models are included herein. However 
the basic concepts, if not the detailed analysis, carry 
over to continuous models. In addition, most of the 
model-based approaches assume linearity. Their 
application to a non-linear system requires a model 
linearization around the operating point. 
 
Consider a system with m inputs and k outputs. Let  
u(t) = [u1(t) … um(t)]’  be the process inputs and y(t) 
= [y1(t) … yk(t)]’ be the process outputs, where t 
denotes the discrete time. The basic system model in 
the state-space form is 
 

x(t + 1)  = Ax(t) + Bu(t) 
(1) 

y(t) = Cx(t) + Du(t) 
 
where A, B, C and D are parameter matrices with 
appropriate dimensions; x(t) denotes the n 
dimensional state vector. 
 
The same system can be expressed in the input-
output form 
 

H(z)y(t) = G(z)u(t)   (2) 
 
where H(z) and G(z) are polynomial matrices in z-1 
(the backward-shift operator). H(z) is diagonal; H(z) 
and G(z) are of the form 
 

H(z) = I  +  H1z-1  +  H2z-2  +  ...  +  Hnz-n 
G(z) = G0  +  G1z-1  +  G2z-2  +  ...  +  Gnz-n 

 
Process models (1) and (2) describe an ideal situation 
where there are no faults or any form of disturbances 
and/or noise. Faults in the state-space framework are 
usually modeled by (Gertler, 1991; Gertler, 1992) 
 

x(t + 1)  = Ax(t) + Bu(t) + Ep(t) 
(3) 

y(t) = Cx(t) + Du(t) + E’p(t)  +  q(t) 
 
where input commands u(t) and measured outputs 
y(t) are both observable. Included in p(t) are actuator 
faults, certain plant faults, disturbances as well as 
input sensor faults. q(t) represents output sensor 
faults. In the input-output framework, (2) is replaced 
with 
 

H(z)y(t) = G(z)u(t) + H(z)q(t) + F(z)p(t) (4) 
 
where q(t) and p(t) are as defined above. 
 

For a detailed discussion on general diagnostic 
observer design for linear systems, the reader is 
referred to Frank (1990). Generation of diagnostic 
observers for nonlinear systems have also been 
considered to certain extent in the literature. An 
elegant approach for the generation of diagnostic 
observers for nonlinear systems which are in the 
fault-affine (similar to control-affine forms discussed 
in control literature) form can be found in (Frank, 
1990). There have been other researchers who have 
looked at the problem of nonlinear observer design 
for a restricted class of nonlinear systems (Ding et 
al., 1995; Yang and Saif, 1995).  
 
Another approach to diagnosis is based on the parity 
equations notion. Parity equations are usually 
transformed variants of the input-output or state-
space models of the plant (Gertler and Singer, 1990; 
Gertler, 1991). The essence is to check the parity 
(consistency) of the plant models with sensor outputs 
(measurements) and known process inputs. Under 
ideal steady-state operating conditions, the so-called 
residual or the value of the parity equations is zero.  
In real situations, the residuals are non-zero due to 
measurement and process noise, model inaccuracies, 
gross errors in sensors and actuators, and faults in the 
plant. The idea of this approach is to rearrange the 
model structure so as to get the best fault isolation. 
Dynamic parity relations were introduced by Willsky 
and Jones (1976). Further developments have been 
made by Gertler and Singer (1990), Gertler et al. 
(1995) and Gertler and Monajemy (1995) among 
others. It  should be noted that all these methods are 
limited to faults that do not include gross process 
parameter drifts, and none of them address the issue 
of significant uncertainties in multiplicative 
parametric faults. It has been shown that once the 
residual properties have been selected, all parity 
equation and observer based designs are 
fundamentally equivalent (Gertler, 1992). 
 
Plant disturbances are random fluctuations and often 
only their statistical parameters are known. One 
solution (Willsky, 1976; Basseville, 1988) to the fault 
diagnosis problem in such systems entails monitoring 
the innovation process or the prediction errors. The 
objective is to design a state estimator with minimum 
estimation error. It involves the use of optimal state 
estimate, e.g., the Kalman filter, which is designed on 
the basis of the system model in its normal operating 
mode. The Kalman filter in state-space model is 
equivalent to an optimal predictor for a linear 
stochastic system in the input-output model. The 
statistical analysis of Kalman filter was pioneered by 
Willsky and Jones (1976) and further explored by 
Basseville and Benveniste (1986) and Basseville and 
Nikiforov (1993) and the references therein.  
 
Isermann (1984) and Young (1981) surveyed 
different parameter estimation techniques such as 
least squares, instrumental variables and estimation 
via discrete-time models. Park et al. 



 

(1982,1983,1987) have discussed the problem of 
parameter estimation and fault detection and 
diagnosis via parameter estimation. These methods 
require the availability of accurate dynamic models 
of the process and are computationally very intensive 
for large processes. The important issue here is 
complexity. If the process model is a complex 
nonlinear first principles model, then the parameter 
estimation problem turns out to be a nonlinear 
optimization problem. Real-time solution to complex 
nonlinear optimization problems is a serious 
bottleneck in the application of such approaches. 
Reduced order or input-output data models could be 
used, but this raises robustness issues. 
 
Most of the work on model-based diagnostic systems 
has so far been concentrated in the aerospace, 
mechanical and electrical engineering literature. 
There has not been much work on the application of 
observers for fault diagnosis in chemical process 
systems. This may be due to the fact that the 
objectives of state/parameter estimation techniques 
when used in process control are different from the 
objectives of fault diagnosis as pointed out by 
Watanabe et al. (1994). Further, the unavailability 
and/or the complexity of high fidelity models and the 
essential nonlinear nature of these models for 
chemical processes render the design of diagnostic 
observers for such systems quite difficult. Gertler et 
al. (1995) presented a design procedure to generate 
isolable parity equation models chosen from a 
multitude of suitable models on the basis of 
sensitivities with respect to different failures and 
robustness relative to uncertainties in selected 
parameters. They illustrated the application of the 
technique on a distillation column. The application to 
EKF-based FDI system for fault diagnosis in the 
Model IV FCCU case study involving DAEs was 
reported by Huang et al. (2000). The application of 
three unknown input observers (UIO), one a linear, 
second an extended linear and the third a non-linear 
UIO on a CSTR case study is discussed in Dash et al. 
(2001a; 2001b). In their work, the performance of 
these three observers are evaluated through extensive 
simulation studies. 
 
The type of models the analytical approaches can 
handle are limited to linear, and in some cases, to 
very specific nonlinear models. For a general 
nonlinear model, linear approximations can prove to 
be poor and hence the effectiveness of these methods 
might be greatly reduced. Another problem in this 
approach is the simplistic approximation of the 
disturbances that include modeling errors. In most 
cases, the disturbance matrix includes only additive 
uncertainty.  However, in practice, severe modeling 
uncertainties  due to parameter drifts come in the 
form of multiplicative uncertainties.  This is a general 
limitation of all the model-based approaches that 
have been developed so far. In addition to difficulties 
related to modeling, they do not support an 
explanation facility owing to their procedural nature. 

Further, a priori estimation of classification errors 
can not also be provided using these methods. 
Another disadvantage with these methods is that if a 
fault is not specifically modeled (novelty 
identifiability), there is no guarantee that the 
residuals will be able to detect it. Adaptability of 
these approaches to varying process conditions has 
also not been considered. When a large-scale process 
is considered, the size of the bank of filters can be 
very large increasing the computational complexity, 
though, with the recent increase in computational 
power and the essential linear nature of these 
problems, this might not be a serious bottle-neck.  
 
 
6. QUALITATIVE MODEL-BASED METHODS 

 
In this part of the paper, I briefly review qualitative 
model representations and search strategies used in 
fault diagnostic systems. Qualitative models are 
usually developed based on some fundamental 
understanding of the physics and chemistry of the 
process. Various forms of qualitative models such as 
causal models and abstraction hierarchies have been 
developed.  In terms of search strategies, one can 
broadly classify them as topographic and 
symptomatic search techniques. Topographic 
searches perform malfunction analysis using a 
template of normal operation, whereas, symptomatic 
searches look for symptoms to direct the search to the 
fault location.  
 
In the causal models approach, people have 
developed systems based on signed digraphs (Iri et 
al., 1979; Venkatasubramanian and Rich, 1988), 
qualitative simulation (Kuipers, 1985), qualitative 
process theory (Forbus, 1984), causal or precedence 
ordering techniques (Iwasaki and Simon, 1986) and 
so on. There are two main problems with qualitative 
models: ambiguities and spurious solutions. 
Ambiguities can be resolved completely only through 
the use of actual quantitative values. Frameworks for 
reasoning about relative orders of magnitudes have 
been proposed by (Raiman, 1986; Mavrovouniotis 
and Stephanopoulos, 1987). In these frameworks, 
influence magnitudes are related using relations such 
as A is negligible compared to B, A is close to B and 
A is the same order of magnitude as B. A set of 
inference rules then generates a partial ordering of 
values into groups significantly different in 
magnitude (Ungar and Venkatasubramanian, 1990). 
Spurious solutions refer to the generation of 
physically unrealizable solutions by a qualitative 
process. This problem can be alleviated to a 
reasonable extent by modeling the system from 
different perspectives (Kuipers, 1985; Kay and 
Kuipers, 1993). 
 
Another form of qualitative modeling is the 
development of abstraction hierarchies based on 
decomposition of the system. The idea of 
decomposition is to be able to draw inferences about 



 

the behavior of the overall system solely from the 
laws governing the behavior of its subsystems.  In 
such a decomposition, the no-function-in-structure 
principle is central: the laws of the subsystem may 
not presume the functioning of the whole system (de 
Kleer and Brown, 1984).  In a hierarchic description, 
one could represent a generic description of a class of 
process units.  The governing equations describing an 
entire class of process units may make assumptions 
about the class as a whole but may not make any 
assumptions about the behavior of particular units. 
Another important principle for decomposition of 
systems is the principle of locality: the laws for a part 
specifically cannot refer to any other part. No-
function-in-structure allows consistent behaviors 
among various units.  Principle of locality permits the 
behavior to be predicted based only on local 
information. 
 
There are two-dimensions along which abstraction at 
different levels is possible - structural and functional 
(Rasmussen, 1986).  The structural hierarchy 
represents the connectivity information of the system 
and its subsystems. The functional abstraction 
hierarchy represents the means-end relationships 
between a system and its subsystems. Majority of the 
work in fault diagnosis in chemical engineering 
depends on the development of functional 
decomposition. Structural decomposition is an 
efficient decomposition in systems where there is a 
general equivalence between structure and function, 
like for example in an electrical circuit. The reason 
for the popularity of functional decomposition in 
chemical engineering is due to the complex 
functionalities of various units that cannot be 
expressed in terms of structure. Hence, the 
decomposition focused here is the functional 
decomposition.   
 
Diagnosis can be considered as a top-down search 
from a higher-level abstraction where groups of 
equipment and functional systems are considered to a 
lower-level of abstraction where individual units and 
unit functions are analyzed (Rasmussen, 1985). 
Based on this understanding, Shum and Davis (1985) 
decomposed the process into a hierarchy of 
functional subsystems. Each node in the hierarchy 
corresponds to the intended function of a subsystem.  
By comparing the function of the subsystem with the 
intended function, the hypothesis that a fault is 
present in that subsystem is evaluated.  Finch and 
Kramer (1987) represent the plant as a set of 
interacting subsystems, where each subsystem is 
categorized as a control system (closed loops) or 
passive system (open loops) or an external system. 
Each of these subsystems has an associated function 
at this level of system description. Depending on 
their function, these subsystems are categorized as: 
(i) Functional, stressed, uncontrolled or saturated in 
the case of Control Systems and (ii) Functional or 
malfunctional in the case of Passive and External 
Systems. 

  
Hierarchic abstraction of mass and energy flow 
structures at different levels of function (called 
Multilevel Flow Models), i.e., functional abstraction 
hierarchy, has been used by Lind (1991). An MFM 
model is a normative description of a system, a 
representation of its function in terms of what should 
be done, how should it be done and with what should 
it be done. This leads to three basic concepts in 
MFM: (i) Goals, (ii) Functions and (iii) Physical 
components. Three types of connectional relations 
such as (i) achieve relations, (ii) condition relations 
and (iii) realize relations are used to connect objects. 
Diagnostic reasoning strategies based on the MFM 
model can be found in (Larsson, 1994).  
Though qualitative models have a number of 
advantages  as noted above, the major disadvantage is 
the generation of spurious solutions. Considerable 
amount of work has been done in the reduction of 
spurious solutions while reasoning with qualitative 
models. In SDGs, this is done using generation of 
latent constraints and similar techniques have been 
proposed for qualitative physics based models such 
as QSIM. The search strategies can be classified as 
either topographic or symptomatic search. Clearly, 
for a given qualitative representation, different search 
strategies could be used for diagnosis. Hence, one 
can view the methods proposed in the literature as 
different combinations of the qualitative models and 
search strategies. 
 
 

7. PROCESS HISTORY-BASED METHODS 
 
In this section, fault diagnosis methods  based on 
historic process knowledge and data are reviewed. In 
contrast to the model based approaches where a 
priori knowledge (either quantitative or qualitative) 
about the process is needed, in process history based 
methods, a large amount of historical process data 
that is suitably annotated is needed. There are 
different ways in which this data can be transformed 
and presented as a priori knowledge to a diagnostic 
system. This is known as feature extraction. This 
extraction process can be either qualitative or 
quantitative in nature. Two of the major methods that 
extract qualitative history information are the expert 
systems (Davis, 1984; Rich and 
Venkatasubramanian, 1987) and trend modeling 
methods (Cheung and Stephanopoulos, 1990; Bakshi 
and Stephanopoulos, 1992; Rengaswamy and 
Venkatasubramanian, 1995; Vedam and 
Venkatasubramanian, 1997). Methods that extract 
quantitative information can be broadly classified as 
non-statistical or statistical methods. Neural networks 
are an important class of non-statistical classifiers 
(Leonard and Kramer, 1990; Kavuri and 
Venkatasubramanian, 1994). PCA/PLS and statistical 
pattern classifiers form a major component of 
statistical feature extraction methods (Kramer, 1991; 
Nomikos and MacGregor, 1994; Dong and McAvoy, 
1996; Dunia et al., 1996). 



 

 
It is impossible to adequately review the abundant 
literature on expert systems  for fault diagnosis here. 
A more detailed review of this is presented elsewhere 
(Venkatasubramanian et al., 2001c). Most of the 
successful expert systems applications have been 
rule-based systems for structured selection or 
heuristic classification perspective of diagnosis, 
particularly for medical diagnosis. They often use 
some kind of probabilistic reasoning such as certainty 
factors, Bayesian methods or fuzzy logic to handle 
the uncertainties. Such systems, while quicker to 
develop and implement, are of limited scope, valid 
only for the processes for which they were 
developed.  
 
In the trend representation approach, Cheung and 
Stephanopoulos (1990) presented a formal 
framework for the representation of process trends. 
They introduce triangulation to represent trends. 
Janusz and Venkatasubramanian (1991) propose a 
comprehensive set of primitives using which any 
trend can be represented. They use a finite difference 
method to calculate the first and second derivative of 
the process trend changes and based on these values, 
the primitives are identified. This qualitative 
formalism readily lends itself to hierarchic 
representations as well. Rengaswamy and 
Venkatasubramanian (1995) have shown how 
primitives can be extracted from raw noisy sensor 
data by treating the problem of primitive 
identification as a classification problem using neural 
networks. Vedam and Venkatasubramanian (1997) 
proposed a wavelet theory based adaptive trend 
analysis framework and later proposed a dyadic B-
Spline based trend analysis algorithm (Vedam et al., 
1998). Recently, Rengaswamy et al. (2001) have 
discussed the utility of trend modeling in control loop 
performance assessment. 
 
Multivariate statistical methods such as PCA and 
PLS have been used in diagnosis with considerable 
success (Qin  and McAvoy, 1992; Nomikos and 
MacGregor, 1994; Dong and McAvoy, 1996; Vedam 
and Venkatasubramanian, 1997;Yoon and 
MacGregor, 2001). Overviews of using PCA and 
PLS in process analysis and control, fault detection 
and diagnosis were given by MacGregor et al. (1991; 
1994) and MacGregor and Kourti  (1995). 
 
In an earlier work, Kresta et al. (1991) laid out the 
basic methodology of using multivariate statistical 
process control procedure to handle large numbers of 
process and quality variables for continuous process. 
Later on, Nomikos and MacGregor (1994) extended 
the use of multivariate projection methods to batch 
processes by using multiway PCA. To deal with 
nonlinearity, Qin and McAvoy (1992) proposed a 
neural net PLS approach that incorporated 
feedforward networks into the PLS modeling. In 
order to handle nonlinearity in batch processes, Dong 
and McAvoy (1996) utilized a nonlinear principal 

component analysis method. To facilitate the 
diagnosis procedure in very large processes, new 
hierarchical multivariate monitoring methods based 
on multiblock PLS algorithm was presented by 
MacGregor et al. (1991; 1994). Raich and Cinar 
(1996) proposed an integral statistical methodology 
combining principal component analysis and  
discrimination analysis techniques. Based on angle 
discriminants, a novel disturbance diagnosis 
approach (Raich and Cinar, 1997) was later  
introduced that provides better results for cases in 
which distance based discrimination is not accurate 
enough. Recently, Yoon and MacGregor (2000) have 
discussed the use of statistical and causal model-
based methods for fault diagnosis. 
 
Considerable interest has been shown in the literature 
in the application of neural networks for the problem 
of fault diagnosis (Himmelblau, 1986; 
Venkatasubramanian and Chan, 1989; Kavuri and 
Venkatasubramanian, 1994; Bulsari, 1995). Neural 
networks have been proposed for classification and 
function approximation problems. In general, neural 
networks that have been used for fault diagnosis can 
be classified along two directions: (i) the architecture 
of the network such as sigmoidal, radial basis and so 
on and, (ii) the learning strategy such as supervised 
and unsupervised learning. The most popular 
supervised learning strategy in neural networks has 
been the back-propagation algorithm. There are a 
number of papers that address the problem of fault 
detection and diagnosis using back-propagation 
neural networks. In chemical engineering, 
Venkatasubramanian (1985), Watanabe et al. (1989) 
and Venkatasubramanian and Chan (1989), Ungar et 
al. (1990) and Hoskins et al. (1991) were among the 
early researchers to demonstrate the usefulness of 
neural networks for fault diagnosis. Later, a more 
detailed and thorough analysis of the learning, recall 
and generalization characteristics of neural networks 
was presented by Venkatasubramanian et al. (1990) 
and  Vaidhyanathan and Venkatasubramanian (1992). 
An hierarchical neural network architecture for the 
detection of multiple faults was proposed by 
Watanabe et al. (1994). 
 
 

8. A COMPARISON OF VARIOUS 
APPROACHES 

 
I have reviewed so far the three conceptually 
different frameworks for process fault diagnosis.  In 
this section, I provide a comparative evaluation of 
these different frameworks against a common set of 
desirable characteristics for a diagnostic system that 
we proposed in section 3. The evaluations are 
summarized in Table 1. It is clear from the table that 
no single method is adequate to handle all the 
requirements for a desirable diagnostic system. 
Though all the methods are restricted, in the sense 
that they are only as good as the quality of 
information provided, it is seen that some methods 



 

might better suit the knowledge available than others. 
It is our view that some of these methods can 
complement one another resulting in better diagnostic 
systems. Integrating these complementary features is 
one way to develop hybrid methods that could 
overcome the limitations of individual solution 
strategies. Hence, hybrid approaches where different 
methods work in conjunction to solve parts of the 
problem are attractive. 
 
Combination of methods allows one to evaluate 
different kinds of knowledge in one single framework 
for better decision making. A blackboard-based 
cooperative problem-solving framework where 
different diagnostic methods work in conjunction to 
perform collective process fault diagnosis has been 
proposed by (Mylaraswamy et al., 1994; 

Mylaraswamy and Venkatasubramanian, 1997; 
Vedam and Venkatasubramanian, 1999). The 
blackboard architecture, called Dkit, in which 
different diagnostic methods analyze the same 
problem, and a scheduler which regulates the 
decision-making of these methods, is the central 
concept in this framework. The utility of such a 
hybrid framework for solving real-time complex fault 
diagnosis problems is illustrated through the use of a 
diagnosis study on the Amoco Model IV Fluid 
Catalytic Cracking Unit (FCCU). This framework 
was adopted by the Honeywell ASM Consortium for 
the development of a commercially-viable, next 
generation, intelligent control systems called AEGIS 
and MSEP.  
 
 

 
 

Table 1. Comparison of various diagnostic methods 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9. Intelligent Systems for Process Hazards 
Analysis 
 
As noted earlier, AEM and PHA are closely related 
activities that deal with process safety and operability 
issues and hence have an impact on supervisoy 
control decisions. Again, concerns about process 
safety have led the federal agencies in the U.S. to 
create stricter safety, health and environmental 
regulations that require the performance of process 
hazards analysis. A typical HAZOP analysis can take 
1-8 weeks to complete, costing over $13,000-25,000 
per week. By an OSHA estimate, approximately 
25,000 plant sites in the United States require a PHA 
(Freeman et al., 1992). An estimated $5 billion is 
spent annually by the chemical process industries 

(CPI) to perform PHAs and related activities. The 
estimated cost of process hazards reviews in the CPI 
is about 1% of sales or about 10% of profits.  
 
Given the enormous amounts of time, effort and 
money involved in performing PHA reviews, there 
exist considerable incentives to develop intelligent 
systems for automating the process hazards analysis 
of chemical process plants. An intelligent system can 
reduce the time, effort and expense involved in a 
PHA review, make the review more thorough, 
detailed, and consistent, minimize human errors, and 
free the team to concentrate on the more complex 
aspects of the analysis which are unique and difficult 
to automate.  Also, an intelligent PHA system can be 
integrated with CAD systems and used during early 
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stages of design, to identify and decrease the 
potential for hazardous configurations in later design 
phases where making changes could be economically 
prohibitive. It would facilitate automatic 
documentation of the results of the analysis for 
regulatory compliance. Also these PHA results can 
be made available online to assist plant operators 
during diagnosis of abnormal situations as well as to 
train novice operators. 
 
Despite the obvious importance of this area, there has 
only been limited work on developing intelligent 
systems for automating PHA of process plants. In this 
paper, we will review the past approaches towards the 
automation of PHA from the perspective of intelligent 
systems. This paper is written as a brief survey of the 
literature in this area with an emphasis on the 
overview of the results of the Purdue investigations on 
intelligent systems for PHA over the past 12 years. Of 
the various methods, HAZOP analysis is the most 
widely used and recognized as a preferred PHA 
approach by the chemical process industries. Hence, 
the main focus of this paper will be on HAZOP 
analysis. We will not provide a detailed review of 
HAZOP or the intelligent systems framework for it 
here as it is not the intent of this paper. It has been 
addressed elsewhere by the author 
(Venkatasubramanian et. al., 2000). 
 
HAZOPExpert: A Model-Based Intelligent System 
for Continuous Processes 
 
HAZOPExpert is a model-based, object-oriented, 
intelligent system for automating HAZOP analysis 
developed by Venkatasubramanian and 
Vaidhyanathan during 1990-94 for continuous 
processes. In their approach, they recognized that 
while the results of a HAZOP study may vary from 
plant to plant, the approach itself is systematic and 
logical, with many aspects of the analysis being the 
same and 'routine' for different process flowsheets. It 
turns out that about 70% of time and effort is spent 
on analyzing these 'routine' process deviations, their 
causes, and consequences. Hence, they focused on 
these 'routine' cause-and-effect analyses by 
developing generic models which can be used in a 
wide variety of flowsheets, thus making the expert 
system process-independent. They also recognized 
that the process-specific components of knowledge, 
such as the process material properties and process 
P&IDs, have to be flexibly integrated with the 
generic models in an appropriate manner. To address 
this integration, they developed a two-tier 
knowledge-based framework by decomposing the 
knowledge base into 'process specific' and 'process 
general' knowledge, represented in an object-oriented 
architecture.  
 
Process-specific knowledge consists of information 
about the materials used in the process, their 
properties (such as corrosiveness, flammability, 
volatility, toxicity, etc.) and the P&ID of the plant. 

The process-specific knowledge is likely to change 
from plant to plant and is provided by the user. 
Process-general knowledge comprises of the process 
unit HAZOP models that are developed in a context-
independent manner, which remain the same 
irrespective of the process plant under consideration. 
The HAZOP model of a process unit consists of its 
class definition and generic qualitative causal  
 
 
 
 

 
 
Fig. 3 Structure of HAZOPExpert 
 
model-based methods for identifying and propagating 
abnormal causes and adverse consequences of 
process variable deviations. Based on this 
framework, an expert system called HAZOPExpert  
(Figure 3) has been implemented using Gensym's G2 
real-time expert system shell. HAZOPExpert's 
inference engine allows for the interaction of the 
process-general knowledge with the process-specific 
knowledge to identify the valid abnormal causes and 
adverse consequences for the given process variable 
deviations for the particular HAZOP study section of 
the plant under consideration.  
 
HAZOPExpert is not meant to replace the HAZOP 
team. It's objective is to automate the 'routine' aspects 
of the analysis as much as possible, thereby  freeing 
the team to focus on more complex aspects of the 
analysis that can not be automated.  
 
Batch HAZOPExpert: A Model-Based Intelligent 
System for Batch Process PHA 
 
Batch HAZOPExpert (BHE) is a model-based 
intelligent system for automating HAZOP analysis 
for batch processes based on HAZOPExpert. It was 
first developed by Srinivasan and 
Venkatasubramanian (1998a, 1998b), and improved 
later by Zhao, Viswanathan and 
Venkatasubramanian (1998) by considering batch 
control, dynamic propagation of materials 
concentration and quantitative process information. 
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For a batch process, HAZOP analysis is more 
complex because of the discrete-event character 
which raises issues about its temporal nature. The 
status of the plant is constantly changing in some 
established discrete sequence. Since the P&ID does 
not sufficiently define the system, a set of operating 
instructions and some form of sequence chart are 
also needed. In batch plants, these sequence and 
instructions are called product recipe. Product recipe 
consists of a series of tasks occurring at discrete 
instants of time. In each task, many subtasks are 
executed to achieve the task. Differential equation 
based mathematical model, therefore, is not enough 
to describe batch chemical processes. Tools for 
describing discrete systems such as Petri nets 
(Peterson, 1981) are often used to represent batch 
processes (Srinivasan et. al., 1998a).  
 
In BHE, the product recipe is represented with two-
layered Petri Nets - Recipe Petri Net (RPN) and 
Task Petri Net (TPN). RPN indicates the sequence 
of the tasks while TPN demonstrates the sequence 
of the subtasks in each task. Associated with each 
subtask, there is a digraph model which qualitatively 
captures the general cause-effect relationships 
between the variables of the subtask. Currently, 
about 40 subtask digraph models have been 
established in the model library to cover most of 
batch operations such as heat, cool, and filtration 
and so on.  
 
Batch HAZOPExpert is the only intelligent system 
that has been successfully applied to batch chemical 
plants. It has been tested on more than twenty 
industrial batch processes with our industrial 
partners. More results on industrial applications of 
BHE can be found in the literature (Zhao et al., 
2000). 
 
Recently, these two systems have been combined 
into a single entity called the PHASuite. Using 
PHASuite has been found to result in savings of 
about 50%  in time and money for typical industrial 
applications.  
  
 

10. CONCLUSIONS AND FUTURE 
DIRECTIONS 

 
Process safety, occupational health and 
environmental issues are among the top priorities of 
all process industries. The CPI collectively spend 
billions of dollars every year on AEM and PHA.   
These concerns can be effectively addressed by the 
emerging intelligent control systems paradigm which 
has the goal of automating supervisory control tasks 
currently handled manually by human operators. The 
basic aim of this paper was to give a broad overview 
of the various approaches to automated fault 
diagnosis  and describe the state-of-the-art efforts in 
terms of industrial applications in the field. 
Intelligent control components such as diagnostic 

methods based on model-based and process-history-
based approaches were discussed. It was shown that 
no single method was capable of meeting all the 
requirements of a good diagnostic system and a 
hybrid framework involving collective problem 
solving and parallel ways of reasoning was 
recognized as an attractive alternative to address the 
challenges of complex, industrial-scale diagnostic 
problems. Qualitative and quantitative methods offer 
their inherent advantages respectively and a 
combination of these would certainly be suited to 
address the challenges at hand (Frank, 1990). 
 
This paper also briefly reviewed how manual process 
hazards analysis techniques and methodologies can 
be automated by an intelligent systems approach to 
reduce the time, effort and cost involved, and to 
improve the consistency and thoroughness of the 
analysis.  Such systems are not meant to replace the 
human team but to assist them in improving the 
overall efficiency and productivity of the team. The 
HAZOPexpert, Batch HAZOPexpert and PHASuite 
intelligent systems developed at Purdue University 
are now well beyond proof of concept and are ready 
for industrial applications and commercial 
exploitation. 
 
In addition to routine PHA, such intelligent systems 
can facilitate HAZOP reviews at an early stage of 
process development and design. This means that 
problems can be identified and rectified during 
detailed design or while formulating operating 
procedures. Making changes once a plant is built are 
very expensive compared with changes at the design 
stage (Skelton, 1997). Early identification of hazards 
will also lead to effective avoidance or control of 
such hazards. HAZOP at this stage will also help to 
develop confidence that the desired process is safe. 
Along these lines, the longer-term aim may well be to 
move towards process conception and synthesis to 
create inherently safer designs and operating plants 
that tend towards zero defects.  A more immediate 
development could be the use of online hazard 
reviews for the training of operators for abnormal 
situation management. The online hazard models can 
also be adapted for fault diagnosis applications. 
 
As one can gather from the observations in this 
paper, integrating the complementary methods in a 
synergistic fashion to perform collective problem 
solving is key to future improvements in diagnostic 
systems. Also one has to look at the relevance of 
diagnosis to other process operations 
(Venkatasubramanian and Stanley, 1993). Integration 
of diagnosis with other process operations like data 
reconciliation and regulatory control can help solve 
the problem of process operations management 
effectively. Progress in real-time dynamic simulation 
and development of more accurate models of 
chemical processes would allow the application of 
model-based techniques, bringing in their inherent 
advantages to the goal of situation assessment and 



 

rectification. Efforts also are being made to utilize the 
results of Process Hazards Analysis (PHA) – carried 
out off-line - in AEM (Dash and 
Venkatasubramanian, 1999).  
 
The application of the intelligent systems framework 
for complex problems such as abnormal situation 
management and process hazards analysis, which 
were formerly solved only by human teams, has 
come a long way since its modest beginnings in the 
1980s. Intelligent systems are now well poised to 
make significant contributions to AEM and PHA in 
real-life industrial settings thus revolutionizing 
process control in the coming decade in a wide 
variety of industries.
 
 

REFERENCES 
 
ASM Consortium Web Site: 

http://www.iac.honeywell.com/pub/absitmang/ 

Bailey, S. J.  (1984). From desktop to plant floor, a 
CRT is the control operators window on the 
process. Control Engineering, 31(6), 86-90. 

Bakshi, B. and G. Stephanopoulos  (1992). Temporal 
representation of process trends for diagnosis 
and control. In: IFAC Symposium on Online 
Fault Detection and Supervision in the Chemical 
Process Industries. 

Basseville, M. and A. Benveniste (Eds.)  (1986). 
Detection of abrupt  changes in signals and 
dynamic systems (Lecture Notes in Control and 
Information Sciences: 77). Springer-Verlag, 
Berlin. 

Basseville, M.  (1988). Detecting changes in signals 
and systems.  Automatica, 24 (3), 309-326. 

Basseville, M. and I. V. Nikiforov  (1993). Detection 
of Abrupt Changes-Theory and Application. 
Prentice Hall, Information and System Sciences 
Series. 

Bulsari (Editor), A. B. (1995). Neural networks for 
chemical engineers. Elsevier Science, 
Amsterdam.  

Bureau of Labor Statistics (1998). Occupational 
injuries and illnesses in the United States by 
industry. Government Printing Office, 
Washington, DC.  

Cheung, J. T. and G. Stephanopoulos (1990). 
Representation of process trends –I: A formal 
representation framework. Comput. & Chem. 
Engng., 14, 495-510. 

Chow, E. D. and A. S. Willsky  (1984). Analytical 
redundancy and the design of  robust failure 
detection systems. IEEE Trans. Automat. Contr. 
29 (7), 603-614. 

Dash, S. and V. Venkatasubramanian (1999). An 
Integrated framework for Abnormal situation 
management and Process hazards analysis. In: 
AIChE Annual Meeting, Dallas. 

Dash, S., S. Kantharao, R. Rengaswamy and V. 
Venkatasubramanian (2001). Application and 
Evaluation of a Linear/Restricted Nonlinear 
Observer to a Nonlinear CSTR. European 
Symposium on Computer Aided Process 
Engineering – 11, Kolding, Denmark, 853-858. 

Dash, S., P. Vachhani, R. Rengaswamy and V. 
Venkatasubramanian (2002). Applications of 
observers for fault diagnosis in a nonlinear 
CSTR. To be submitted to Chemical 
Engineering Science. 

Davis, R. (1984). Diagnosis reasoning based on 
structure and behavior. Artif. Intell. 24, 347-410. 

de Kleer, J. and S. Brown  (1984). A qualitative 
physics based on confluences. Artificial 
Intelligence. 24, 7-83. 

Ding, Y., J. B. Gomm, D. N. Shields, D. Williams 
and K. Disdell  (1995). Fault diagnosis for a gas-
fired furnace using bilinear observer method. In: 
Proceedings of the American Control 
Conference, Seattle, Washington. 

Dong, D. and T. J. McAvoy  (1996). Batch tracking 
via nonlinear principal component analysis.  
AIChE J.,  42 (8), 2199-2208. 

Dunia, R., S. J. Qin, T. F. Edgar and T. J. McAvoy 
(1996). Identification of faulty sensors using 
principal component analysis.  AIChE J., 42(10), 
2797–2812. 

Finch, F. E. and M. A. Kramer  (1987). Narrowing 
diagnostic focus using functional decomposition.  
AIChE J., 34 (1), 130-140. 

Forbus, K. D. (1984). Qualitative process theory. 
Artif. Intell., 24, 85-168. 

Frank, P.  (1990). Fault diagnosis in dynamic systems 
using analytical knowledge-based redundancy- a 
survey and some new results. Automatica, 26(3), 
459-474. 

Freeman, R. A., R. Lee and T. P. McNamara (1992). 
Plan HAZOP studies with an expert system. 
Chem. Engng. Prog., 88(8), 28-32. 

Gertler, J. and D. Singer  (1990). A new structural 
framework for parity equation-based failure 
detection and isolation. Automatica, 26, 381-388. 

Gertler, J.  (1991). Analytical redundancy methods in 
fault detection and isolation. In: Proc. 
IFAC/IMACS Symp. SAFEPROCESS'91, Baden-
Baden. 

Gertler, J.  (1992). Analytical redundancy methods in 
fault detection and  isolation - survey and 
synthesis. In: IFAC symposium on Online Fault 
Detection and Supervision in the Chemical 
Process Industries. 

Gertler, J., M. Costin, X. Fang, Z. Kowalczuk, M. 
Kunwer and R. Monajemy  (1995). Model based 
diagnosis for automative engines- algorithm 
development and testing on a production vehicle. 



 

IEEE Transactions on Control  Systems 
Technology, 3, 61-69. 

Gertler, J. and R. Monajemy  (1995). Generating 
directional residuals with  dynamic parity 
relations. Automatica, 31, 627-635. 

Himmelblau, D. M. (1978). Fault detection and 
diagnosis in chemical and petrochemical 
processes. , Elsevier Press, Amsterdam. 

Himmelblau, D. M. (1986). Fault detection and 
diagnosis - today and tomorrow.  In: IFAC Kyoto 
Workshop on fault detection and Safety in 
Chemical  Plants. Kyoto, Japan. 

Hoskins, J. C., K. M. Kaliyur and D. M. Himmelblau  
(1991). Fault diagnosis in complex chemical 
plants using artificial neural networks. AIChE J., 
37, 137-141. 

Huang, Y., S. Dash, G. V. Reklaitis and V. 
Venkatasubramanian  (2000). EKF based 
estimator for FDI in model IV FCCU. In: 
SAFEPROCESS 2000, 14-16 June. Budapest, 
Hungary. 

Iri, M., K. Aoki, E. O’Shima and H. Matsuyama 
(1979). An algorithm for diagnosis of system 
failures in chemical processes. Comput. & Chem. 
Engng., 3, 489-493. 

Isermann, R.  (1984). Process faults detection based 
on modeling and estimation methods - a survey. 
Automatica,  20 (4), 387-404. 

Iwasaki, Y. and H. Simon (1986). Causality in 
Device Behavior., Artificial Intelligence, 29, 3-
32.  

Janusz, M. and V. Venkatasubramanian (1991). 
Automatic generation of qualitative description 
of process trends for fault detection and 
diagnosis. Engng. Applic. Artif. Intell., 4, 329-
339. 

Kavuri, S. N. and V. Venkatasubramanian (1994). 
Neural network decomposition strategies for 
large-scale fault diagnosis. Int. J. Control, 59(3), 
767-792. 

Kay, H. and B. Kuipers  (1993). Numerical behavior 
envelopes for qualitative models. In: 
Proceedings of AAAI-93, pp. 606-613. 

Kletz, T. A. (1988). What went wrong? - case 
histories of process plant disasters. Chapter 18, 
189-196, 2nd edition, Gulf Publishing, Houston, 
Texas.  

Kletz, T. A. (1991). Incidents that could have been 
prevented by HAZOP. Journal of Loss Prev. 
Process Ind., 4, 128-129. 

Kramer, M. A.  (1991). Principal component analysis 
using auto-associative neural networks. AIChE 
J., 37 (2), 233-243. 

Kresta, J. V., J. F. MacGregor and T. E. Marlin 
(1991). Multivariate Statistical Monitoring of 
Processes.  Can. J. Chem. Eng., 69, 35. 

Kuipers, B.  (1985). The limits of qualitative 
simulation. In: Proceedings of Ninth Joint 

International Conference on Artificial 
Intelligence. 

Larsson, J. E.  (1994). Diagnostic reasoning strategies 
for means-end models. Automatica, 30 (5), 775-
787. 

Laser, M. (2000). Recent safety and environmental 
legislation. Trans IchemE 78(B), September, 
419-422. 

Lees F. P. (1996). Loss prevention in the process 
industries: hazard identification, assessment and 
control. Second edition, Butterworth-
Heinemann, British. 

Leonard, J. A. and M. A. Kramer  (1990). Limitations 
of backpropagation approach to fault diagnosis 
and improvements with radial basis functions. 
In:  AIChE Annual Meeting, Chicago. 

Lind, M.  (1991). Abstraction for modeling 
diagnostic strategies. In:  IFAC  Workshop on 
Computer Software Structures Integrating 
AIKBS Systems in  Process Control. 

MacGregor, J. F., T. E. Marlin, J. Kresta and B. 
Skagerberg (1991). Multivariate statistical 
methods in  process analysis and control. In: 
Chemical Process Control - CPCIV  (Y. Arkun 
and W. H. Ray, Eds.). pp.79-100. CACHE-
AIChE. 

MacGregor, J. F., J. Christiana K. Costas and M. 
Kotoudi (1994). Process Monitoring and 
diagnosis by multiblock PLS methods. AIChE J., 
40(5), 826-838. 

MacGregor, J. F. and T. Kourti  (1995). Statistical 
process control of  multivariate processes. 
Control Engng. Practice, 3 (3), 403-414. 

Mavrovouniotis, M. and G. Stephanopoulos  (1987). 
Reasoning with order of magnitudes and 
approximate relations. In: Proceedings of AAAI-
87, July. 

Milne, R.  (1987). Strategies for diagnosis. IEEE 
Trans. Syst., Man, and  Cybernetics, 17(3), 333-
339. 

Mylaraswamy, D. (1996). Dkit: A blackboard-based 
distributed multi-expert environment for 
abnormal situation management. PhD Thesis, 
Purdue University. 

Mylaraswamy, D. and V. Venkatasubramanian 
(1997). A hybrid framework for large scale 
process fault diagnosis. Comput. & Chem. Engng 
21, S935-S940. 

National Safety Council (1999). Injury Facts 1999 
Edition. National Safety Council, Chicago. 

Nimmo, I. (1995). Adequately address abnormal 
situation operations. Chem. Engng. Prog., 91(9), 
36-45.  

Nomikos, P. and J. F. MacGregor  (1994). 
Monitoring of batch processes using multiway 
principal component analysis. AIChE J., 40, 
1361-1375. 



 

OSHA (1992). Process safety management of highly 
hazardous chemicals; explosives and blasting 
agents; final rule. 29 CFR 1910.119: Federal 
Register, February 24, 6356-6417. 

Park, S. W., and D. M. Himmelblau (1982). 
Parameter Estimation and Identifiability. Chem 
Eng J Bioch Eng, 25(2), 163-174. 

Park, S. W., and D. M. Himmelblau (1983). Fault 
Detection and Diagnosis via Parameter 
Estimation in Lumped Parameter Systems. 
Industrial and Engineering Chemistry, Proc. Des. 
and Dev. 22, 482-487. 

Park, S. W., and D. M. Himmelblau (1987). 
Structural Design for Systems Fault Diagnosis. 
Comput. & Chem. Engng , 11(6), 713-722. 

Peterson, J. L. (1981). Petri net theory and the 
modeling of systems. New Jeresy: Prentice-Hall. 

Qin, S. J. and T. J. McAvoy  (1992). Nonlinear pls 
modeling using neural  networks. Comput. & 
Chem. Engng., 16 (4), 379-391. 

Raich, A. and A. Cinar  (1996). Statistical process 
monitoring and disturbance diagnosis in 
multivariable continuous processes. AIChE J., 
42, 995-1009. 

Raich, A. and A. Cinar  (1997). Diagnosis of process 
disturbances by statistical distance and angle 
measures.  Comput. & Chem. Engng., 21 (6), 
661-673. 

Raiman, O.  (1986). Order of magnitude reasoning. 
In: Proceedings of  AAAI-86, August. 

Rasmussen, J.  (1985). The role of hierarchical 
knowledge representation in decision making 
and system management. IEEE Trans. Syst., 
Man, and  Cyber., 15 (2), 234-245. 

Rasmussen, J.  (1986). Information Processing and 
Human-machine Interaction. North Holland, 
New York. 

Rengaswamy, R. and  V. Venkatasubramanian 
(1995). A syntactic pattern recognition approach 
for process monitoring and fault diagnosis. 
Engng. Applic. Artif. Intell.,  8(1), 35-51. 

Rengaswamy, R., T. Hagglund and V. 
Venkatasubramanian (2001). A qualitative shape 
analysis formalism for monitoring control loop 
performance. Engng. Applic. Artif. Intell., 14(1), 
23-33. 

Rich, S. H. and V. Venkatasubramanian (1987). 
Model-based reasoning in diagnostic expert 
systems for chemical process plants. Comput. & 
Chem.  Engng., 11 (2), 111-122.  

Shum, S. K. and J. F. Davis  (1985). An expert 
system for diagnosing process plant 
malfunctions. In: IFAC Workshop on Fault 
Detection and Safety in Chemical Plants, Kyoto, 
Japan. 

Skelton, B. (1997). Process safety analysis: an 
introduction. Houston: Gulf Publishing. 

Srinivasan, R. and V. Venkatasubramanian (1998a). 
Automating HAZOP analysis of batch chemical 
plants: Part I. The knowledge representation 
framework. Comput. & Chem. Engng., 22(9), 
1345-1355. 

Srinivasan, R. and V. Venkatasubramanian (1998b). 
Automating HAZOP analysis of batch chemical 
plants: Part II. Algorithms and applications. 
Comput. & Chem. Engng., 22(9), 1357-1370. 

Ungar, L. H., B. A. Powell and S. N. Kamens  
(1990). Adaptive networks for fault diagnosis 
and process control. Comput. & Chem. Engng.  
14, 561-573. 

Ungar, L. H. and V. Venkatasubramanian  (1990). 
Artificial Intelligence in Process Systems 
Engineering: Knowledge Representation. 
CACHE, Austin,  Texas. 

Vaidyanathan, R. and V. Venkatasubramanian  
(1992). Representing and diagnosing dynamic 
process data using neural networks. Engng. 
Applic. Artif. Intell., 5 (1), 11-21. 

Vedam, H. and V. Venkatasubramanian (1997). A 
wavelet theory-based adaptive trend analysis 
system for process monitoring and diagnosis. In 
American Control Conference, 309-313. 

Vedam, H., V. Venkatasubramanian and R. Bhalodia 
(1998). A B-Spline based method for data 
compression, process monitoring and diagnosis. 
Comput. & Chem. Engng., 22, S827-S830. 

Vedam, H., S. Dash and V. Venkatasubramanian 
(1999). An intelligent operator decision support 
system for abnormal situation management. 
Comput. & Chem. Engng., 23S, S577-S580. 

Vedam, H., and V. Venkatasubramanian (1999). 
PCA-SDG based process monitoring and fault 
diagnosis. Control Engng. Practice 7 (7), 903-
17.  

Venkatasubramanian, V.  (1985). Inexact reasoning 
in expert systems: a stochastic parallel network 
approach. In:  Second Conference on Artificial 
Intelligence Applications: The Engineering of 
Knowledge-Based Systems. IEEE Comput. Soc. 
Press., Washington, DC, USA. pp. 13-15. 

Venkatasubramanian, V. and S. H. Rich (1988). An 
object-oriented two-tier architecture for 
integrating compiled and deep-level knowledge 
for process fault diagnosis. Comput. & Chem. 
Engng., 12 (9), 903-921. 

Venkatasubramanian, V. and K. Chan (1989). A 
neural network methodology for process fault 
diagnosis. AIChE J., 35, 1993-2002.  

Venkatasubramanian, V., R. Vaidyanathan and Y. 
Yamamoto  (1990). Process fault detection and 
diagnosis using neural networks I: Steady state 
processes. Comput. & Chem. Engng., 14 (7), 
699-712. 



 

Venkatasubramanian, V. and G. M. Stanley (1993). 
Integration of process monitoring, diagnosis and 
control: issues and emerging trends. In: 
Proceedings of the second International 
Conference on Foundations of Computer Aided 
Operations, Colorado. 

Venkatasubramanian, V., J. Zhao, and S. 
Viswanathan (2000). Intelligent systems for 
HAZOP analysis of complex process plants. 
Comput. & Chem. Engng., 24(9-10), 2291-2302. 

Venkatasubramanian, V., R. Rengaswamy, K. Yin 
and S. N. Kavuri (2002a). A review of process 
fault detection and diagnosis Part I: quantitative 
model based methods.  To appear in Comput. & 
Chem. Engng. 

Venkatasubramanian, V., R. Rengaswamy and S. N. 
Kavuri (2002b). A review of process fault 
detection and diagnosis Part II: qualitative 
models and search strategies. To appear in 
Comput. & Chem. Engng. 

Venkatasubramanian, V., R. Rengaswamy, S. N. 
Kavuri and K. Yin (2002c). A review of process 
fault detection and diagnosis Part III: process 
history based methods. To appear in Comput. & 
Chem. Engng. 

Watanabe, K., I. Matsura, M. Abe, M. Kubota and D. 
M. Himmelblau  (1989). Incipient fault diagnosis 
of chemical processes via artificial neural 
networks. AIChE J., 35 (11), 1803-1812. 

Watanabe, K., S. Hirota, L. Hou and D. M. 
Himmelblau  (1994). Diagnosis of  multiple 
simultaneous fault via hierarchical artificial 
neural networks. AIChE J., 40 (5), 839-848. 

Willsky, A. S.  (1976). A survey of design methods 
for failure detection in dynamic systems. 
Automatica, 12, 601-611. 

Willsky, A. S. and H. L. Jones  (1976). A generalized 
likelihood ratio approach to detection and 
estimation of jumps in linear systems. IEEE 
Trans. on  Automatic Control, AC-21, 108-112. 

Yang, H., and M. Saif  (1995). Nonlinear adaptive 
observer design for fault detection. In: 
Proceedings of the American Control 
Conference,  Seattle, Washington. 

Yoon, S. and J. F. MacGregor (2000). Statistical and 
Causal Model-based Approaches to Fault 
Detection and Isolation. AIChE J., 46(9), 1813-
1824. 

Yoon, S. and J. F. MacGregor (2001). Fault 
Diagnosis with Multivariate Statistical Models. 
Journal of Process Control, 11, 387-400. 

Young, P.  (1981). Parameter estimation for 
continuous time models - a survey. Automatica, 
17 (1), 23-39. 

Zhao. J., S. Viswanathan, V. Venkatasubramanian, J. 
Vinson, and P. Basu (1998). Automated process 

hazard analysis of batch chemical plants. In: 
AIChE Annual Meeting, Miami, USA. 

Zhao, J., S. Viswanathan, and V. 
Venkatasubramanian (2000). Industrial 
applications of intelligent systems for operating 
procedure synthesis and hazards analysis for 
batch process plants. Computer-Aided Chemical 
Engineering 8 (ESCAPE-10 Proceedings), 787-
792. 

 


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 117
	02: 118
	header2: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	header3: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	03: 119
	header4: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	04: 120
	header5: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	05: 121
	header6: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	06: 122
	header7: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	07: 123
	header8: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	08: 124
	header9: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	09: 125
	header10: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	10: 126
	header11: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	11: 127
	header12: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	12: 128
	header13: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	13: 129
	header14: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	14: 130
	header15: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	15: 131
	header16: Proceedings Foundations of Computer-Aided Process Operations (FOCAPO2003)
	16: 132


