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Abstract 

Enabling reinforcement learning (RL) to explicitly consider constraints is important for safe deployment 
in real-world process systems. This work exploits recent developments in deep RL and optimization over 
trained neural networks to introduce algorithms for safe training and deployment of RL schemes. We show 
how optimization over trained neural-network state-action value functions (i.e., a critic function) can 
explicitly incorporate constraints, and we describe two corresponding RL algorithms. The first uses 
constrained optimization of the critic to give optimal actions on which an actor is trained, while the second 
guarantees constraint satisfaction during deployment by directly implementing actions from optimizing a 
trained critic model. The two algorithms are tested on a supply chain case study from OR-Gym and are 
compared against state-of-the-art algorithms TRPO, CPO, and RCPO.   
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Introduction

Reinforcement learning (RL) has been central to many 
notable successes in machine learning, such as in self-
driving cars, playing games, and operating data centers 
(Shin et al., 2019). However, in comparison to traditional 
model-based control strategies, e.g., model predictive 
control, RL does not typically consider state constraints 
explicitly. For many practical engineering applications, 
simply maximizing reward without considering the 
appropriateness of actions can lead to highly undesirable 
consequences. For instance, in supply chain applications, an 
RL algorithm may direct all goods to the cheapest 
warehouse, without considering that the warehouse will 
eventually reach capacity, creating massive backlogs. 

Given the above, it is desirable to impose constraints 
on the range of behavior that can be explored in RL. This 
has inspired research into so-called safe RL (García & 
Fernández, 2015). Several methods for safe RL allow 
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implicit consideration of state constraints using stage-wise 
reward or penalty functions. Alternatively, some safe RL 
techniques use external knowledge, e.g., imitation learning, 
and/or risk metrics during exploration. 

This work takes advantage of two recent developments 
to enable explicit consideration of state constraints during 
deployment of RL: (i) incorporation of deep neural 
networks into RL schemes (Arulkumaran et al., 2018), 
known as deep RL, and (ii) techniques for deterministic 
optimization of trained neural networks (Grimstad & 
Andersson, 2019; Tsay et al., 2021). We present two 
algorithms based on this combination. The first, called 
OMLT-DDPG, comprises an actor-critic method, where 
optimization over a critic neural network gives optimal 
actions on which to train the actor. The second, called 
SAFE, is a strategy for deployment, wherein directly 



  
 

 

implementing actions from optimizing a trained critic 
network guarantees constraint satisfaction. 

The two proposed algorithms are applied to a multi-
level supply chain case study from OR-Gym (Hubbs et al., 
2020). Computational results demonstrate that OMLT-
DDPG is significantly more sample-efficient compared to 
other RL methods, owing to the use of deterministic 
optimization. The results further show the SAFE explicitly 
satisfies known constraints during RL deployment. 

Safe Reinforcement Learning Background 

Markov decision processes, or MDPs, are the 
foundation of RL problems. A given MDP is defined by a 
state space S, action space A, reward function R, and 
transition probability P. The goal of RL is to learn a policy 
𝜋 that maximizes a performance metric 𝐽(𝜋), usually 
defined as the total expected reward over an infinite time 
horizon, subject to a discount factor. Safe RL methods seek 
to also enforce constraints, typically by introducing some 
cost function(s), analogous to reward. The inclusion of cost 
functions results in constrained MDP, or CMDP. 

Recent methods for safe RL such as constrained policy 
optimization (Achiam et al., 2017) and interior-point policy 
optimization (Liu et al., 2020) can provide safety guarantees 
for CMDPs, but only in the form of simple constraints on 
expected total discounted cost.  

Trust-Region Policy Optimization (TRPO) 

Although TRPO (Schulman et al., 2015) does not 
consider constraints, it serves as the basis for several safe 
RL algorithms and is briefly described here. TRPO is a 
policy iteration algorithm based on computing the 
advantage of one policy over another, i.e., the expected 
improvement in the performance metric by switching from 
one policy to another. Schulman et al. (2015) provide a 
method for approximating this. As these approximate 
updates resemble a first-order method when the policy is 
differentiable, the step size between policies should be 
constrained. This is typically done using a trust region 
method, such as constraining the KL divergence to the old 
policy when maximizing the advantage function. 

Constrained Policy Optimization (CPO) 

Achiam et al. (2017) extend TRPO to a constrained 
MDP and introduce an algorithm useful for both safe 
exploitation and exploration. The extension involves adding 
constraints on the auxiliary cost functions on top of the 
constraint on the distance metric between two successive 
policy updates, resulting in the following optimization 
problem to find policy 𝜋!"#: 

max
$
𝐽(𝜋)   (1) 	

s.t.	𝐽%!(𝜋) ≤ 𝑑& , ∀𝑖	 = 	1, … ,𝑚 (2)	
						𝐷'((𝜋, 𝜋!) ≤ 𝛿  (3) 

where 𝐽%&(𝜋) is the total expected cost of the 𝑖)* constraint 
over an infinite time horizon and 𝛿 is the step size for policy 
iteration. The objective and constraints are replaced with 
surrogate functions, for which worst-case bounds are 
computed, based on the hyperparameters of the algorithm. 
Again, this problem is computationally difficult and is 
solved using a primal-dual method after linearizing 𝐽(𝜋) 
and 𝐽%&(𝜋), and a second-order expansion for 𝐷'((𝜋, 𝜋!). 
This approximation motivates a small step size 𝛿. 

Reward Constrained Policy Optimization (RCPO) 

Reward Constrained Policy Optimization (Tessler et 
al., 2019) is similar to CPO but instead solves an 
unconstrained optimization problem with Lagrange 
multipliers instead of using a Primal-Dual method with hard 
constraints. The optimization objective of the problems then 
becomes: 

 
min
+,-

max
$
9𝐽(𝜋) − 𝜆(𝐽%(𝜋) − 𝑑)<      (4) 

 
Tessler et al. (2019) consider that this optimization 

problem can be viewed on two timescales: a faster one, 
where the policy is optimized, and a slower one, which 
involves gradually increasing λ until the constraint is 
satisfied. This is achieved by selection of different step sizes 
for the updates to the Lagrange multipliers and the policy. 

Algorithm 1: OMLT-DDPG 

Our approach incorporates deterministic optimization 
of neural networks using the Optimization and Machine 
Learning Toolkit (OMLT) into Deep Deterministic Policy 
Gradients (DDPG). This section first summarizes DDPG 
and OMLT and then presents our algorithm.  

Deep Deterministic Policy Gradients (DDPG) 

The Deep Deterministic Policy Gradients algorithm 
(Lillicrap et al., 2016) was conceived as a continuous-space 
extension to the popular deep Q-learning framework 
(DQN). DQN cannot be directly applied to continuous 
action spaces, as selecting the action with maximum Q-
value at a given state becomes complex and inefficient for 
high-dimensional action spaces. DDPG is an off-policy, 
model-free algorithm that instead uses the Q-value function 
to estimate the policy gradient. 

Specifically, DDPG keeps a parameterized policy 
network, known as the actor, which deterministically maps 
states to actions. The other component of the algorithm is a 
critic network, which behaves as the Q-value function used 
in DQN. The actor is then trained using gradients from the 
critic, and the critic is trained by minimizing the difference 
between the expected discounted rewards if the greedy actor 
policy is followed, and the current Q-value assigned by the 
critic to the state-action pair. 



  

 

Most DDPG implementations maintain a replay buffer 
to avoid “catastrophic forgetting” of previous transitions. 

Optimization and Machine Learning Toolkit (OMLT) 

The challenge of selecting the action with maximum Q-
value from a given neural network (NN) can be viewed as 
optimization over a trained neural network (the neural 
network parameters are fixed during an RL step). We 
propose to address this using the Optimization and Machine 
Learning Toolkit (OMLT), an open-source package for 
optimization over pre-trained machine learning models 
(Ceccon et al., 2022).  

OMLT enables engineers and optimizers to easily 
translate learned machine learning models to optimization 
formulations. OMLT 1.0 supports GBTs through an ONNX 
(https://github.com/onnx/onnx) interface and NNs through 
both ONNX and Keras interfaces. OMLT transforms pre-
trained machine learning models into the Python-based 
algebraic modeling language Pyomo (Bynum et al., 2021) 
to encode optimization formulations. The literature often 
presents different optimization formulations as competitors, 
but in OMLT, competing optimization formulations 
become alternative choices for users. 

DDPG with Deterministic Optimization of NNs 

Pseudocode of our proposed OMLT-DDPG algorithm 
is presented in Figure 1. OMLT-DDPG preserves properties 
of the DDPG algorithm, but is extended for CMDPs and 
benefits from deterministic optimization of trained NNs. 

 

 
 

Figure 1. OMLT-DDPG Algorithm 

The algorithm is initialized with actor and critic neural 
networks, as well as target actor and critic networks. For 
each episode the agent observes the initial state and 

executes the policy defined by the actor network, storing 
transitions in the replay buffer. The algorithm then samples 
a batch of transitions of length 𝑁 and updates the critic 
network against the target network. 

Up to this point, our algorithm closely resembles 
DDPG. However, the original DDPG uses the negative 
value of the critic for a given state-action pair as the loss for 
training the actor. DDPG-OMLT instead uses the optimal 
actions obtained by optimizing the critic network in OMLT, 
subject to the problem constraints. Interestingly, the 
algorithm preserves the theoretical properties of the policy 
gradients used in DDPG, if the optimal actions are obtained 
by optimizing for the gradients of the critic network (this is 
the case if a gradient-based optimizer such as ipopt is used).  

Note that this comprises solving one constrained 
optimization problem for each sample from the replay 
buffer. Therefore, we use the predicted action from the actor 
as the initial guess to expedite optimization. We 
hypothesize that in the initial stages of training the actions 
chosen in this manner will be suboptimal, as the critic is not 
accurate enough to “critique” state-action pairs accurately. 
Nevertheless, this may prove beneficial for exploration. 
Given the above, we introduce a warm-up period 𝜎, where 
only the actor is fixed and only the critic is updated. 

Following the actor and critic updates, the target 
networks are also updated using soft updates, i.e., only a 
certain portion τ of the weights are updated. Lillicrap et al. 
(2016) found this to improve stability.  

Algorithm 2: SAFE 

The above DDPG-OMLT algorithm promotes safe 
exploration and exploitation by always incorporating 
environment constraints when optimizing over the critic 
network to select optimal actions. However, when used in 
deployment, the actor can still give an action that results in 
constraint violation. This section describes an algorithm, 
SAFE, that explicitly enforces constraints in deployment. 

Usually, in an actor-critic setting the actor network 
gives the action to take (as suggested by the name). OMLT 
enables us to directly use the critic network to choose the 
optimal actions at each state, which guarantees constraint 
satisfaction and high rewards. The pseudocode that 
describes this can be found in Figure 2. 

A key different between OMLT-DDPG and SAFE is 
that OMLT-DDPG uses the constraint values in the 
previous timestep to evaluate the actor (after the action has 
been taken), while SAFE uses the constraint values in the 
current timestep to only take an action that is feasible. If an 
actor network is available, this can be used to provide initial 
guesses to the optimization algorithm. 

 



  
 

 

 
 

Figure 2. SAFE Algorithm 

We note that SAFE is model-agnostic, meaning that it 
can use any state-action value neural network, as long as the 
activation functions used in the neural network are 
supported by OMLT. While we only test SAFE with the 
critic models from OMLT-DDPG, any Q-value neural 
network that uses a state-action pair as input can 
theoretically be used in this framework. 

Computational Results 

We employ the multilevel supply chain case study from 
OR-Gym to test OMLT-DDPG and SAFE. We further 
implement TRPO, CPO, and RCPO as baselines for 
comparison.  

Description of Environment 

We select a supply chain inventory management 
problem from OR-Gym (Hubbs et al., 2020) as the 
environment for our experiments. The model comprises a 
supply chain with multiple levels organized in a tree-like 
structure from production nodes to distribution and retail. 
The agent must place replenishment orders at nodes 
throughout multiple levels of a supply chain, subject to lead 
times and uncertain customer demand at retail nodes.  

Each episode has a predetermined length, and there are 
no conditions for early termination. Inventories are subject 
to capacity constraints, with excess incurring a penalty cost. 
Likewise, penalties are incurred for unmet customer 
demand. Given the above, a single interaction between the 
agent and the environment comprises the following steps: 
 

1. Each node gives replenishment orders to upstream 
nodes (constrained by available inventory).  

2. Replenishment orders are shipped with lead times. 
3. Demand is generated at retail nodes and is either 

met by available inventory or backlogged. 
4. A holding cost is charged for surplus inventory. 
 
The reward function at each step is computed as the 

sales revenue, less the procurement and operating costs, as 
well as costs associated with unfilled demand and holding 

inventory. Our constrained formulations enforce the 
capacity limits for the inventories at modeled nodes. 

A three-level supply chain is selected, and algorithms 
are run for 150 episodes, except for RCPO, which required 
significantly more episodes to converge. Uncertainty is 
introduced by customer demand, which we model using a 
Poisson distribution with mean of 20. Each experiment is 
repeated with five random starts. Note that we have used a 
variant of the environment with backlog instead of lost 
sales. The latter would simply incur a penalty whenever 
demand is not met in a particular period.  

DDPG is typically run with a lower learning rate for the 
actor than for the critic, allowing the two to converge on 
different “timescales.” However, we found OMLT-DDPG 
to benefit from a faster learning rate for the actor, and we 
set the actor and critic learning rates to, respectively, 0.005 
and 0.001. We used a batch size of 8, sampled from a replay 
buffer size of maximum 35000. We found a strong tradeoff 
between performance gain and computational time related 
to the batch size. We use a batch size of 40000 for CPO and 
TRPO. 

Safe Reinforcement Learning Results 

Figure 3 and Table 1 compare the performance of the 
various algorithms through 150 episodes. TRPO, CPO, and 
RCPO exhibit more stable behavior, while OMLT-DDPG 
seems to fluctuate. This can be attributed to the stability 
associated with enforcing constraints on maximal KL 
divergence between policy updates. However, OMLT with 
warm-up achieves rewards only 6% and 28% lower than 
CPO and TRPO, respectively, which is noteworthy as 
OMLT-DDPY uses 1334x fewer samples. This may be 
attributed to the information gain from the use of 
deterministic optimization. Indeed, OMLT-DDPG achieves 
a reward of 200 after only four episodes, and this steep 
learning curve is consistent in our experiments, suggesting 
behavior as a “few-shot” learner. 

 

 
Figure 3. Training rewards in supply chain case study. 



  

 

Table 1. Training performance for supply chain 
case study 

 OMLT 
DDPG 

OMLT 
DDPG 
(NW) 

CPO TRPO RCPO 

Reward 
(× 10!" 
final 20 
ep.) 

316.1 
±70.0 

223.6 
±129.1 

323.7
±17.7 

386.4
±8.6 

288.5
±34.5 

Penalties 
(final 20 
ep.) 

3052 
±2507 

212 
±301 

2727 
±216 

2023 
±676 

47±67 

CPU 
Time 

~3h ~3.5h ~1h ~1h ~0.1h 

Samples 4500 4500 6 mil 6 mil 45000 
 
In this experiment, the incorporation of the warm-up 

period does not seem to help OMLT-DDPG; however, more 
experiments documenting when the warm-up period helps 
are provided in our presentation. In general, the lack of 
warm-up period results in more aggressive behavior by the 
agent. Figure 4 compares how close the orders at the first 
supply chain node are between the implementations of 
OMLT-DDPG with and without a warm-up period. Without 
a warm-up period, the actor initially takes more varied 
actions, but eventually settles to a more conservative 
operating regime.  This is partially explained by the Q-value 
distributions of the critic: without warm-up, the distribution 
is relatively flat, but with warm-up, we found the critic to 
(at least initially) overvalue actions with high means.  
 

 
Figure 4. Distance to constraint for the first node for 

OMLT-DDPG with and without a warm-up period. 

Safe Deployment Results 

To simulate safe deployment in production, we deploy 
the models trained after the 150 episodes. For OMLT-
DDPG without warm-up, we use a snapshot of the models 
from episode 65, after which the models seem to overfit the 
environment. Deployment of the algorithms in production 
is simulated by using the learned models subject to new 
random episodes without further training. The rewards and 

penalties incurred by using these trained models to operate 
the supply chain are shown in Figure 4 and Table 1. 

 

 
Figure 5. Rewards and penalties incurred during safe 

deployment in supply chain case study. 

Table 2. Deployment performance for supply 
chain case study 

 OMLT 
DDPG 

SAFE CPO TRPO RCPO 

Reward 
(× 10!") 
 

433.9 
±23.9 

365.0 
±35.4 

359 
±10.1 

340.7 
±9.3 

280.8
±19.3 

Penalties 
(× 10!") 

40.3 
±21.8 

0±0 48.0 
±8.8 

19.2 
±5.8 

36.3 
±2.5 

 
Figure 4 and Table 2 show that OMLT-DDPG 

outperforms the other algorithms in terms of rewards; it also 
obtains smaller penalties. Compared to CPO, OMLT-
DDPG achieves 21% higher rewards and 20% less penalties 
in deployment. The SAFE algorithm results in more 
unstable rewards, but is the only algorithm to not 
accumulate any penalties during deployment. This 
demonstrates the value of explicitly enforcing process 
constraints during reployment of RL. 

Conclusions 

This presentation introduces two algorithms, OMLT-
DDPG and SAFE, for safe reinforcement learning and 
deployment, based on constrained optimization over trained 
critic networks. The first algorithm uses an actor-critic 
framework; constrained optimization over the critic 
network is used to provide targets on which the actor is 
trained. We show that this algorithm is very sample 
efficient, resembling behavior of a “few-shot” learner. The 
second algorithm uses constrained optimization over a pre-
trained critic network to explicitly enforce process 
constraints during deployment.  
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