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Abstract

Accurate nonlinear dynamic models of process operations such as start-ups, shut-downs, and complex
changeovers include state dependent events that trigger discrete changes to the describing equations,
and are best analyzed within a hybrid systems framework. The automated design of an optimal process
operation can thus be formulated as a dynamic optimization problem with a hybrid system embedded.
However, the resulting optimization problems are often nonsmooth and nonconvex. Similarly, formal
verification problems in the design of logic based controllers for abnormal situation management can often
be formulated as optimization problems with hybrid systems embedded. However, for safety verification
purposes, it is essential to guarantee that the global solution has been found. These applications motivate
the development of deterministic global optimization algorithms for nonconvex, nonsmooth dynamic
optimization problems with nonlinear hybrid systems embedded. This paper describes recent progress
on the development of suitable algorithms. A method for constructing convex relaxations of general
nonconvex NLP problems with linear dynamic systems embedded is presented. These convex relaxations
are then extended to multistage problems with model switches between the stages. Finally, integer
variables are introduced to represent alternative sequences of model switches. The ability to construct
convex relaxations enables existing nonconvex MINLP algorithms to be applied to find the global solution
of the resulting MIDO problems.
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Introduction

Economic, environmental, safety and quality considera-
tions all motivate careful study and optimization of process
operations. Of particular interest in this paper will be the
design and optimization of major process transients such
as start-up, shut-down and changeover procedures, and the
design and formal verification of logic based controllers for
abnormal situation management. In addition, a majority of
chemical and biological products are manufactured in pro-
cesses that are operated in an inherently transient manner
rather than at some nominal steady-state. Examples in-
clude batch and semi-continuous processes, and periodic
processes that operate at a cyclic steady-state, such as pres-
sure swing adsorption units and reverse flow reactors. The
design of such systems is in essence an exercise in optimal
process operation.

All of these applications call for detailed dynamic mod-

els that can predict accurately process transients that depart
significantly from the nominal steady-state (if it exists). In
addition to time dependence and nonlinearity, these models
will most likely embed discontinuities, or discrete events,
superimposed on the continuous state dynamics. These dis-
crete phenomena belong to one of two categories, Barton
and Pantelides (1994): a) physico-chemical discontinuities
that arise from descriptions of the physics, chemistry and
biology of the system in question (often abstractions of phe-
nomena that are too complex and/or fast to model in de-
tail at the scale of interest) and b) external discontinuities
caused by control actions and disturbances. Examples of
physico-chemical discontinuities include (thermodynamic)
phase changes, flow reversals and transitions, the satura-
tion of control valves, irregularities in the geometry of ves-
sels, etc. Examples of external discontinuities include the



starting/stopping of a pump, the action of an interlock sys-
tem (logic based controller), equipment failures, the open-
ing/closing of control loops, etc. In general, these discrete
phenomena are modeled by switches in the functional form
of the model equations and/or instantaneous jumps in the
values of the continuous state variables. In many cases, the
events that trigger these discontinuities are state dependent,
i.e., the timing of the discontinuity is not known a priori, in-
stead the event occurs whenever some condition involving
the values of the state variables is satisfied. For example, an
interlock system may implement a discrete control action
whenever a threshold in reactor temperature is exceeded.

Over the past ten years it has become widely accepted
that the most natural framework for the analysis of such
process transients is that of hybrid (discrete/continuous)
systems theory. In general, hybrid systems theory encom-
passes time dependent, nonlinear dynamic models that ex-
hibit model switching and state jumps as a consequence
of both time and state dependent events. Much progress
has been made in the past decade in the development of
robust, large-scale dynamic simulation software for such
models, e.g., DAEPACK, Tolsma and Barton (1999, 2000),
and ABACUSS II, Clabaugh et al. (1999).

Given robust and accurate dynamic models, the auto-
mated design of optimal process operations can often be
formulated as open loop optimal control (or dynamic op-
timization) problems, where we search a priori for the in-
put profiles and/or real and integer valued parameters for
a dynamic system that will optimize a given performance
measure over a finite time interval, Barton et al. (1998).
Given the progress in hybrid simulation technology, it is
natural to consider embedding hybrid system models in dy-
namic optimization problems in order to design major pro-
cess transients exhibiting discontinuities. However, with a
hybrid system model embedded, reliable solution of the re-
sulting optimization problem becomes a formidable task,
especially when the timing and sequence of model switches
and jumps varies over the decision space of interest (as a
consequence of state dependent events). A continuous time
partial discretization approach to this optimization, where
the controls are discretized using control parameterization
(e.g., see Teo et al. (1991)), is presented in Galán and Bar-
ton (1998), and shown in Figure 1. For a given approximate
problem, the numerical solution of the resulting parameter
optimization problem can be obtained by a decomposition
into two subproblems:

1. an initial value (IVP) subproblem in which
the hybrid system model is solved for given
values of the time invariant parameters us-
ing robust hybrid simulation technology, e.g.,
DAEPACK, and ABACUSS II;

2. a nonlinear programming (NLP) Master prob-
lem that searches in the Euclidean parameter
space using function and gradient information
furnished by the IVP subproblem.

The utility of such a method hinges on the existence
and uniqueness of the parametric sensitivities of the hybrid
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Figure 1. Control parameterization.

system (or the related adjoints), which are used to calcu-
late the gradients of the objective and constraint functions
in the Master problem, Feehery et al. (1997); Tolsma and
Barton (2002). Sufficient conditions for the existence and
uniqueness of these sensitivities are developed in Galán
et al. (1999), and these imply a classification of problems
for which gradient based methods can be applied, Galán
and Barton (1998). These results indicate that the sensitiv-
ity trajectories of a hybrid system will usually exist almost
everywhere in the parameter space. Subject to the key re-
striction that the temporal sequence of model switches and
jumps, (or modes), is fixed throughout the parameter space
(the timing of switches may still vary), the resulting Master
NLP is smooth and existing gradient based methods can be
used to find local solutions. On the other hand, if the tem-
poral sequence of model switches and jumps can vary as
a function of the optimization parameters, then it appears
that most resulting Master NLPs will exhibit some degree
of nonsmoothness.

As a practical example of the application of hybrid op-
timal control in the automated design of safe operating pro-
cedures, consider the hybrid dynamic model of a pressure
vessel located in a chemical plant that is shown in Figure 2,
Barton et al. (2000). The tank may be supplied with oxy-
gen, nitrogen and/or methane via three separate lines, and
gas mixtures may be withdrawn from the vessel through
a fourth line. The flow in each line is regulated by an
open/close non-return valve. Discontinuities in the solution
trajectories occur because the non-return valves are mod-
eled using three distinct modes: zero, laminar/turbulent and
choked flow regimes.
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Figure 2. Pressure vessel and mole fraction space.

It is evident that the equations describing the
flow/pressure relationships will differ in each mode. Con-
sider now a scenario in which we wish to design a min-



imum time operating policy for a tank changeover opera-
tion, where we want to find the sequence of valve openings
and closings that will bring the system from a steady state
where pure methane is flowing through the system, to the
next steady state where pure oxygen is flowing through the
system. This has to be achieved without forming a danger-
ous explosive mixture within the pressure vessel, as shown
in Figure 2(b). As mentioned above, solution of this op-
timization problem involves finding the optimal sequence
and timings of the mode transitions, Barton et al. (2000).

Currently, it is possible to mitigate the implications of
nonconvexities and nonsmoothness in the Master NLP by
utilizing a direct stochastic search, see Barton et al. (2000).
However, such a method can in general only provide ad
hoc improvements to the operating procedure design, be-
cause stochastic searches cannot guarantee location of the
global solution within a finite number of iterations. Fur-
thermore, applications such as formal safety verification of
logic based controllers, taking into account the continuous
dynamics of the underlying process, when formulated as
dynamic optimization problems, demand that the global so-
lution be located. These considerations motivate the de-
velopment of deterministic global optimization algorithms
for nonconvex, nonsmooth dynamic optimization problems
with hybrid systems embedded. The novel methods de-
scribed in this paper will serve as an important foundation
on which general hybrid dynamic optimization problems
(e.g., the tank changeover example described above) can be
solved via control parameterization in the continuous time
domain.

At this point, it is worthwhile to mention other ap-
proaches for optimal control of hybrid systems that have
been proposed in the literature. It is beyond the scope of this
paper to provide a comprehensive review, however, we note
that active research areas include discrete time approaches,
e.g., Bemporad et al. (2000); Cuzzola and Morari (2001),
total discretization approaches, e.g., Avraam et al. (1998),
and reachability analysis approaches based on the formal
definition of the hybrid automaton, e.g., Alur et al. (1995);
Shakernia et al. (2000); Trontis and Spathopoulos (2001).
The hybrid automaton in Alur et al. (1995) incorporates a
stochastic in the timings of events, of which our model-
ing framework is a special case of. The ideas and meth-
ods outlined in this paper differ from the other approaches
in that global mathematical programming techniques (de-
scribed below) are utilized to solve the control parameter-
ized optimization problem in the continuous time domain.

Many modern, general methods for deterministic global
optimization in Euclidean spaces rely on the notion of a
convex relaxation of a nonconvex function, McCormick
(1976). This is a convex function which underestimates
a nonconvex function on the set of interest. The convex
programs that result from convex relaxation of all noncon-
vex objective and constraint functions can (in principle) be
solved to guaranteed global optimality, which, for example,
can be used to generate rigorous lower bounds on the non-
convex problem for a branch and bound (B&B) algorithm.

In B&B, the feasible set is first relaxed and subsequently
split into partitions (branching) over which rigorous lower
and upper bounds on the nonconvex problem can be deter-
mined (bounding). If the lower bound on a partition of the
feasible space is greater than the current best upper bound,
that partition is removed from the search space since the
minimum can never be attained there (fathomed).

Recently, a novel convexity theory has been developed
that enables well known symbolic convex relaxations on
Euclidean spaces (described above) to be harnessed in the
construction of convex relaxations of general, nonconvex
Bolza type functionals subject to an embedded linear time
varying dynamic system, Singer and Barton (2001). This
key result can be extended to linear time varying hybrid sys-
tems when the transition times are fixed, and the sequence
of modes is known, Lee et al. (2002). The resulting Master
problem in control parameterization is smooth, and a deter-
ministic B&B framework can be applied to find the global
solution.

In this paper, we will describe an extension to prob-
lems in which the transition times (events) of the linear time
varying hybrid system are fixed, but the temporal sequence
of modes is allowed to vary. Binary variables are intro-
duced into the problem formulation to represent all possible
sequences of modes. Once the binary variables are fixed,
the sequence of modes is fixed, and the aforementioned
nonsmoothness in the Master problem is eliminated. Our
continuous time approach has a number of advantages over
that in Avraam et al. (1998), where a total discretization
approach (i.e., discretization of both controls and states)
is taken. Firstly, the major difficulty with any discretiza-
tion approach for solving dynamic optimization problems
is the size of the resulting NLP/MINLP that can be solved
practically. Compared to discrete time, Bemporad et al.
(2000); Cuzzola and Morari (2001), and total discretization
approaches, control parameterization yields a much smaller
Master optimization problem that is often within the ca-
pabilities of existing global optimization algorithms. Sec-
ondly, and perhaps more importantly, the standard methods
employed by Avraam et al. (1998) for the solution of the
resulting mixed integer nonlinear programming (MINLP)
problems rely on the assumption that the participating func-
tions and constraints are convex. If these conditions are
not satisfied, standard MINLP algorithms will most likely
converge to arbitrary suboptimal points, Kocis and Gross-
mann (1989); Sahinidis and Grossmann (1991); Bagajewicz
and Manousiouthakis (1991); Floudas (1995). Determinis-
tic global optimization algorithms for MINLPs have begun
to emerge in recent years, Ryoo and Sahinidis (1996); Adji-
man et al. (2000); Kesavan et al. (2001). However, the size
of problem that can be solved is still quite small, so that
only very small hybrid optimal control problems can po-
tentially be solved via discrete time or total discretization
approaches.

In the sequel, nonconvex outer approximation (OA),
Kesavan et al. (2001), is utilized to solve the result-
ing mixed integer dynamic optimization (MIDO) problem,



where the novel convexity theory described above is used
to construct the required convex relaxations of the objective
function and constraints. The application of the suggested
approach to an illustrative example is presented.

Continuous Time Linear Hybrid Systems

The modeling framework of Barton and Lee (2002) is
used to define the linear hybrid system of interest. The
time horizon is partitioned into contiguous intervals called
epochs. We define a hybrid time trajectory, Tτ , as a finite
sequence of epochs {Ii} terminating with epoch Ine

, where
ne is the total number of epochs. Each epoch is a closed
time interval Ii = [t′i, ti] ⊂ R, t′i = ti−1 and ti−1 ≤ ti for
all i = 1, . . . , ne with t0 = t′1. For the epoch Ii, the sys-
tem evolves continuously in time if t′i < ti, and it evolves
discretely by making an instantaneous transition if t′i = ti.
The continuous state subsystems are called modes and the
corresponding sequence of modes for Tτ is called the hy-
brid mode trajectory, Tµ. At the end of epoch Ii, a transi-
tion is made from the predecessor mode in Ii to a successor
mode in epoch Ii+1, also called an event.

Definition 1. The linear time varying (LTV) ODE hybrid
system of interest is defined by the following:

(a) An index set of modes visited along Tµ, M =
{1, . . . , nm};

(b) An invariant structure system where the num-
ber of real valued state and control vari-
ables are constant in each mode, V =
{x(p, t),u(p, t),p, t}, where u(p, t) ∈ R

nu

for all p ∈ P ⊂ R
np , t ∈ [t0, tf ]; and

x(p, t) ∈ R
nx for all (p, t) ∈ P × [t′i, ti], i =

1, . . . , ne. Note that x(p, t) can take multiple
values at the events;

(c) A fixed Tτ with given time events (i.e. explicit
transition times) t0, ti=1,...,ne−1, tne

= tf , and
a fixed Tµ = m1, . . . ,mne

, mi ∈ M . There-
after, the use of the superscript (m) will refer
to any mode in M , while superscript (mi) will
refer to the active mode in epoch Ii;

(d) The LTV ODE system for each mode m ∈ M ,
which is given by

ẋ(p, t) = A(m)(t)x(p, t) +

B̃(m)(t)u(p, t) + C(m)(t)p + q̃(m)(t), (1)

where A(m)(t) is continuous on [t0, tf ];
B̃(m)(t), C(m)(t) and q̃(m)(t) are piecewise
continuous on [t0, tf ], and defined at any point
of discontinuity, for all m ∈M ;

(e) The parameterization of the bounded real val-
ued controls

u(p, t) = S(t)p + v(t), (2)

uL ≤ u(p, t) ≤ uU ∀ t ∈ [t0, tf ], (3)

where S(t) and v(t) are piecewise continuous
on [t0, tf ], and defined at any point of disconti-
nuity;

(f) The transition conditions for the transitions
between epochs Ii and Ii+1, for all i =
1, . . . , ne −1, which are trivial since all events
are explicit time events:

L(mi) := (t = ti), (4)

indicating the transition from mode mi in
epoch Ii to mode mi+1 in epoch Ii+1 at time
ti;

(g) The system of transition functions, which are
given by

x(p, t′i+1) = Dix(p, ti) + Eip + ki,

i = 1, . . . , ne − 1, (5)

for the transition from mode mi in epoch Ii to
mode mi+1 in epoch Ii+1 at time ti; and

(h) A given initial condition for mode m1,

x(p, t0) = E0p + k0. (6)

A solution, x(p, t), t ∈ [t′i, ti], i = 1, . . . , ne, will
exist and be unique for all p ∈ P , at least in the weak
or extended sense (Coddington and Levinson, 1955, Chp.
2). Note that the control parameterization in Eq. (2) can be
used to approximate the controls with piecewise Lagrange
polynomials of arbitrary order, which includes piecewise
constant and piecewise linear controls. The advantage of
using Lagrange polynomials as the basis functions lies in
the straightforward translation of the natural bounds on the
controls, u (see Eq. (3)), to bounds on the parameters, p,
since the coefficients of the Lagrange polynomials corre-
spond to values of the controls at specific points in time. In
most cases, this results in the Euclidean parameter space P
(see Definition 1(b)) being a hyper-rectangle, ensuring its
compactness.

Before we proceed, it is convenient to reduce the LTV
ODE system for the modes in each epoch to a simpler form.
Combining Eqs. (1) and (2), we obtain

ẋ(p, t) = A(m)(t)x(p, t) + B(m)(t)p + q(m)(t), (7)

where B(m)(t) ≡ B̃(m)(t)S(t) + C(m)(t) and q(m)(t) ≡
B̃(m)(t)v(t)+ q̃(m)(t) are piecewise continuous on [t0, tf ],
defined at any point of discontinuity, for all m ∈M .

The General Problem

The following is the general formulation of the problem
that we are interested in solving.

Problem 1. Consider the following problem:

min
p∈P

F (p) = φ
(

ẋ(p, tf ),x(p, tf ),p
)

+

∫ tf

t0

f
(

ẋ(p, t),x(p, t),p, t
)

dt, (8)



s.t. G(p) = η

(

ẋ(p, tf ),x(p, tf ),p
)

+

∫ tf

t0

g
(

ẋ(p, t),x(p, t),p, t
)

dt ≤ 0, (9)

where x(p, t) is given by the solution of the embedded LTV
ODE hybrid system described in Definition 1.

Figure 3 shows a schematic of a hybrid automaton illustrat-
ing the hybrid system framework.
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ẋ = A(4)(t)x +

B(4)(t)p + q(4)(t)
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The objective function in Eq. (8) and the inequality con-
straints in Eq. (9) are written in the form of Bolza function-
als, e.g., the sum of an (end)point and isoperimetric term.
The advantage of expressing the objective function and con-
straints in their canonical form, Teo et al. (1991), is that
they are all treated in the same way in as far as the com-
putations of their values, convex relaxations, and respec-
tive gradients are concerned in the numerical solution of
the optimization problem. In addition, there exist constraint
transcriptions, Teo et al. (1991), that will transform general
constraints, e.g., equality or inequality path constraints, into
the canonical form shown in Eq. (9).

In the next section, we will present the novel convexity
theory that will enable us to construct convex relaxations of
general Bolza type functionals (and hence the objective and
constraints in Problem 1) subject to the LTV ODE hybrid
system described in Definition 1. There exist formal techni-
cal conditions on the properties of the functions, f , φ, g and
η, which will not be discussed here for brevity. The inter-
ested reader is directed to Lee et al. (2002) instead. Before
we proceed, it will be useful to define the following sets,
which will be used in the next section.

Definition 2. Let P be a nonempty compact convex subset
of R

np . We define the following sets for all i = 1, . . . , ne

where t denotes fixed t:

Xi(t) ≡
{

x(p, t) | p ∈ P, t ∈ [t′i, ti]
}

,

Ẋi(t) ≡
{

ẋ(p, t) | p ∈ P, t ∈ [t′i, ti]
}

,

Xi ≡
⋃

t∈[t′i,ti]

X(t),

Ẋi ≡
⋃

t∈[t′i,ti]

Ẋ(t).

These sets represent various images of the parameter space
under the solution of the linear hybrid system.

Constructing Convex Relaxations

In this section, we shall describe the extension of the
convexity theory developed in Singer and Barton (2001) to
the linear hybrid systems described above. The proofs for
the following results are presented in Lee et al. (2002).

Consider first the objective function F (p) in Eq. (8). It
can be shown that if the following conditions are satisfied,

1. f
(

ẋ(p, t),x(p, t),p, t
)

is convex on Ẋi(t) ×
Xi(t)×P for all t ∈ [t′i, ti], i = 1, . . . , ne; and

2. φ
(

ẋ(p, tf ),x(p, tf ),p
)

is convex on

Ẋne
(tf ) × Xne

(tf ) × P ,

then F (p) is convex on P . In other words, if the functions
φ and f are convex pointwise in time on their respective
domains defined in Definition 2 and P , the resulting Bolza
functional is convex on P . The corollary of this result can
be stated as the following,

Corollary 1. If we have the following functional,

U(p) = ψ
(

ẋ(p, tf ),x(p, tf ),p
)

+

∫ tf

t0

u
(

ẋ(p, t),x(p, t),p, t
)

dt, (10)

and if the following conditions are satisfied,

1. ψ(·) ≤ φ(·) ∀ p ∈ P , ;
2. u(·) ≤ f(·) ∀ (p, t) ∈ P × [t0, tf ];

3. u
(

ẋ(p, t),x(p, t),p, t
)

is convex on Ẋi(t) ×
Xi(t)×P for all t ∈ [t′i, ti], i = 1, . . . , ne; and

4. ψ
(

ẋ(p, tf ),x(p, tf ),p
)

is convex on

Ẋne
(tf ) × Xne

(tf ) × P ,

then U(p) is convex on P such that

U(p) ≤ F (p), ∀ p ∈ P.

So far, we have focused on constructing convex relaxations
for the objective function. It is clear that the exact same
technique can be applied for the point and isoperimetric in-
equality constraints in Eq. (9). Corollary 1 is a powerful
result that is the key basis on which convex relaxations of
the objective function and constraints can be constructed,



because well known methods for constructing convex re-
laxations on Euclidean spaces, McCormick (1976); Adji-
man et al. (1998), can be harnessed to construct the rele-
vant convex relaxations, ψ(·) and u(·) in Eq. (10), from
φ(·) and f(·) in Eq. (8). This is important as it enables us
to construct convex relaxations required for the B&B and
OA algorithms in the sequel. In turn, this will enable rigor-
ous lower bounds to be obtained in the bounding step of the
B&B algorithm, and the lower bounding convex MINLP to
be constructed in the nonconvex OA algorithm.

Implied State Bounds

A final piece of information is needed to utilize the
well known symbolic convex underestimators in Euclidean
spaces, namely, bounds on the state variables (i.e., the sets
X(t) and Ẋ(t) in Definition 2). For example, consider the
simple univariate concave function,

f(x) = −x2,

where f : R → R. In order to construct a convex relax-
ation, one has to define the set of interest as some finite real
interval x ∈ [xL, xU ]. Once the bounds xL and xU are set,
the convex relaxation is simply given by the secant of the
function,

u(x) = (xL + xU )(xL − x) − (xL)2.

Corollary 1 enables us to apply the same technique for dy-
namic systems, but now pointwise in time. Recall that con-
ditions 3. and 4. in the corollary require convexity on the
sets X(t) and Ẋ(t). This is where the implied state bounds
come in. We can think of the implied state bounds as the
dynamic analogue of the bounds xL and xU described in
the example above. These time varying state bounds, xL(t)
and xU (t), can be obtained by performing interval analysis
on the supplied bounds on the parameters, [pL,pU ] (hence
the term implied), because the structural form of the solu-
tion to the linear hybrid system is affine in p,

x(p, t) = Mi(t)p + ni(t), ∀ t ∈ [t′i, ti], i = 1, . . . , ne.
(11)

Differentiating with respect to p, Eq. (11) reveals that the
matrix Mi(t) represents the parametric sensitivities of the
hybrid system, which will be described in the next section.
This enables us to calculate the implied state bounds for
the real valued state variables pointwise in time from the
following natural interval extension:

[x]([p], t) = Mi(t)[p] + ni(t),

t ∈ [t′i, ti], ∀ i = 1, . . . , ne. (12)

Further, the implied bounds for ẋ(p, t) are given pointwise
in time by the following interval equation:

[ẋ]([p], t) =
(

A(mi)(t)Mi(t) + B(mi)
)

[p] +

A(mi)(t)ni(t)+q(mi)(t), t ∈ [t′i, ti], ∀ i = 1, . . . , ne.
(13)

Global Optimization with fixed Tτ and Tµ

A B&B algorithm, Falk and Soland (1969); McCormick
(1976); Ryoo and Sahinidis (1996), will be employed to ob-
tain a global solution, within ε tolerance, of Problem 1 with
a finite number of iterations. The hybrid system described
in Definition 1 is embedded in the optimization problem,
reducing the otherwise infinite dimensional search space
(containing x ∈ (Ĉ1[t′i, ti])

nx , i = 1, . . . , ne) to a finite di-
mensional one in the parameter space P . The upper bound-
ing problem can be solved using any local gradient based
method, utilizing the parametric sensitivities of the hybrid
system to deliver the required gradients.

It is shown in Lee et al. (2002) that the parametric sensi-
tivities of the LTV ODE hybrid system in Definition 1 exist
(at least in the weak sense), ∂x(p,t)

∂p
∈ R

nx×np , t ∈ [t′i, ti],
i = 1, . . . , ne for all p ∈ P , and are given by the solution
of the following equations:

∂

∂t

(

∂x

∂p

)

= A(mi)(t)
∂x

∂p
+ B(mi)(t),

∀ t ∈ (t′i, ti], i = 1, . . . , ne, (14)

∂x(p, t0)

∂p
= E0, (15)

∂x(p, t′i+1)

∂p
= Di

∂x(p, ti)

∂p
+ Ei, i = 1, . . . , ne − 1.

(16)

It is further shown, subject to mild conditions, that the ob-
jective function F (p) in Problem 1 is continuously differ-
entiable on P , and that there exists a minimum to the prob-
lem.

To generate rigorous lower bounds in the B&B algo-
rithm, we must construct convex relaxations for the Bolza
type objective F (p), and constraints, G(p), which are pro-
vided by Corollary 1. The resulting convex program can
be solved globally to obtain a lower bound on the solu-
tion using any suitable gradient based NLP algorithm. Af-
ter obtaining upper and lower bounds on the global solu-
tion in a given partition of the parameter search space, the
B&B algorithm terminates if the bounds are within ε tol-
erance, otherwise, the search space is further partitioned
using a branching heuristic, and the bounding process is
repeated. If the lower bound on a given partition is greater
than the current best upper bound, that region of the pa-
rameter search space is fathomed. A B&B algorithm utiliz-
ing the convex relaxations constructed from Corollary 1 is
shown to be infinitely convergent in Lee et al. (2002). Since
we require ε optimality, such an algorithm is guaranteed to
terminate in a finite number of iterations.

Example 1. Consider the following problem

min
p

F (p) =

∫ 3

0

−x(p, t)2 dt,



where p ∈ P = [−4, 4], and x(p, t) is given by the solution
to the following hybrid system

Mode 1 : ẋ(p, t) = −2tx(p, t) + p,

Mode 2 : ẋ(p, t) =
x(p, t) + p

t+ 10
,

with x(p, 0) = 1 and Tµ = 1, 2, 1. State continuity is en-
forced at the explicit transitions at t1 = 1 and t2 = 2,

L(m1) := (t = t1), T (m1) = x(t′2) − x(t1),

L(m2) := (t = t2), T (m2) = x(t′3) − x(t2).

Epoch 1 Epoch 2 Epoch 3
t0 t1 t2 tf

t

ẋ = −2tx + p ẋ = −2tx + p

ẋ =
x + p

t + 10

Mode 1 Mode 1

Mode 2

Figure 4. Hybrid system for Example 1.

We can solve this problem with a global deterministic
B&B algorithm utilizing the theory described above. The
convex relaxation for the objective function, U(p), is sim-
ply the secant of the univariate concave function,

∫ 3

0

(

xL(t) + xU (t)
)(

xL(t) − x(p, t)
)

− xL(t)2 dt.

The piecewise continuous state bounds constructed
from Eq. (12), xL(t) and xU (t), are shown in Figure
5(a). The nonconvex objective function, F (p), and its con-
structed convex underestimator, U(p), over the entire fea-
sible region P are shown in Figure 5(b). The lower bound
(LB) at the first iteration will be obtained at p = 4. De-
pending on the initial guess for p, the upper bound (UB)
at the first iteration will be obtained at either p = 4,
in which case we have found the global solution, since
UB − LB < ε, or p = −4, for which we have to branch.

To illustrate the concept of fathoming, suppose that the
feasible region is partitioned into 3 partitions of [−4,−2],
[−2, 2] and [2, 4] in that order (usually, the partition space
is bisected). Each of these partitions imply new tightened
state bounds, which update the convex underestimator. The
constructed convex underestimators for these regions are
shown in Figure 5(c). In the first iteration, the lower and
upper bounds on [−4,−2] are attained at p = −4, which
is the global solution in that partition. At the second itera-
tion, the lower bound on [−2, 2] is attained at p = 2. Since
this lower bound on [−2, 2] is greater than the current best
upper bound at p = −4, the partition [−2, 2] is fathomed.
The algorithm terminates at the global solution of p = 4,
F (4) = U(4) = −15.360 in the third iteration.

In the general multi-parameter case, branching heuris-
tics are employed to decide which variable to branch on.

For example, one simple heuristic is to select the parameter
with the largest interval to branch on, i.e., choose pj , where
j = arg max

1≤i≤np

(pU
i − pL

i ). The parameter space can then

be partitioned by a simple bisection procedure.

Global Optimization with fixed Tτ and varying Tµ

In the preceding sections, we have considered the global
solution of problems where Tµ was fixed. In general, we
might be interested in solving problems where the sequence
of modes is not known a priori and/or might change in the
parameter space of interest. In order to take sequencing de-
cisions into account in the solution of the global optimiza-
tion problem, the most common approach is to introduce
integer or binary variables into the model. In this section,
we shall present a novel formulation of the resulting MIDO
problem. Nonconvex OA is then used to solve the result-
ing nonconvex MINLP after control parameterization. The
key advantage in the formulation is that the convexity the-
ory presented above can be used to construct the required
convex relaxations for nonconvex OA.

Nonconvex Outer Approximation

Before we proceed, it is worthwhile to summarize the
OA algorithm for nonconvex MINLPs. Outer approxima-
tion as a decomposition approach has been employed very
successfully for convex MINLPs, Duran and Grossmann
(1986); Fletcher and Leyffer (1994). The extension to non-
convex MINLPs hinges on the ability to construct con-
vex relaxations of the objective function and constraints to
form a lower bounding convex MINLP, Kesavan and Bar-
ton (2000); Kesavan et al. (2001). The decomposition then
consists of three main subproblems,

1. the Primal Problem, NLP(yk), which is the
nonconvex NLP obtained by fixing the binary
variables, yk, in the nonconvex MINLP;

2. the Primal Bounding Problem, NLPB(yk),
which is the convex NLP obtained by fixing
the binary variables, yk, in the lower bound-
ing convex MINLP; and

3. the Relaxed Master Problem, which is the re-
laxation of the equivalent mixed integer linear
program (MILP) Master problem for the lower
bounding convex MINLP.

The algorithm solves for the global solution by alternating
finitely between the primal problem, the primal bounding
problem, and relaxations of the Master problem, as shown
in Figure 6. Because the solution of the relaxed master
problem provides a non-decreasing sequence of rigorous
lower bounds, and the solution of the primal problem pro-
vides a sequence of upper bounds, the algorithm terminates
finitely either when the lower bound crosses the best upper
bound, or the relaxed Master problem becomes infeasible.

The primal bounding problem provides a valid and
tighter lower bound to the primal problem for each binary
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Figure 6. Outer approximation for nonconvex MINLPs.

realization, yk, then that provided by the current relaxed
Master problem. Hence if the solution to NLPB(yk) is
greater than the best upper bound, NLP(yk) need not be
solved for iteration k. This is important, since the convex
primal bounding problem is the least expensive to solve,
followed by the relaxed Master problem, while the non-
convex primal problem, which requires global determinis-
tic methods to solve, is usually the most expensive, unless
a special structure is exhibited once the binary variables are
fixed.

The Revised Problem, with varying Tµ

Consider Example 1, with the relaxation that Tµ is not
fixed.

Example 2. Consider the following problem

min
p,Tµ

F (p) =

∫ 3

0

−x(p, t)2 dt,

where p ∈ P = [−4, 4], Tµ = m1,m2,m3, mi=1...3 ∈
{1, 2}, and x(p, t) is given by the solution to the following
hybrid system

Mode 1 : ẋ(p, t) = −2tx(p, t) + p,

Mode 2 : ẋ(p, t) =
x(p, t) + p

t+ 10
,

with x(p, 0) = 1. State continuity is enforced at the explicit
transitions at t1 = 1 and t2 = 2,

L(m1) := (t = t1), T (m1) = x(t′2) − x(t1),

L(m2) := (t = t2), T (m2) = x(t′3) − x(t2).

Here, we wish to determine the optimal sequence of
modes, Tµ, in addition to the optimal value of the param-
eter, that will minimize the objective function. A possible
method to calculate the global solution would be to explic-
itly enumerate all nne

m possible combinations of Tµ. How-
ever, it is apparent that such a method quickly becomes in-
tractable, especially when we have a large number of modes
and epochs in the hybrid system. A more attractive method
would be to introduce binary decision variables to represent
all possible sequences of modes.

Example 3. Consider the following problem

min
p,y

F (p,y) =

∫ 3

0

−x2(p,y, t) dt,

s.t. y11 + y21 = 1, y12 + y22 = 1, y13 + y23 = 1,
(17)

where x(p,y, t) is given by the solution to the following
hybrid system,

Mode 1 : ẋ(p,y, t) = y11(−2tx+ p) + y21

(

x+ p

t+ 10

)

,

Mode 2 : ẋ(p,y, t) = y12(−2tx+ p) + y23

(

x+ p

t+ 10

)

,

Mode 3 : ẋ(p,y, t) = y13(−2tx+ p) + y23

(

x+ p

t+ 10

)

,

x(p, 0) = 1,



p ∈ P = [−4, 4], y ∈ Y b = {0, 1}nm×ne , Tµ = 1, 2, 3
and state continuity is enforced at t1 = 1 and t2 = 2.

Here, we have introduced nmne binary variables ymk,m =
1 . . . nm, k = 1 . . . ne, which are treated as additional op-
timization parameters. Eqs. (17) ensure that only one
mode is active in each epoch. If m∗

k is the active mode
in epoch Ik, then ym∗

k
,k = 1 and ym6=m∗

k
,k = 0, for all

k = 1, . . . , ne. In other words, if mode m is in epoch Ik,
ymk = 1, else ymk = 0. The resulting hybrid superstruc-
ture is illustrated in Figure 7. If certain transitions are for-
bidden by the structure of the hybrid automaton, these can
be excluded by the inclusion of logical constraints between
the ymk.

t0 t1 t2 tf

t

Mode 1Mode 1Mode 1

Mode nm Mode nm Mode nm

Mode i Mode i Mode i

y11 y12

Epoch neEpoch 2Epoch 1

y1ne

yi1

ynm1

yi2 yine

ynm2 ynmne

nm∑
i=1

yi2 = 1
nm∑
i=1

yine = 1
nm∑
i=1

yi1 = 1

...
...

...

...
...

...

Figure 7. Hybrid superstructure with binary variables.

Note that the form of the underlying hybrid system is no
longer linear, due to the presence of the bilinear terms ymkx
and ymkp. Hence, the above convexity theory can no longer
be used to construct the required convex relaxations of the
objective function. Work is in progress exploring methods
to construct convex relaxations of functions with nonlinear
dynamic systems embedded, extending the convexity the-
ory that has been developed. However, it is possible to re-
tain the linearity of the underlying dynamic system in the
formulation that follows.

Example 4. Consider the following problem

min
p,y

F (p,y) =

∫ 1

0

y11

(

− x2
11(p, t)

)

+ y21

(

− x2
21(p, t)

)

dt+

∫ 2

1

y12

(

− x2
12(p, t)

)

+ y22

(

− x2
22(p, t)

)

dt+

∫ 3

2

y13

(

− x2
13(p, t)

)

+ y23

(

− x2
23(p, t)

)

dt, (18)

s.t. y11 + y21 = 1, y12 + y22 = 1, y13 + y23 = 1,

p2 = y11x11(p, t1) + y21x21(p, t1), (19)

p3 = y12x12(p, t2) + y22x22(p, t2), (20)

where xmk(p, t) are given by the solution of the following
linear systems:

ẋ11 = −2tx11 + p1,

ẋ21 =
x21 + p1

t+ 10
,

x11(p, 0) = 1,

x21(p, 0) = 1,

ẋ12 = −2tx12 + p1, ẋ13 = −2tx13 + p1,

ẋ22 =
x22 + p1

t+ 10
, ẋ23 =

x23 + p1

t+ 10
,

x12(p, t1) = p2, x13(p, t2) = p3,

x22(p, t1) = p2, x23(p, t2) = p3,

y ∈ Y b = {0, 1}nm×ne , p = [p1 p2 p3]
T ∈ P = [−4, 4]×

[pL
2 , p

U
2 ] × [pL

3 , p
U
3 ], and t1 = 1, t2 = 2.

Example 4 is a nonconvex MINLP. The same binary vari-
ables ymk are introduced as in Example 3, resulting in the
superstructure seen in Figure 7. The key difference, how-
ever, is the introduction of the additional continuous param-
eters, p2 and p3, which transform the hybrid system into
nmne equivalent linear dynamic systems. Eqs. (19) and
(20) ensure that the correct transition functions are active at
the events. This enables application of the convexity theory
presented to construct the lower bounding convex MINLP.
In general, nx(ne − 1) additional parameters need to be in-
troduced into the nonconvex MINLP. However, as will be
explained below, these parameters will not affect the size of
the primal or primal bounding problems. In addition, since
MILP algorithms tend to scale linearly with the number of
continuous variables and exponentially with the number of
binary variables, these additional variables will not have a
significant effect on the cost of solving the relaxed Mas-
ter problem. The bounds on these variables, [pL

2 , p
U
2 ] and

[pL
3 , p

U
3 ], can be obtained from the original bounds on p1,

as will be discussed below.

The Primal Problem

The primal problem, NLP(yk), for Example 4 is simply
Example 1 with the corresponding Tµ. The global solution
is obtained using the B&B framework described in the pre-
ceding sections, and so the introduction of p2 and p3 does
not affect the size of NLP(yk).

The Lower Bounding Convex MINLP

To construct the lower bounding convex MINLP, we
need convex relaxations of Eqs. (18)–(20). We shall first
treat the bilinear terms in Eqs. (19) and (20). Consider the
following Euclidean function,

w = yx,

0 ≤ y ≤ 1,

xL ≤ x ≤ xU .



It is straightforward to apply convexification methods, Mc-
Cormick (1976), to obtain the following linearizations,

xU (y − 1) + x ≤ w ≤ xL(y − 1) + x,

xLy ≤ w ≤ xUy.

Applying Corollary 1, we can obtain the desired convex re-
laxations, e.g.,, for z11 = y11x11(p, 1), as

xU
11(1)(y11 − 1) + x11(p, 1) ≤ z11

≤ xL
11(1)(y11 − 1) + x11(p, 1), (21)

xL
11(1)y11 ≤ z11 ≤ xU

11(1)y11. (22)

It is clear that when y11 = 0, Eq. (22) is active and z11 = 0;
and when y11 = 1, Eq. (21) is active and z11 = x11(p, 1).
These linearizations for the relaxed Master problem require
xU

11(1), x
L
11(1) and x11(p, 1) = M11(1)p + n11(1). The

state bounds, as well as the parametric sensitivities and n11,
can be obtained in a single preprocessing stage, which will
be described below.

To treat the objective function, consider the following
problem,

min
p,y

F (p, y) = y

∫ 1

0

−x2(p, t) dt, (23)

where y ∈ {0, 1}, p ∈ [−4, 4] and x(p, t) is given by the
solution to the following linear system,

ẋ = −2tx+ p,

x(0) = 1.

Let an arbitrary t ∈ [0, 1] be fixed. We have the following
bounds,

0 ≤ y ≤ 1,

xL(t) ≤ x(p, t) ≤ xU (t),

vL(t) ≤ −x2(p, t) ≤ vU (t),

where

vL(t) = min
(

− xL2
(t),−xU 2

(t)
)

, (24)

vU (t) =











−xL2
(t) if xL(t) > 0,

−xU 2
(t) if xU (t) < 0,

0 otherwise.

(25)

The bounds in Eqs. (24) and (25) are constructed pointwise
in time from the original objective function. We can then
apply the convexification methods in McCormick (1976),
together with Corollary 1, to obtain the following convex
relaxation,

min
p,y,w

w, (26)

(y − 1)wU + cw(p) − w ≤ 0, (27)

ywL − w ≤ 0, (28)

where

wL ≡

∫ 1

0

vL(t) dt, wU ≡

∫ 1

0

vU (t) dt, (29)

cw(p) ≡
∫ 1

0

(

xL(t) + xU (t)
)(

xL(t) − x(p, t)
)

− xL2
(t) dt.

(30)

The constructed convex relaxations are shown in Figure 8.
Note that the expression for cw(p) has exactly the same
form as that obtained in Example 1. When y = 0, Eqs.
(27) and (28) become

cw(p) − wU ≤ w,

0 ≤ w,

the second constraint is active, since cw(p) − wU < 0, and
it is clear that the solution is w = 0. When y = 1, Eqs. (27)
and (28) become

cw(p) ≤ w,

wL ≤ w,

and either constraint can be active depending on the value of
cw(p). These convex relaxations for the objective function
require the bounds, wL and wU , which are obtained in the
preprocessing stage described below.

yp

00.20.40.60.81
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Figure 8. Constructed convex relaxations for example ob-
jective function.

The lower bounding convex MINLP can now be ex-
pressed as the following,

Example 5. Consider the following problem

min
p,y,w,z

F (w) = w11 + w21 + w12 + w22 + w13 + w23

s.t. y11 + y21 = 1, y12 + y22 = 1, y13 + y23 = 1,

(ymk − 1)wU
mk + cmk(p) − wmk ≤ 0,

ymkw
L
mk − wmk ≤ 0,

}

∀
m = 1, 2

k = 1, 2, 3



p2 = z11 + z21, p3 = z12 + z22,

xU
mk(tk)(ymk − 1) + xmk(p, tk) ≤ zmk,

zmk ≤ xL
mk(tk)(ymk − 1) + xmk(p, tk),

xL
mk(tk)ymk ≤ zmk,

zmk ≤ xU
mk(tk)ymk,























∀
m = 1, 2

k = 1, 2

where xmk(p, t) are given by the solution of the following
linear systems:

ẋ11 = −2tx11 + p1,

ẋ21 =
x21 + p1

t+ 10
,

x11(p, 0) = 1,

x21(p, 0) = 1,

ẋ12 = −2tx12 + p1, ẋ13 = −2tx13 + p1,

ẋ22 =
x22 + p1

t+ 10
, ẋ23 =

x23 + p1

t+ 10
,

x12(p, t1) = p2, x13(p, t2) = p3,

x22(p, t1) = p2, x23(p, t2) = p3,

y ∈ Y b = {0, 1}nm×ne , p = [p1 p2 p3]
T ∈ P =

[−4, 4] × [pL
2 , p

U
2 ] × [pL

3 , p
U
3 ], w ∈ [wL,wU ], zmk ∈

[min(0, xL
mk(tk)),max(0, xU

mk(tk))], ∀ m = 1, 2, k =
1, 2, and t1 = 1, t2 = 2.

The expressions for wL
mk, wU

mk, and cmk(p) are the
corresponding versions of Eqs. (29) and (30) and are not
included in the example above for clarity. The required
bounds for this lower bounding convex MINLP can be cal-
culated in the preprocessing stage, described below.

The Preprocessing Stage

In the preprocessing stage, we extract the bounds
needed for the lower bounding convex MINLP, as well
as the expression for xmk(p, tk). First, we integrate the
nm sets of linear systems through the first epoch. We
have already shown how to calculate the implied state
bounds, xL

mk(t) and xU
mk(t), and the parametric sensitivi-

ties, Mmk(t), nmk(t), as well as wL
mk and wU

mk. At the
end of the first epoch, we can determine the bounds for p2,
from the implied state bounds at time tk, in this case,

pL
2 = min

[

xL
11(1), x

L
21(1)

]

, pU
2 = max

[

xU
11(1), x

U
21(1)

]

.

With these bounds on p2, we can then integrate the next nm

sets of linear systems through the second epoch, and repeat
the procedure to the last epoch. The bounds obtained for
our example are shown in Table 1.

The Primal Bounding Problem

When yk is fixed, the underlying dynamic system for
the primal bounding problem simplifies to the equiva-
lent hybrid system with Tµ fixed. As mentioned above,

Table 1. Bounds for w, p, and x for Example 5.

Variable Lower Upper

p2 -1.784 2.520
p3 -2.310 3.113
w11 -5.195 -0.082
w21 -1.583 -0.730
w12 -3.545 0
w22 -7.962 0
w13 -2.203 0
w23 -11.653 0
x11 -1.784 2.520
x21 0.700 1.500
x12 -1.187 1.224
x22 -2.310 3.113

only the convex relaxations of the objective function with
ymk = 1 are active, and only these terms enter the convex
NLPB(yk).

The Relaxed Master Problem

The relaxed Master problem is derived from the lower
bounding convex MINLP by constructing linearizations of
the constraints at the solution obtained from the primal
bounding problem. The following are some important
points to note about the relaxed Master problem:

1. The majority of the constraints are linear in the
relaxed Master problem. Additional lineariza-
tions only have to be constructed for the non-
linear constraints introduced in the convex re-
laxations of the original objective function and
constraints;

2. The form of Eq. (17) in the relaxed Master
problem will enable the special structure of
SOS1 sets (Type 1 Special Ordered Sets) to be
exploited in the solution of the MILP; and

3. In constructing the linearizations, it suffices
to add only the active constraints, Fletcher
and Leyffer (1994), from the primal bounding
problem. This means that the nmne sets of
sensitivity systems do not have to be integrated
after every primal bounding problem to furnish
the gradients of all the nonlinear constraints in
the lower bounding MINLP, as the gradients of
the active constraints can be directly obtained
from the solution of the primal bounding prob-
lem.

In this example, the OA algorithm terminates at the
second iteration, for a global solution of Tµ = 1, 2, 2,
p = 4, with an objective function of F (4) = −24.810.



Global Optimization with varying Tτ and Tµ

In the preceding sections, we have developed determin-
istic algorithms for the global optimization of linear hybrid
systems with fixed Tτ . We are interested in extending it fur-
ther to the case where Tτ is allowed to vary, i.e., the tran-
sition times are optimization parameters. This seemingly
simple extension turns out to be quite difficult and nontriv-
ial. We shall present some preliminary ideas on treating the
single stage version of this problem in this section:

Problem 2. Consider the following problem

min
p∈P, ξ ∈Ξ

F (p, ξ) = φ
(

ẋ(p, ξ),x(p, ξ),p, ξ
)

+

∫ ξ

0

f
(

ẋ(p, t),x(p, t),p, t
)

dt, (31)

s.t. G(p, ξ) = η

(

ẋ(p, ξ),x(p, ξ),p, ξ
)

+

∫ ξ

0

g
(

ẋ(p, t),x(p, t),p, t
)

dt ≤ 0, (32)

where x(p, t) is given by the solution of the dynamic sys-
tem:

ẋ(p, t) = A(t)x(p, t) + B(t)p + q(t),

x(p, 0) = Ep + k;

P is a compact, convex and nonempty subset of R
np ; and

Ξ = [tL, tU ], 0 ≤ tL < tU .

A common model transformation technique is often em-
ployed to transform this free terminal time problem into
a fixed end time problem, Teo et al. (1991), where ξ is
treated as a parameter, and time is scaled by introducing
a normalizing time variable, τ = t/ξ. In that case, the
integrals are converted to ones between 0 and 1 with re-
spect to τ . The problem with adopting this approach is that
bilinear/nonlinear terms are introduced into the embedded
dynamic system. This would require methods of construct-
ing convex relaxations for nonlinear systems, which are still
under development.

An alternative way of solving the problem is to note
that for fixed ξ, Problem 2 reverts to Problem 1, which can
be solved. We can then discretize the set Ξ, obtain the so-
lution for the fixed end time problem at the mesh points,
and choose the best feasible solution. This discretization
technique has been employed in Canon et al. (1970) for the
solution of linear optimal control problems with linear cost
objectives in the discrete time domain. However, in order
to get ε tolerance in the variable ξ, we will need a very fine
partition of the continuous time domain [tL, tU ], making it
necessary to solve the fixed end time problem a large num-
ber of times, which might not practical. Hence, a better
method is needed.

To illustrate that the problem is inherently nonconvex,
consider the following example with a simple end point ob-
jective:

Example 6. Consider the following problem

min
p , ξ

x(p, ξ),

where x(p, ξ) is given by the solution to the following linear
system,

ẋ(p, t) = −2x(p, t) + p,

x(p, 0) = 1,

p ∈ P = [−4, 4], ξ ∈ Ξ = [0, 2].

Figure 9 shows that the objective function is not convex
over the set P × Ξ. Since we have a LTV ODE system, in
general, we would expect the problem to be nonconvex on Ξ
even if we have p fixed. In order to use a B&B algorithm to
obtain a global solution to Problem 2, we need a method to
construct rigorous lower bounds for the objective function
F (p, ξ) on partitions of the search space P×Ξ. We are cur-
rently exploring the use of a primal-relaxed dual decompo-
sition approach, Wolsey (1981); Floudas and Visweswaran
(1993); Liu and Floudas (1996), to generate these rigorous
lower bounds.
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Figure 9. Objective function surface plot for Example 5.

The convexity theory presented in the previous section
allows a relaxation U(p, ξ) to be constructed for F (p, ξ)
such that it is convex on P for all fixed ξ ∈ Ξ. In other
words, U(p, ξ) is partially convex on P . The idea is then
to construct a relaxation V (p, ξ) of U(p, ξ) such that
V (p, ξ) is partially convex on both Ξ and P . We suspect
that this task, although non-trivial, is less formidable than
constructing a convex relaxation for F (p, ξ) that is jointly
convex on P × Ξ. We are exploring whether existing
methods for constructing convex envelopes for functions
of a single variable, McCormick (1976), can be utilized to
achieve this task. Once V (p, ξ) can be constructed, the
primal-relaxed dual algorithms described above can be
harnessed to obtain the required rigorous lower bounds.



Conclusions

The development of deterministic global optimization
algorithms for nonconvex, nonsmooth dynamic optimiza-
tion problems with nonlinear hybrid systems embedded has
been motivated by the increasing need to devise robust and
efficient methods for the automated design of optimal pro-
cess operations such as start-up and shut-down procedures,
as well as formal verification problems in the design of
logic based controllers which take into account the contin-
uous dynamics of the underlying process.

This paper describes recent progress toward the devel-
opment of suitable algorithms. A novel method to construct
convex relaxations for general, nonlinear Bolza type func-
tionals subject to an embedded linear time varying hybrid
system with fixed transitions is presented. The theoreti-
cal basis for the above method lies in the development of
a novel convexity theory, Singer and Barton (2001), that al-
lows existing methods for constructing symbolic convex re-
laxations on Euclidean spaces to be harnessed for the above
purpose.

A branch and bound algorithm, utilizing these convex
relaxations to obtain rigorous lower bounds on partitions of
the parameter space, has been developed to solve the opti-
mization problem to guaranteed global optimality. In addi-
tion, a novel reformulation has been proposed for problems
where the temporal sequence of model switches and jumps
in the linear time varying hybrid system is allowed to vary.
By introducing binary decision variables which represent
all possible sequences of modes, and retaining the linear-
ity of the underlying dynamic system with the insertion of
additional continuous parameters, the convexity theory can
be utilized to construct a lower bounding convex MINLP.
This enables the development of an outer approximation
algorithm to solve this nonconvex MINLP formulation to
guaranteed global optimality.

The techniques described above will serve as the basis
for the development of suitable algorithms for the optimiza-
tion of general nonlinear hybrid systems. There remain a
lot of exciting and challenging obstacles to overcome. We
have described some preliminary work on handling hybrid
systems with varying transition times. Another important
area under active research is the extension of the convexity
theory to problems with nonlinear dynamic systems embed-
ded. Although the direct construction of convex relaxations
subject to an arbitrary nonlinear dynamic system appears
difficult without the introduction of strongly restrictive as-
sumptions, one can consider extending the convexity theory
for linear systems to develop bounding linear systems for
the nonlinear system of interest.

Other future work that remains to be done includes
the application of the presented algorithms to large scale
problems. Of particular interest is the development of
algorithms for the formal verification of logic based con-
trollers. The formulation of a safety verification problem
often results in a nonconvex MINLP. Because of the
potential size of such problems, the outer approximation

algorithm has to deal with a large number of binary
decision variables. However, a distinctive feature of
nonconvex outer approximation lies in the fact that the
solution of the primal problems can be decoupled from the
rest of the iterations and done in parallel. We are exploring
the development of massively parallel implementations
which have the potential to improve efficiency dramatically.
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