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Abstract 

Kidney failure patients in the intensive care unit (ICU) require acute renal replacement therapy (ARRT). 
Hypotension commonly occurs during hemodialysis, a common ARRT, and is associated with premature 
termination of therapy and increased mortality. There is a critical need to develop personalized treatment 
support for hemodialysis that can avert hemodynamic instability and achieve individualized fluid removal 
goals. In this paper, a dynamic risk forecasting model was trained and validated on a population receiving 
hemodialysis at UPMC. The dynamic risk model demonstrated distinct differences in absolute risk and 
escalation in risk between hypotensive and normotensive hemodialysis sessions. A decision tree analysis 
derived a small set of risk states from the dynamic risk scores and predictive clinical variables. Q-learning 
was used to learn the optimal treatment policy for the finite state-action space, utilizing personalized risk 
as intermittent feedback to the agent for its actions. The learned policy could provide individualized 
treatment guidance to caretakers during hemodialysis and is a critical step towards improving renal 
replacement therapy outcomes.  
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Introduction
 
Intradialytic hypotension (IDH) occurs in 4%-30% of 

hemodialysis sessions (Kuipers et al., 2019). IDH is an 
independent predictor of mortality (Silversides et al., 2014), 
so it is important that clinicians can identify patients that are 
at high risk of hypotension and when hypotension will 
occur. Machine learning (ML) algorithms have been studied 
in several clinical settings involving early prediction of 
IDH. One such ML-derived early warning system for 
elective noncardiac patients under general anesthesia 
(Wijmberge et al., 2020) significantly decreased the 
incidence of hypotension during surgery. A different study 
(Yoon et al., 2020) built a hypotension forecasting model 
on ICU patients using a random forest algorithm. This risk 
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model was coupled with a practical alert system to predict 
hypotension an hour before it occurs. The model predicted 
80% of hypotensive events 15 minutes prior to occurrence 
and 60% of hypotensive events 60 minutes prior to 
occurrence (Yoon et al., 2020). Despite these advances in 
alert models, there is still a need for a treatment model that 
intelligently learns and suggests optimal treatment to 
clinicians to avoid IDH and other downstream 
consequences.  

Reinforcement learning (RL) is one possible solution to 
fill this technology gap. A RL algorithm uses an agent to 
learn an optimal policy that maximizes process rewards. 
The application of reinforcement learning in a healthcare 
context has the advantage of not requiring a model to learn 



 

an optimal treatment policy. RL algorithms have been 
applied to several healthcare situations, including sepsis 
(Komorowski et al., 2018), cancer (Padmanabhan et al., 
2017), and anesthesia control (Padmanabhan et al., 2015), 
and have been successful in learning generalizable policies 
by optimizing a mixture of intermediate and terminal 
rewards. However, there are no existing reinforcement 
learning algorithms that have been developed specifically 
for dialysis or ARRT.  Additionally, in modern RL-derived 
therapy and in clinical practice, the agent and clinician react 
to overt signs of patient instability. For example, during 
hemodialysis, clinicians take actions when a patient exhibits 
large changes in blood pressure from their individual 
baseline.  We propose that an RL algorithm based on the 
projected risk of a future adverse clinical event could 
provide optimal treatment recommendations that improve 
patient outcomes by acting preemptively based on predicted 
patient instability.  
     In this paper, we develop an RL-based algorithm that 
recommends preemptive, personalized treatment for 
hemodialysis patients based on the patient’s risk of future 
hypotension. First, a hypotension risk forecasting model 
was developed that was clinically interpretable and 
specifically applied to a hemodialysis population. Then, the 
risk model was used to construct a discrete state space that 
was coupled with a set of common clinical interventions to 
form a small, finite state-action space. The RL agent used 
risk-rewards as guidance to learn the optimal policy offline 
from a patient dataset. Thus, the agent learns to react to 
intradialytic hypotension preemptively,  which could 
potentially lead to improved outcomes in the dialysis 
population.  
 
Materials and Methods 
 
Study Population and Collected Dataset 

A cohort of 277 patients that underwent hemodialysis at 
UPMC were selected for analysis. 140 of these patients 
experienced dialysis hypotension, clinically defined as 
systolic blood pressure (SBP) < 90 mmHg and mean arterial 
blood pressure (MAP) < 65 mmHg, which was an 
independent predictor of mortality (p < .05, chi-squared 
test). Vitals, labs, and demographic information available 
for each hemodialysis session (n=1685) were collected 
from electronic health records (EHR). A dataset that 
included patient vitals, labs, underlying disease history, and 
indicators of prior hypotension was constructed and used as 
input to the risk prediction model. Additional vital signal 
features, such as minimum, maximum, slope, and linear 
weighted moving average (LWMA), were derived using the 
past 30 minutes of vitals time series data and appended to 
the constructed dataset. Sample features (n=89) were 
obtained or computed each minute; when data availability 
was limited, the last observation carried forward (LOCF) 
approach was used. Samples of the constructed dataset thus 
described candidate static and dynamic features available 
every minute for risk prediction. 
 

Risk Model Training and Evaluation  
A risk prediction model was developed by training and 

testing a random forest model using n=253 hypotensive 
hemodialysis sessions (HS) and n=1432 nonhypotensive 
hemodialysis sessions (NHS). Featurized data samples, 
available at each minute of hemodialysis, were randomly 
selected from NHS and at the time of hypotension from HS 
to train and test the model. The selected samples were split 
into a train (n=1128, 67%) and test set (n=557, 33%). Model 
parameters of the random forest were tuned by repeating  
stratified k-fold cross-validation (k=3) on the train dataset 
with a set of possible parameter values. Specifically, the 
model was trained using k-1 folds, and its prediction 
performance was evaluated on the remaining (validation) 
fold. Training and evaluation were repeated k times until 
each fold was used for validation. Tuned random-forest 
model parameters included: maximum tree depth (n=3), 
maximum features considered for node splitting (n=17), and 
number of trees in the forest (n=100). The model that 
maximized the average area under the receiver operating 
characteristic (ROC) curve across the validation folds was 
selected for further evaluation on the test dataset.   

The trained random forest model was applied to minute-
to-minute featurized raw data for hemodialysis sessions in 
the test dataset (n=557), providing dynamic absolute risk 
(probability) of hypotension. To further evaluate the clinical 
validity of the risk model, minute-to-minute risk trajectories 
in the timespan leading up to hypotension were produced 
for HS (n=84) and NHS (n=473) from the test dataset. The 
hypothetical hypotension onset time for NHS was chosen 
such that the distribution of hypotension onset times, 
relative to the start of hemodialysis, matched the 
distribution of real hypotension onset times from HS. 
Additional risk trajectories were produced and analyzed, 
beginning 30 minutes before the start of hemodialysis until 
the time of hypotension.  
 
A Markov Decision Process Model of Hemodialysis 

The hemodialysis process was modeled as a finite 
Markov decision process defined by a set of states, S, a  set 
of actions, A(sk), a set of rewards R, and a probability 
transition function P(sk+1|sk,ak), which represents the 
probability of transitioning from state sk ∈	S	  to state sk+1 
when action ak ∈	A is taken (Sutton and Barto, 2018). At 
each timestep k during hemodialysis, the agent (physician) 
takes an action ak, and the patient transitions to a new state 
sk+1, which is observed by the agent 15 minutes later. The 
agent is then rewarded rk+1 ∈	R if taking action ak in state sk 
results in decreased personalized risk of hypotension.  
 
MDP States (S) 

The states of the MDP were derived using a data-driven 
approach, using the patients’ physiological features and 
their projected absolute risk (AR) calculated by the random 
forest model. Input features (n=89) and the projected risk 
from the random forest model were extracted from each 
hemodialysis session every 15 minutes up to, but not 
including, the time of intradialytic hypotension. The 



 

decision trees (n=100) of the random forest recursively 
partitioned subsamples of the dataset, using entropy 
reduction to measure the quality of the split by a feature at 
each decision tree node. The decrease in entropy resulting 
from partitioning the dataset with a given feature was 
calculated for each decision tree, and then averaged across 
the decision trees in the random forest. 8 of the 89 features 
with the highest average reduction in entropy were selected 
to be used for state space development. Features chosen 
include: current-time SBP, MAP, and diastolic blood 
pressure (DBP); minimum and past 30 minute LWMA of 
systolic blood pressure (SBP) and mean arterial pressure 
(MAP) measurements; and the slope of SBP over the past 
30 minutes. Two additional risk measures, relative risk (RR) 
and personalized risk (PR), were calculated from the 
absolute risk projected from the model. RR describes 
hypotension risk relative to the average risk of NHS in the 
cohort (Eq. (1)). 

  

𝑅𝑅 =
𝐴𝑅

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐴𝑅	𝑖𝑛	𝑁𝐻𝑆 

 

(1) 

Personalized risk (PR) describes deviation in RR from 
patient’s own RR at the start of the hemodialysis session 
(RR0) (Eq. (2)). 
 
𝑃𝑅 = 𝑅𝑅 − 𝑅𝑅! (2) 

      
The selected physiological features (n=8), PR, and RR 

were used to develop a finite state space. Principal 
component analysis was used to transform the original, 
correlated feature space to 4 principal components that 
describe >90% of data variance (Figure 1).  

 

 

Figure 1.  Eigenvalues and cumulative variance explained 
by the principal components. 

 
Decision tree analysis, using entropy minimization as 

the splitting criterion, was applied to the reduced 
dimensionality dataset to separate high risk feature space, 
in which hypotension was experienced within 15 minutes, 
from lower risk space. The decision tree was applied to the 

dataset (max depth=3) and then pruned from the bottom up, 
removing split points that resulted in the smallest reduction 
in entropy.  The remaining 6 leaves of the tree were used to 
define the risk states, which a hemodialysis patient could be 
assigned to in real time. Two additional terminal states were 
added to the state space, corresponding to hypotension and 
no hypotension.  
 
MDP Actions (A) 

The actions in set A were selected from clinician 
interventions during hemodialysis that would alter patient 
risk of hypotension. These included: i) increasing, 
decreasing, or no change in ultrafiltration rate, ii) 
administering mannitol or albumin bolus, and iii) initiating 
or increasing the rate of delivery of vasopressors. These 
actions were calculated every 15 minutes from start of 
dialysis. An increase or decrease in ultrafiltration or 
vasopressors was defined as at least a 25% increase or 
decrease in flow rate.  
 
MDP Rewards (R) 

The agent is rewarded at timestep k if a patient’s 
personalized risk of hypotension decreased after taking 
action ak on a patient in state sk (Eq. (3)).  

 
𝑟"#$ = −𝑅𝑅![|𝑃𝑅"#$| − |𝑃𝑅"|]                                      (3) 

 
In addition, the agent received a large penalty if an action ak 
in sk resulted in an immediate transition into a hypotensive 
terminal state.  
 
Solving for the Optimal Policy  

Reinforcement learning provided a solution to the MDP, 
where the agent was tasked to solve the MDP with the goal 
of maximizing expected cumulative discounted reward over 
time using suboptimal, stochastic transitions from real 
dialysis trajectories. 

Q-learning is an algorithm that solves the Bellman 
optimality equation (Eq. (4-5)) without a model (Watkins 
and Dayan, 1992). 

  
𝑄% = 𝑟"#$ + 	𝛾max&!"#

𝑄∗( 𝑠"#$, 𝑎"#$) (4) 

 
𝑄∗(𝑠, 𝑎) = 𝔼[𝑄%|𝑠 = 𝑠" , 𝑎 = 𝑎"] (5) 

 
Q*(sk,ak) is the expected cumulative discounted reward for 
taking action ak in state sk and following the optimal policy 
afterwards. Specifically, real transitions were sampled from 
a fixed dataset D = {(sk, ak, sk+1, rk+1)} and the algorithm was 
updated (Eq. (6-8)) using current (Qc) and new (Qn) state-
action value information (Watkins and Dayan, 1992; Lange 
et al., 2020; Padmanabhan et al., 2015). 
 
𝑄( =	𝑄")$(𝑠" , 𝑎")           (6) 
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𝑄")$(𝑠"#$, 𝑎"#$) 

 

(7) 



 

𝑄"(𝑠" , 𝑎") ← 𝑄( + 𝛼[𝑄* − 𝑄(]     
       

(8) 

The learning rate α ∈	[0,1] is the step size and the discount 
factor 𝛾 ∈	 [0,1] represents the present value of future 
rewards and acts as the agent’s horizon. The discount factor 
was set to 𝛾 = 0.10 to reflect a short horizon and urgency to 
decrease personalized risk, and the learning rate was 
decayed according to a linear learning rate schedule (Even-
Dar and Monsour, 2003). Theoretically, Q-learning 
converges to optimal Q* if all state-action pairs are visited 
infinitely often and the learning rate is decayed 
appropriately. Q was initialized to zero and iteratively 
updated until ∆Q < 10-7 between successive iterations. After 
training, the optimal policy π*(s) for a given patient state 
was extracted from Q* using Eq. (9): 
 
𝜋∗(𝑠") = 𝑎𝑟𝑔𝑚𝑎𝑥

&!
𝑄∗(𝑠" , 𝑎") (9)                                  

Results 
 
Risk Trajectories 

Minute-to-minute risk trajectories were generated by 
applying the trained random forest model on the 
hemodialysis sessions in the test dataset (n=557). Figure 2 
depicts the evolution of relative risk for HS and NHS 
beginning two hours ahead of hypotension onset. There is 
distinct separation in average RR (p<.05, two-sample t-test) 
between the HS and NHS 2 hours ahead of event, where the 
average RR of HS is 4 times higher than NHS. This risk 
separation between the two groups increases leading up to 
the time of hypotension. On average, the relative risk of HS 
elevates beginning around 90 minutes prior to hypotension 
and escalates again around 30 minutes prior to hypotension. 
The risk of NHS remains low for the 2-hour period leading 
up to hypothetical hypotension onset.   

Risk trajectories were generated beginning 30 minutes 
prior to hemodialysis initiation for HS and NHS in Figure 
3. There is distinct separation in average risk (p<.05, two-
sample t-test) between the HS and NHS throughout the 

observed period. HS and NHS experience distinct risk 
evolution from hemodialysis baseline. For HS, risk evolves 
from baseline and elevates over the observed period as 
continuous fluid removal induces hemodynamic instability 
on the average HS. Interestingly, NHS experience a slight 
elevation in risk at the start of hemodialysis; however, risk 
remains relatively stable afterward.  This reflects the 
physiological stress induced on all patients upon 
ultrafiltration initiation. The risk trajectories in Figure 2 and 
Figure 3 are clinically relevant descriptions of the evolving 
risk of the average hemodialysis patient with and without 
impending hypotension. Hence, there is a distinct difference 
between the model generated risk trajectories for HS and 
NHS. These risk scores can be incorporated into an RL 
algorithm that could support clinician decision-making to 
avoid hypotension.  
 
Clinician vs. Optimal Policy 

The actual clinician interventions at each timestep and 
across all hemodialysis sessions were collected. The 
optimal policy learned from the RL agent (Eq. (6)) was 
extracted from Q upon convergence and applied to patient 
risk state assignment at each timestep across all 
hemodialysis sessions. The clinician and RL policy were 
compared with respect to hemodialysis session outcome.  

As depicted in Figure 4(a), clinicians most frequently 
made no change in ultrafiltration rate, followed by 
increasing and decreasing filtration rate in HS. 
Administration of albumin or mannitol bolus and initiation 
or escalation of vasopressor dose were infrequent 
interventions taken during hemodialysis 

Conversely, Figure 4(b) demonstrates that the RL agent 
most frequently suggested to decrease ultrafiltration rate, 
followed by initiation or escalation of vasopressor dose and 
no change to ultrafiltration rate. This suggests that the RL 
agent was capable of learning that corrective clinical actions 
such as decreasing ultrafiltration rate and escalation of 
vasopressor dosage were beneficial interventions to 
decrease risk and avert hypotension. 

 

Figure 2. Mean RR trajectory before event shown for 
n=84 HS (dashed line) and n=473 NHS (solid line). 

Shaded gray: 95% confidence intervals. 

 

  

Figure 3. Mean RR trajectory beginning 30 minutes prior 
to start of dialysis shown for n=84 HS (dashed line) and 
n=473 NHS  (solid line).  Shaded gray: 95% confidence 

intervals. 



 

 
Figure 4. Clinician policy relative to hypotensive dialysis outcome (a). RL policy relative to hypotensive dialysis outcome 

(b).  Clinician policy relative to nonhypotensive dialysis outcome (c).  RL policy relative to nonhypotensive dialysis 
outcome (d). Action 0000: no change in ultrafiltration, action 000U: increase in ultrafiltration, action 000u: decrease in 

ultrafiltration, action 0M00: mannitol or albumin bolus, 00P0: initiation or increase in vasopressor dosage. 
 

The clinician and RL policy with respect to NHS are 
shown in Figure 4(c) and Figure 4(d). The clinician policy 
for HS (Figure 4(c)) and NHS (Figure 4(a)) are similar in 
that clinicians most frequently made no change in 
ultrafiltration rate, followed by increasing ultrafiltration rate 
and decreasing ultrafiltration rate. Interestingly, clinicians 
increased ultrafiltration more frequently in HS versus NHS. 
The RL policy suggested corrective actions such as 
decrease ultrafiltration and increasing vasopressor dosage 
less frequently in NHS than in HS. These results support 
that the RL agent is capable of learning personalized, 
preemptive therapy using hypotension risk as feedback 
during the learning process.  

Nevertheless, the RL agent suggested administration or 
increasing vasopressor dosage more frequently than 
clinicians during hemodialysis sessions (Figure 4).  This 
intervention is only taken on hemodialysis patients in the 
intensive care unit (ICU) setting and is typically the final 
measure taken to prevent hypotension. Therefore, the agent-
recommended interventions are aggressive and unlikely to 
be applied as frequently by a clinician. The optimal policy 
derived is deterministic and returns the single best action for 
a state. In cases where multiple actions may have similar 
rewards, this availability of similarly-valued options is not 
considered by the RL algorithm and may explain some of 
the differences between clinician and RL-recommended 

actions. In addition, the characteristics of the state must 
accurately reflect clinical reasoning for taking an 
intervention. To better reconcile RL and clinical actions 
may require extending the state to include history of clinical 
actions or underlying disease mechanism, such that 
recommended optimal actions are more consistent with 
clinician expectation. If a state has a rare, aggressive 
intervention and a less aggressive intervention with 
similarly high expected value, the less aggressive 
intervention could be chosen with greater frequency  
according to a user-defined probability distribution 
(Nanayakkara et al., 2022). Finally, although prevention of 
hypotension is a primary goal of hemodialysis, the ability to 
reach fluid and clearance goals needs to be represented in 
the state and rewards of the MDP.  

 
Clinician vs. RL Treatment Outcomes 

Microsimulations of the MDP using the RL-generated 
optimal policy were produced to evaluate its efficacy in 
reducing incidence of hypotension during dialysis. 
Specifically, 25,000 dialysis trajectories were produced in 
silico by initializing a set of risk states according to their 
distribution observed in the dataset. Then, state transitions 
were generated by applying optimal policy in Eq. 9 and 
producing subsequent states according to the probability 
transition function that was reconstructed from dataset 



 

transitions. Each dialysis simulation was run until 
hypotension occurred or 3.5 hours of treatment time was 
reached.  The RL-generated optimal policy resulted in a 
decrease in occurrence of intradialytic hypotension from 
15.0% to 9.2% in silico. These results support that the 
agent-derived policy could potentially lead to improved 
patient outcomes at the expense of increased use of 
vasopressors.  
 
Summary 

 
A reinforcement learning agent was tasked to learn an 

optimal treatment policy to avoid hypotension in patients 
receiving hemodialysis. A hypotension risk model was 
trained and tested on a dialysis patient cohort from UPMC 
and produced risk score trajectories that captured clinically 
relevant evolution of intradialytic hypotension risk. The risk 
scores from the model were used both as feedback to the 
agent and to define the finite state space of the MDP. The 
agent learned an optimal policy that was clinically 
interpretable, and the suggested policy highlights the 
possible benefits of agent-recommended treatment. 
Simulation of dialysis treatments using the agent-suggested 
policy resulted in decreased incidence of hypotension in 
silico.     
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