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Abstract

Tackling national climate change and infrastructure goals requires the widespread deployment of process technologies
across a large number of decentralized sites with different geographical, environmental, and operational requirements. A
conventional engineering design approach, which would develop unique designs for each potential installation, is time-
consuming and misses valuable opportunities for shared design effort across all the potential installations. To provide
accelerated deployment and simultaneously reduce engineering and manufacturing costs across all installations, we propose
a computationally efficient approach for the simultaneous design of a family of processes. With this approach, we define
the process family as a set of potential installations (or products) where each of these installations has specific design
requirements that need to be met. We then formulate and solve an optimization problem to simultaneously design each
of the processes in the family while exploiting the opportunity for shared designs of selected units or components across
the process family. This approach reduces the time to market, lowers the manufacturing cost of components by exploiting
economies of numbers and learning, and decreases the up-front engineering design effort. Our initial formulation is a
nonlinear generalized disjunctive program that seeks to determine the sizes of each of the common units to manufacture,
while simultaneously solving for the assignment of units to each installation in a way that is feasible and cost optimal. Given
the computational challenges associated with this formulation, we explore two alternative mixed-integer linear programming
(MILP) formulations, one that is based on full-discretization of the design space and another that uses ReLU activated neural
network models as surrogates for the cost and performance functions. ReLU neural networks can be represented exactly
within mixed-integer linear programming formulations, and we use OMLT to import these surrogates into the optimization
framework Pyomo. We demonstrate the computational benefits of these formulations on a family of transcritical CO;
refrigeration cycles to meet a range of design criteria over both cooling capacity and outside air temperature. Our surrogate-
based approach produces designs similar to the full-discretization approach with an order of magnitude reduction in the
number of required simulations to produce the input data.
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Introduction that the biggest challenge surrounding mass deployment of
post-combustion carbon capture systems is the cost of de-

The transformation of the chemical process industry to  velopment and installation for a particular carbon-emitting

tackle environmental and climate concerns requires rapid,
widespread deployment of new process technologies across
a wide range of industrial sites. While research has focused
on development of new technologies and flowsheet optimiza-
tion, economic deployment of these technologies remains a
challenge. For example, Wilberforce et al. (2019) indicate
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site; the technology itself is mature and has been refined for
decades (Wilberforce et al., 2019). Traditional process de-
sign approaches, focused on achieving economies of scale,
seek to independently optimize the design of each installa-
tion, resulting in significant engineering effort and manufac-



turing costs associated with a large number of unique, indi-
vidual designs. This traditional approach is difficult to scale
for widespread deployment across many decentralized instal-
lations.

Profit-enhancing and timeline-reducing opportunities are
present in both engineering design and manufacturing. En-
gineering design costs can be estimated to be approximately
10% (larger projects) and 30% (smaller projects) of the cost
of the plant plus the cost of modifications and improvements
(Towler and Sinnott, 2022). Furthermore, manufacturing a
large number of units that are unique for each installation is
inefficient and misses the opportunity to exploit economies
of learning and reduce per-unit manufacturing costs. Modu-
larity has been well-studied in the process systems engineer-
ing community and can be used to reduce engineering and
manufacturing costs. However, the approach of numbering-
up fails to fully exploit economies of scale and can lead to
sub-optimal designs.

We consider instead the design of multiple processes si-
multaneously, rather than as separate design tasks, building
on ideas from the areas of product family design and plat-
form development. Companies such as Nissan and Renault
(Sanchez and Shibata, 2021), and Boeing, Ford, and Cater-
pillar (Simpson et al., 2014) have expanded their product va-
riety to draw in customers while reducing manufacturing and
design costs, relying on common sub-components or units
shared throughout a set of similar products. We extend these
ideas and present new optimization-based approaches for the
simultaneous design of chemical process families that can
exploit opportunities for shared components while covering
a range of design requirements for a large number of poten-
tial installations. The paper is outlined as follows. We first
present background on modularity and product family de-
sign, and we discuss the concept of optimal process family
design. We then describe three optimization formulations for
process family design. We compare the computational per-
formance and solution quality of two of these formulations
using a case study based on a model for a transcritical CO,
refrigeration cycle from the literature (Li and Groll, 2005).
The model is formulated within the IDAES platform (Lee
et al., 2021) and used to produce the required input data for
the process family design formulations.

Background

Modular manufacturing mass-produces a select set of rel-
atively small units that can be used independently or “num-
bered up” to meet capacity goals (meaning more than one
modular unit is used in parallel to achieve a desired capac-
ity or operating conditions). Baldea et al. (2017) shows that
modularity significantly decreases construction time and cost
of a chemical process. In one case study, the total cost of
a project was reduced by approximately 30% while another
case study reported that the 3-year project timeline was re-
duced by roughly 1 year. Benefits of modularization include
the reduction of manufacturing costs through economies of
learning and a decrease in detailed engineering design effort
(since the number of unique unit designs is reduced).

While modularity has significant benefits, it can reduce
design flexilibity and may not sufficiently exploit economies

of scale. Chen and Grossmann (2019) mathematically study
trade-off factors between a modular process and a conven-
tional plant. In their case studies, the authors found that mod-
ularity could decrease costs and improve profits compared to
a conventional design approach but not in every design sce-
nario and, notably, not by an exceptionally large profit mar-
gin. Arora et al. (2020) proposed a methodology to determine
which units in multiple, similar chemical processes should be
designed modularly versus uniquely based on similar trade-
offs. Bhosekar and Ierapetritou (2020) evaluated optimiza-
tion of modular design frameworks under variablity in de-
mands, using flexibility analysis based on machine learning.
Much of the work in modularization of process systems fo-
cuses on analyzing trade-offs between up-front cost savings
and long-term economic impact.

Product family design, on the other hand, seeks to bal-
ance cost savings from manufacturing standardization with
satisfaction of variety in customer demands (Simpson et al.,
2014). Product family design is different from modularity; it
produces a platform of components with designs that are dis-
tributed across a family of similar products (i.e., without the
need for stacking or numbering up). The platform of compo-
nents is customized to match customer demand for variety in
a particular product. Some products require more variety to
satisfy wide market demands while others stress more com-
monality to exploit additional manufacturing savings. Find-
ing the optimal tradeoff between degree of commonality and
level of variety for a particular product is a central area of
product family design research.

Product family design has seen significant success in in-
dustrial applications within, for example, the automotive and
aviation industries. Thonemann and Brandeau (2000) inves-
tigated methods for achieving optimal commonality in man-
ufacturing products applied to a wire-harness design prob-
lem faced by a major automobile manufacturer. Sanchez and
Shibata (2021) describe the partnership between major au-
tomotive companies Nissan and Renault. Both companies
achieved significant cost reductions while maintaining dis-
tinctive brand identities and product variety by following a
joint product family design manufacturing scheme. Baud-
Lavigne et al. (2016) investigated simultaneously designing
a product family and the resulting supply chain, considering
trade-offs between construction of the bill of materials and
design of the supply chain network.

Optimization Formulations for Process Family Design

Product family design brings important ideas for the de-
sign of chemical processes intended for widespread manu-
facturing and deployment (e.g., decentralized technologies to
address climate change goals). Simpson et al. (2014) define a
product family to be a “set of products that share one or more
common ‘elements’... yet target a variety of different market
segments.” Similarly, we define a process family as a set of
processes that may share one or more common unit designs
while collectively targeting a range of boundary conditions
and performance requirements. Effective process family de-
sign allows us to exploit economies of learning similar to
modularity, but it also offers increased design flexibility and
the ability to further exploit economies of scale.



In this section, we propose computationally tractable op-
timization formulations for the simultaneous design of a fam-
ily of processes to collectively meet a range of potential per-
formance requirements. We call each process in the family
an installation since each could represent a particular instal-
lation site in a planned multi-site deployment (e.g., across
a large company). Note that an installation could also rep-
resent a particular product specification, where multiple in-
stances of each product are to be manufactured and sold by
a process vendor. Each installation i € [ is defined (and dif-
ferentiated) by the specific core design requirements (e.g.,
desired capacity, expected boundary conditions, etc.). To re-
duce design and manufacturing costs, we exploit opportuni-
ties for shared design of sub-components, referred to as units,
across the process family. We identify the set k € K that con-
tains the units that are candidates for shared design (e.g., pri-
mary exchanger, packed bed reactor). Strong candidates are
those that drive the total purchase and operating costs of the
system but do not have a widely available set of existing mar-
ket options (i.e., they would typically be built-to-order). We
develop a framework to simultaneously optimize the collec-
tive set of installations i € [ in the process family while also
solving for the best unit designs for each unit k € K. The
key decisions are (1) the number of common designs to con-
sider for each unit, (2) the specific design variables for each
of these unit designs, (3) the allocation of these common unit
designs to each of the installations in the family, and (4) the
design and operating variables that are unique to each instal-
lation. These decisions are selected so that the entire process
family is cost optimal.

We first formulate this problem as a nonlinear generalized
disjunctive programming problem. Given the computational
challenges associated with the solution of large-scale mixed-
integer nonlinear programming (MINLP) problems, we ex-
plore two alternative solution strategies. The cost and per-
formance of a particular installation is dependent on the de-
sign variable values for the shared units and the design and
operating variables that can be uniquely optimized for that
installation. To develop our first MILP formulation, we cre-
ate a discrete set of candidate sizes for each of the common
units. Then, for each installation, we form the set of all po-
tential alternatives based on the cartesian product of the can-
didate sizes for each common unit. For each of these alterna-
tives, we optimize over the remaining variables to minimize
the annualized cost of each of the alternatives. These solu-
tions form the input data for the combinatorial MILP formu-
lation that seeks to find the best designs for common units
and the optimal allocation of those common units across the
installations. The bottleneck for this approach is the opti-
mization of the large number of discretized combinations for
each installation. To further reduce the computational effort,
we also develop an MILP formulation that uses neural net-
work models with rectifying linear unit (ReLU) activation
functions as surrogates for the cost and performance of the
system. ReLU neural networks are selected since they are
exactly representable within MILP formulations (Grimstad
and Andersson, 2019; Fischetti and Jo, 2018; Anderson et al.,
2020), allowing us to remove the nonlinearities and write the

entire formulation as an MILP. ReLU networks can be eas-
ily translated into Pyomo (Bynum et al., 2021) models using
the newly released Python package, OMLT (Ceccon et al.,
2022). The goal of this approach is to find similar (or im-
proved) solutions with surrogates that require significantly
less input data than the full-discretization formulation. We
now describe these three formulations in detail. Parameters,
variables, and set definitions are shown in Table 1.

Table 1: Parameters, Variables, and Sets

] || Description
iel Set of installation sites or processes in the family
kekK Set of candidate units with common designs
wi Weighting parameter for installation i
Ci Annualized CAP/OPEX of install. i
Cia Annualized CAP/OPEX for alt. a with install. i
b; Design specifications for installation i
u; Operating variables for installation i
dik Design variables for unit £ in installation i
Vi Installation specific design variables
JjEJk Set of indices of unit design j for each k € K
di.j Design variables for unit design j of unit k
Yij True if unit design j selected for unit & in {
Xiq Variable: one if alternative a selected for i
s € Sk Set of discretized design candidates s for unit k
Zhos True if unit design candidate s from unit k is se-
lected for manufacture
Ny Number of designs to be manufactured for unit k
acA; Set of alternatives available for each installation i
Di Performance indicators for installation i

Formulation 1: Nonlinear GDP Formulation

Here, we present a nonlinear generalized disjunctive pro-
gramming formulation for the process family design prob-
lem. Note, we do not solve this directly, but use it as a basis
for the subsequent formulations.

min wic; (1a)
u,ddyv.yc jcf
s.t. h(biuidiy, .. dig,vi) =0 Viel (1b)
pllf < p(bi,ui,dit,...,dig,vi) < pll-] Viel (lc¢)
\/ L{ Y’f’; ] VielLkeK (1d)
jgk ik — Gk, j
i = f£(bistiydigy ., dig, v;) Viel (le)
diy <dix < dy vieLkeK (1)
vE < <V VieLke K (lg)
Yiej € {True,False} Viel,keK,jcJi (lh)

The objective is to minimize the weighted sum of annu-
alized capital and operating costs for the process family, as
shown in Eq. (1a). Eq. (I1b) represents the process model,
and Eq. (1c) represents any performance constraints for the
installations. The parameters b; are design specifications or
boundary conditions specific to installation #; u; are operating
variables for installation i (allowed to vary for each installa-
tion to meet performance targets); d; ; are design variables



(e.g., sizes) for shared units k in installation i; and v; are
design variables whose values are allowed to be unique for
each installation i. In some cases, the design requirements
for an installation i may be fixed (through b;) while others
may be represented as inequalities given by the performance
constraints Eq. (1c). For each unit, we allow a certain num-
ber of unique unit designs that can be used across the family,
captured in the sets j € J; for each unit k. The dA/Q ;j variables
represent the values of the design variables for the optimized
design j of unit k. The disjunctions in Eq. (1d) determine
which of the common unit designs are selected for each in-
stallation i, where Yj; is True if installation 7 selects unit de-
sign j for unit k. If selected, the equations in the disjunct
ensure that the design variables d;; are made equivalent to
dy. j. Here, we use \/ to indicate that only one of the disjuncts
in each disjunctiorT is selected. Eq. (le) calculates annual-
ized capital and operating cost based on which unit designs
are selected. Although this formulation can be converted to
an MINLP (e.g., Big-M or convex-hull transformation), these
large-scale MINLPs would be difficult to solve for practical
problems. Therefore, we explore two alternative formula-
tions provided below.

Formulation 2: Discretized Formulation

Here, we formulate an MILP for the process family de-
sign problem by discretizing the design space for the com-
mon units. In particular, we decide on a set of candidate
sizes, s € Sy for each of the common units k. Then, for each
installation i, we perform an optimization over v; and u; for
each combination of candidate unit sizes to determine opti-
mal costs, feasibility, and performance . We call each of these
combinations a design alfernative, and we define the set of
all feasible alternatives for each installation i as a € A;. An
alternative is feasible for installation i if it meets all the the
desired performance requirements. We show the discretized
formulation of the problem, as first presented by Zhang et al.
(2022).

minZwi Z Ci.aXia (Za)
YUEl  acA;
st Y zs<Ne Vkek (2b)
sESk
Y xia=1 Viel (2¢)
acA;
Xia<zks VielLac€A;,(ks)€Q, (2d)
0<x,<1 Viel,a€A; (2e)
us€{0,1}  VkeK,s€ S (2f)

We have a set of candidate sizes s € Sy for each unit type
k, and the binary variable z; , is one if the optimizer chooses
to manufacture size s, and zero otherwise. The variable x; ,
indicates if we choose alternative a for installation i. The ob-
jective is to minimize the weighted sum of annualized costs
as shown in Eq. (2a). Eq. (2b) ensures the total number of
selected unit designs for k does not exceed Ny, (the total num-
ber of size options we wish to offer in the process family).
Eq. (2c) ensures exactly one alternative is selected for each
installation i. Eq. (2d) ensures that alternative a can only
be selected if we have chosen to manufacture the unit sizes

needed by that alternative. Eq. (2e) represents the bounds on
the decision variable x; ,. Though the decision variables x; 4
are bounded between 0 and 1, under the mild assumption that
each cost, ¢; 4, is different from one another, this formulation
converges to values of O or 1 at optimality.

Formulation 3: ReLU Surrogates Formulation

While optimization of the discretized formulation above
is fast, significant pre-computation time is required to per-
form the optimizations for each potential alternative. In the
new formulation described here, we consider the original
GDP (Formulation 1) and replace the nonlinear models in
Egs. (1b,1c) with piecewise linear surrogates. We can con-
struct these surrogates using far less data than that required
for the full-discretization formulation, resulting in a signifi-
cant computational improvement.

We use neural network (NN) models with ReLU acti-
vation functions for the surrogates. These are multivari-
ate piecewise linear models that can be represented exactly
within MILP formulations (Grimstad and Andersson, 2019).
The Python package OMLT (Ceccon et al., 2022) allows us
to import these NN surrogates into Pyomo models. Further-
more, there are strong training tools for ReLU neural net-
works (e.g., Keras) that simplify surrogate construction and
interface directly to OMLT.

min} wic; (3a)

d,[f,y,’ezl o

s.t. fic(ci,bi,d,"l,...,d,',k) =0 Viel (3b)
fip(pl',bi,dl‘.],...,di?k) =0 Viel (3c)

Y‘ .

\/ l " ] VielLkek (3d)
i< dix =dy;
di ; <dy;<dp; VkeK,je (3e)
pr<pi<p! Viel (3
¢ >0 VielLkeK (3g)
Yij € {True,False} VielLkeK,jeJ; (3h)

The objective, Eq. (3a), is again the weighted sum of
annualized costs. Eq. (3b) represents the MILP constraints
from OMLT that define the surrogate for the annualized cost.
For this trained NN, the boundary conditions and unit design
variables are the inputs, and the annualized cost is the out-
put. Likewise, Eq. (3c) represents the MILP constraints of
the surrogate for the performance indicators. The disjunc-
tions, shown in Eq. (3d), are the same as those in Eq. (1d).
Eq. (3f) ensures that we do not select unit designs for instal-
lation i that do not satisfy the bounds on the performance
indicator.

Numerical Case Study

To demonstrate the computational performance and ef-
fectiveness of these formulations, we consider the design of a
family of products for a transcritical CO; refrigeration cycle,
described by Li and Groll (2005) and modeled using IDAES
(Lee et al., 2021). The design requirements that were varied
for each installation were the required cooling capacity and
outside air temperature. Desired cooling capacity is based on
needs at individual installations. The maximum outside air



temperature used for design is directly affected by geograph-
ical location. We considered seven capacities and eight out-
side air temperatures, resulting in 56 unique installation re-
quirements. Three units were considered for shared design in
the process family, including the compressor, evaporator, and
condenser. For the fully discretized approach (Formulation
(2)), we considered 10 evaporator sizes, 14 condenser sizes,
and 10 compressor sizes. For this example, we do not con-
sider additional installation specific optimization variables u;
and v;. Therefore, we can perform simulations for each al-
ternative to determine costs and performance.This required
78,400 simulations and approximately 1120 min. of compu-
tational time. For Formulation (3), we sampled 7,840 points
from the discretized space to represent an order of magnitude
fewer simulations. For the NN architectures, we selected a
single ReLU layer with 15 nodes . The cost NN was trained
on 4,132 points (all feasible alternatives) in 199 epochs. The
performance NN trained on all 7,840 points in 2,361 epochs.

Both the discretized formulation and the surrogates for-
mulation of the process family design problem were pro-
grammed in Pyomo (Bynum et al., 2021) and solved us-
ing Gurobi (Optimization, LLC Gurobi et al., 2020). The
piecewise linear surrogate formulation required two addi-
tional Python-based software packages: Optimization and
Machine Learning Toolkit (OMLT) (Ceccon et al., 2022),
which represents machine learning models within the Py-
omo optimization environment, and a Pyomo extension, Py-
omo.GDP (Chen et al., 2022), to represent the disjunctions.

We restrict the optimization to select only two sizes of
each of the three units (evaporator, condenser, and compres-
sor) for manufacturing. Figures 1 and 2 show the optimal
allocation of unit designs for each installation. Table 2 lists
the the optimal unit designs and Table 3 lists computational
times and problem sizes.
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Figure 1: Discretized (Formulation 2) Solution

Evap:51.
33 ° L i Cond:20.0
Compr:67.91
—~34 L] ° L]
) Evap:71.12
o Cond:20.0
g3 ° ) ° ®  Compr:108.54
a. Evap:71.12
g3 [ ] [ ] ° @ Cond23s4
S Compr:108.54
& P!
2 31 [ ] [ ] [ ]
Q
=30 ° ® °
z
-]
O 2 L] ° °
28 L] [ ] [ ]

80 100 120 140 160 180 200
Capacity (tons)

Figure 2: ReLU Surrogates (Formulation 3) Solution

Table 2: Design Decisions of Optimization
’ Variable

H Discrete Sol. \ Surrogate Sol. ‘

Evaporator, Design 1 50 m? 51.2 m?
Evaporator, Design 2 80 m? 71.12 m?
Condenser, Design 1 20 m? 20 m?
Condenser, Design 2 25 m? 23.54 m?
Compressor, Design 1 60 %01 67.91 ’”T"Z
Compressor, Design 2 105 '"T”l 108.54 ’”T”l
Total Annualized Cost $4,173,030 $4,056,984
Table 3: Solution Comparison
Attribute || Discrete Sol. | Surr. Sol.
Simulation Time 67,200 sec. 6,720 sec.
Training Time - 600 sec.
Gurobi Solve Time 14.66 sec. 71.70 sec.
Total Comp. Time 67,214.66 sec. | 7391.7 sec.
Num. of Constraints 116,184 11,540
Num. of Cont. Vars. 38,705 5775
Num. of Binary Vars. 34 2016

The surrogates formulation approximates the continuous
design space and allows for more specific size selections. For
example, since the surrogates formulation is allowed to se-
lect a compressor of size 67.91 mT"l, this slightly larger com-
pressor is able to address all of the installations at a capac-
ity of 140 tons, whereas the discretized formulation has a
fixed granularity and selected a size of 60 mTOI for the lower

ranges but required a larger compressor (105 mT‘)l) to ensure
feasibility at 140 tons. Another trade-off is observed in the
evaporator designs. The discretized formulation allocated an
evaporator of size 80 m? to capacities 160, 180, and 200 tons
while the surrogates formulation selected size 71.12 m? for
the same region, allowing for a smaller unit design. Most
importantly, the surrogates formulation required an order of
magnitude less input data with a corresponding reduction in
computational time and problem size, as shown in Table 3.
Also note that we verified the surrogates solution with the
rigorous model, and all designs were feasible while the opti-
mal cost had approximately 2% error.

Conclusions and Future Work

In this work, we developed multiple formulations for the
process family design problem and applied two of them to a
case study of a transcritical CO; refrigeration system. One
formulation used full discretization of the design space, and
one was based on the use of neural network surrogates to
replace nonlinear model equations. While both approaches
were able to tackle the process family design problem, our
newly proposed surrogates-based approach is able to pro-
vide solutions with an order of magnitude reduction in the
computational time required to produce the necessary input
data. We demonstrated these approaches on a transcritical
CO; process across a family with 56 installations and allow-
ing two unit designs for each of the three common units in
the process. For comparison, designing each of these units
for each installation uniquely would have required 168 total



unique designs, while our approach required only six in total.

We are currently applying these approaches to an MEA
carbon capture facility, motivated by the challenges for mass
deployment of such technology (Wilberforce et al., 2019).
For future work we hope to extend these formulations to con-
sider parallel common units and process flexibility, variabil-
ity, and uncertainty.
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