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Abstract 

The energy system transition towards net-zero greenhouse gas emissions involves multiple decision 

makers. While greenhouse gas mitigation targets must be jointly achieved, the decision makers are 

primarily interested in minimizing their individual cost of energy supply. The competing interest of 

decision makers are commonly neglected in optimization models of the energy system transition. To 

overcome this shortcoming, we model the energy system transition as a multi-leader-single-follower 

game: In our model, individual decision makers develop investment strategies in shared electricity and 

carbon markets. We formulate the game as a bilevel optimization problem that reflects the multi-level 

nature of the decision-making process. We find an equilibrium solution to the multi-leader-single-follower 

game by applying the Gauss-Seidel method. Our case study of the European electricity system shows that 

the bilevel optimization problem results in a transition pathway with higher capacity expansion compared 

to a centralized approach. Further, the average market clearing price and the spread of locational market 

clearing prices are lower. As a result, overall costs are reduced when considering trading and carbon 

allowance costs on top of the investment and operating costs. Hence, considering competition and market 

behavior is vital in modeling the energy system transition. 
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Introduction

Multiple countries and international organizations intend to 

reach net-zero emissions before 2050, e.g., the European 

Union with the European Green Deal (European 

Commission, 2019). To steer the energy system transition 

towards affordable and low-carbon systems, energy system 

modeling is essential for policymakers. Typically, optimal 

transition pathways for the energy system are determined, 

 
† These authors contributed equally 
* To whom all correspondence should be addressed 

minimizing cost while meeting environmental constraints 

such as greenhouse gas (GHG) emission limits.  

Such energy system models often assume a central 

planner for capacity expansion and operation decisions 

(Savvidis et al., 2019). However, in reality, multiple 

decision makers determine the capacity expansion and 

follow individual, possibly conflicting interests. 



 

 

Furthermore, the production and subsequent transmission 

of power is determined on markets instead of by a central 

planner. Consequently, the central planner approach 

predicts an unrealistic behavior of decision makers and can 

underestimate social welfare costs (Panos et al., 2017) and 

miss environmental targets.  

As an alternative to centralized optimization, the 

energy system transition including decision makers and 

markets, can be modeled as a multi-leader-single-follower 

game and formulated as a bilevel optimization problem: In 

the investigated game design, the decision makers act as 

competitive leaders making initial capacity expansion 

decisions to which the common electricity market reacts as 

a follower, considering environmental constraints.  

Bilevel optimization has been applied to capacity 

expansion problems to model the interaction between 

decision makers and markets. However, bilevel 

optimization has only been applied to stylized energy 

systems (Kazempour et al., 2011; Taheri et al., 2017; 

Wogrin et al., 2013a; Wogrin et al., 2013b; Wogrin et al., 

2020) or to case studies based on small real-world systems 

(Panos et al., 2017; Rocha et al., 2015) with few decision 

makers due to modeling complexity.  

For example, Panos et al. (2017) consider investment 

decisions of countries at the upper level and strategic 

trading with market power in the common market at the 

lower level. In a case study, the authors demonstrate the 

impact of the market power on cost using a model limited 

to 5 decision makers and two timesteps. Rocha et al. (2015) 

model a cap-and-trade system, where 4 players optimize 

their capacity expansion under a cap-and-trade program in 

a 9-node network model of Northern Illinois. In their model, 

players choose between predefined capacity expansion 

plans. Wogrin et al. (2020) obtain substantial cost and 

capacity differences when comparing a centralized to a 

bilevel optimization in an illustrative example.  

Hence, bilevel optimization is already applied to 

investigate competition between decision makers and 

market interactions in capacity expansion problems. 

However, the impact of competition and markets on energy 

system transition pathways has not been investigated in case 

studies on continental-scale energy systems.  

In this work, we formulate a bilevel optimization 

problem for the capacity expansion in the European energy 

system considering national decision makers that interact in 

a common electricity market with a GHG emission 

constraint. We further combine the Gauss-Seidel method 

with an efficient mixed-integer linear programming single-

level reformulation to determine an equilibrium solution of 

the bilevel optimization problem. Our case study compares 

the European electricity system transition pathway resulting 

from our bilevel optimization problem to the common 

centralized optimization problem. In particular, we quantify 

the differences in costs and market clearing prices. We thus 

isolate the impact of competition and markets on the energy 

system transition of a continental-scale energy system.  

Conceptual bilevel formulation & solution approach 

The transition pathway of the multi-national energy 

system consists of consecutive investments of the decision 

makers within a transition horizon. Each decision process is 

modeled as a multi-leader-single-follower game. In the 

game setup, the investment decision makers are the leaders, 

and the energy market is the common follower determining 

the operation of the power plants. We assume that the 

leaders have perfect knowledge of the other players’ 

strategies for their decision-making and are engaged in a 

noncooperative game for which we seek a Nash equilibrium 

(Facchinei and Kanzow, 2010).  

Wogrin et al. (2020) provide an overview of solution 

methods and challenges in solving bilevel optimization 

problems in energy system modeling. In this contribution, 

we apply the Gauss-Seidel method to solve the multi-

leader-single-follower game. We first divide the multi-

leader-single-follower game into individual single-leader-

single-follower Stackelberg games by assuming fixed 

investment strategies for all but one decision maker. The 

decision maker is assumed to have complete knowledge of 

the market behavior. Hence, in each investment period, we 

formulate the single-leader-single-follower problem as a 

bilevel optimization problem (Eqs. (1)-(6)) for each 

decision maker 𝑛̅ ∈ 𝒩. 

 

 min
𝒙𝑛̅,𝒚

        𝐶𝑛̅
tot =    𝐶𝑛̅

inv(𝒙𝑛̅) + 𝐶𝑛̅
op(𝒚)        

+ 𝐶𝑛̅
trade(𝒚, 𝑐𝑛,𝑡

el ) + 𝐶𝑛̅
CO2 (𝒚, 𝑐E) 

(1) 

s.t.       𝒇𝑛̅(𝒙𝑛̅) ≤ 𝟎 (2) 

 𝒚 ∈ arg min
𝒚′

∑ 𝐶𝑛
op

𝑛∈𝒩

(𝒚′) (3) 

s.t.   𝑃𝑛,𝑡
dem + 𝑃𝑛,𝑡

exp
− 𝑃𝑛,𝑡

imp
− 𝑃𝑛,𝑡

gen
− 𝑃𝑛,𝑡

curt = 0 ∶ 𝑐𝑛,𝑡
el , (4) 

 ∀ 𝑛 ∈ 𝒩, 𝑡 ∈ 𝒯  

 ∑ 𝐸𝑛
op

≤

𝑛∈𝒩

𝐸op,max + 𝐸S ∶ 𝑐E (5) 

 𝒈(𝒚′, 𝒙𝑛) ≤ 𝟎 (6) 

 

The objective function in the upper level (Eq. (1)) 

depends on both upper-level variables 𝒙𝑛̅ and lower level 

variables 𝒚 and includes the investment cost 𝐶𝑛̅
inv, operating 

cost 𝐶𝑛̅
op

, electricity trading cost 𝐶𝑛̅
trade, and the emission 

cost 𝐶𝑛̅
CO2 of the considered decision maker 𝑛̅.  

The investment cost and operating costs in the upper-

level objective depend on the investment decisions and the 

operation of the generation units of the considered decision 

maker 𝑛̅. In addition, the objective includes trading and 

emission costs that depend on the electricity price 𝑐𝑛,𝑡
el  and 

the carbon allowance price 𝑐E that are formed in the 

respective markets in the lower level. 

The constraints in the upper level (Eq. (2)) represent 

the capacity expansion limits for the considered decision 

maker 𝑛̅. 

The objective of the electricity market (Eq. (3)) is the 

minimization of social welfare costs. Hence, the joint 

operating costs of all power plants for satisfying the 



 

 

inelastic electricity demands are minimized, assuming 

known investment strategies and plant availabilities of all 

decision makers 𝑛 ∈ 𝒩 (Eq. (3)). 

The trading on the electricity market needs to satisfy 

the electricity demands. Hence, an energy balance equation 

is included (Eq. (4)), where the demand 𝑃𝑛,𝑡
dem and the 

electricity exported to other decision makers 𝑃𝑛,𝑡
exp

 need to 

equal the sum of generated electricity 𝑃𝑛,𝑡
gen

, electricity 

imported from other decision makers 𝑃𝑛,𝑡
imp

, and curtailed 

electricity demand 𝑃𝑛,𝑡
curt for all decision makers 𝑛 ∈ 𝒩 in 

all considered time steps 𝑡 ∈ 𝒯. We assume zonal pricing of 

electricity with one bidding zone per decision maker. The 

dual variable corresponding to the energy balance is the 

locational market clearing price of electricity 𝑐𝑛,𝑡
el  and is 

considered in the trading cost of the leader’s objective 

function. The curtailed electricity demand is a slack variable 

penalized heavily in the objective of the electricity market. 

As emission trading enforces increasingly strict GHG 

emission limits, the GHG emissions of all countries are 

limited to a maximum value 𝐸op,max  (Eq. (5)). The slack 

variable 𝐸S  is heavily penalized in the operating costs of 

both upper and lower-level objectives. The dual variable 

corresponding to the GHG emission constraint is the carbon 

allowance price 𝑐E and is also considered in the upper level 

when determining the carbon allowance cost of the leader. 

Additional technical aspects of the energy system are 

modeled using lower-level constraints (Eq. (6)), including 

operating limits of generation units, and the DC-load-flow 

model for transmission (Overbye et al., 2004). 

To solve problem (Eqs. (1)-(6)), the bilevel problem is 

first reformulated to a single-level mathematical problem 

with equilibrium constraints via strong duality. We linearize 

the bilinear terms resulting from the reformulation via 

binary expansion with 6 sampling points (Pereira et al., 

2005), arriving at a mixed-integer linear program that can 

be solved using commercial solvers. 

The Gauss-Seidel method is initialized using the 

solution of the centralized optimization. Then, we solve the 

bilevel optimization problem (Eqs. (1)-(6)) sequentially for 

each decision maker 𝑛 ∈ 𝒩 in the Gauss-Seidel method to 

obtain an equilibrium solution. After each iteration, the 

investment strategies of all other decision makers is updated 

with a damping factor until the investment strategies 

converge to a Nash equilibrium. The Gauss-Seidel method 

is not guaranteed to converge towards a Nash-equilibrium 

but is effective in the considered case study. However, the 

application of the Gauss-Seidel method to models with a 

larger number of players and higher model complexity is 

limited by computation time. 

After the convergence of the investment strategies, the 

new capacities are added to the existing capacities of the 

decision makers. The multi-leader-single-follower game is 

repeated for the next investment period until the final 

investment period of the transition horizon is reached.  

Case study: European energy system transition 

Our case study investigates the impact of competition 

and markets in an optimization model of the European 

energy system transitioning to net-zero GHG emissions. We 

consider a transition horizon until 2050, starting from 2015 

with investment decisions every 5 years. We select 2015 as 

the initial year due to the availability of data. 

The case study includes the 21 countries in the Multi-

Regional Coupling project (Gomez et al., 2019) that are also 

part of the European Union as decision makers , i.e., leaders. 

The countries are modeled as nodes connected by a 

transmission grid (Figure 1). The common electricity 

market with a shared GHG emission constraint is 

considered the follower in the bilevel optimization problem. 

 

 

  
Figure 1: Existing generation capacities in the initial year 

of the transition pathway (2015) and cross-border 

transmission lines.  

We model 10 electricity production technologies with 

country-specific capacity expansion limits. Further, we 

include existing capacities in the initial year of the transition 

pathway. As conventional energy converters, we include 

hard coal, lignite, natural gas, and nuclear power plants. As 

renewable energy converters, we include onshore and 

offshore wind, photovoltaics, concentrated solar power, 

run-of-river hydropower, and geothermal power plants. The 

inclusion of additional sectors of the energy system, such as 

heating and transport, could be investigated in future work 

to acknowledge the increasing sector coupling. 
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We formulate the bilevel and the centralized 

optimization problem, assuming the same cost and technical 

parameters. We thus isolate the impact of competition and 

the shared market on the transition pathway, which are 

considered in the bilevel optimization problem but 

neglected in the centralized optimization.  

The cost and technical parameters are obtained from 

the sources below. The reference year of all sources is 2015, 

except for the electricity demand data by ENTSO-E, for 

which the most recent data from 2017 is selected: 

• existing capacities in 2015 (Mantzos et al., 2018) 

and the respective construction years (European 

Commission, 2016; Mantzos et al., 2019) 

• capacity expansion limits (Ruiz et al., 2019) 

• capital and operational expenditures, fuel prices 

(European Commission, 2016; Mantzos et al., 2019)  

• fossil power plant efficiencies (Eurostat, 2021) 

• availability of volatile generators (Gonzalez 

Aparicio et al., 2017) 

• net-transfer capacities for cross-border transmission 

(ENTSO-E, 2021). 

To model operational GHG emissions, we apply the 

life-cycle assessment methodology  (DIN EN ISO 

14044:2018-05, 2018; DIN EN ISO 14040:2021-02, 2021). 

The operational GHG emissions are obtained from the life-

cycle inventory database ecoinvent 3.7.124 APOS (Wernet 

et al., 2016), using the life-cycle inventories of Baumgärtner 

et al. (2021). As life-cycle impact assessment method, we 

employ Environmental Footprints 2.0 (Fazio et al., 2018). 

To reduce computation time, we represent the annual 

time series using 10 typical time steps without temporal 

coupling. We determine the typical time steps using 

hierarchical clustering of the original time series (Kotzur et 

al., 2018).  

Comparison of cost & market clearing price 

The total cost (Eq (1)), including the annualized 

investment and operating costs and the trading and carbon 

allowance costs, are significantly lower for the bilevel 

optimization compared to the centralized optimization 

during the transition horizon (-8 % to -19 %) (Figure 2). 

The bilevel objective of each country explicitly 

accounts for the trading and carbon allowance costs. 

However, trading and carbon allowance costs are neglected 

in the centralized optimization. For comparison with the 

bilevel optimization, we evaluate the trading and carbon 

allowance costs retrospectively by solving the bilevel 

optimization problem with upper-level variables fixed to the 

solution of the centralized optimization problem. 

The total cost difference increases towards the end of 

the transition pathway and is dominated by trading costs 

(Figure 2). The total cost differs more due to a greater 

spread of locational market clearing prices and a higher 

average market clearing price in the centralized 

optimization compared to the bilevel optimization (Figure 

3). On average, the European market clearing price is 40 % 

lower in the bilevel optimization than in the centralized 

optimization problem.  

While the centralized optimization neglects trading 

costs, the bilevel optimization incentivizes countries to 

reduce trading costs as part of the objective function 

(Eq. (1)). Consequently, countries adjust their capacity 

expansion strategies to lower the need for costly electricity 

imports: In result, generation capacities in the bilevel 

optimization are 3 % higher than in the centralized 

optimization in 2050. Lower electricity imports also reduce 

grid congestion which further reduces the spread of market 

clearing prices and arbitrage. 

The spread of average locational market clearing prices 

is lower in the bilevel optimization problem compared to 

the centralized optimization (Figure 3). The standard 

deviation of the countries’ locational market clearing prices 

increases from 7.7 EUR/MWh to 55.7 EUR/MWh in the 

centralized optimization from 2015 to 2050. With the 

introduction of competition between countries in the bilevel 

optimization, the market clearing prices converge, resulting 

Figure 2: Total costs along the transition pathway for the bilevel optimization (left) and the centralized optimization (right). 

Trading and carbon allowance costs are not part of the objective function of the centralized optimization. For comparison, 

the trading and carbon allowance costs are evaluated retrospectively. 



 

 

in an almost 4 times lower standard deviation of 

14.2 EUR/MWh in 2050. 

Centralized optimizations commonly choose the 

annualized investment and operating cost as the objective 

function. The centralized optimization underestimates the 

annualized investment and operating cost of the energy 

system transition as ideal cooperation is assumed between 

countries to satisfy electricity demands and meet global 

GHG emission limits. The underestimation increases with 

time, reaching a difference of -7 % compared to the bilevel 

optimization in 2050. Thus the centralized optimization 

neglects trading and carbon allowance costs in its objective 

and also underestimates annualized investment and 

operating costs compared to the bilevel optimization. 

Conclusions 

This contribution demonstrates the impact of modeling 

decision-making processes on optimized transition 

pathways of energy systems. We apply bilevel optimization 

to the transition planning of continental-scale energy 

systems to model multiple decision makers acting in a 

common electricity market with a GHG emission constraint 

as opposed to the common central-planner paradigm.  

The multi-level decision-making in the energy system 

transition is modeled the energy system transition as a 

multi-leader-single-follower game. The multi-leader-

single-follower game is solved by the Gauss-Seidel method. 

The resulting bilevel optimization problems are first 

reformulated to a single-level optimization problem via 

strong duality and then linearized using binary expansion to 

obtain a mixed-integer linear programming formulation.  

We apply our method to a case study of the European 

electricity system transition. We compare costs and 

electricity prices resulting from the bilevel optimization and 

the commonly-used centralized optimization, which 

neglects markets and assumes perfect cooperation. 

In our case study, the centralized optimization 

substantially underestimates annualized investment and 

operating cost (-7 %), which is a common objective 

function in centralized optimization. The annualized 

investment and operating cost is underestimated as the 

centralized optimization assumes perfect cooperation of all 

decision-makers and neglects markets. In addition, the total 

cost is lower in the bilevel optimization because it reflects 

the trading and carbon allowance costs on top of annualized 

investment and operating cost.  

The bilevel optimization further yields an on average  

40 % lower European market clearing price and an almost 

4 times lower standard deviation of locational market 

clearing prices in 2050 compared to the centralized 

optimization. The lower market clearing prices are due to 

the introduction of competition between countries and their 

interaction in the electricity market. The competition and 

market interactions increase the overall generation capacity 

by 3 % until 2050.  

The substantial impacts of market effects and 

competition between decision makers cannot be captured by 

the central-planner approach, which is commonly used in 

energy system transition planning. As both competition and 

market effects exist in real-life energy systems, our results 

underline the need to consider competitive, market-based 

decision-making in the modeling of the energy system 

transition. 
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