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Abstract
The recent technological advancements and shift towards digitalization in the manufacturing industry have led to
the development of advanced methods to build data-driven models. The development of data-driven models has been
made possible because of the improved data collection capabilities and advanced model-building methodologies.
However, these models are limited in their application to the process for which they have been developed. Also, the
data-driven models are black-box and provide no insight into the underlying model structure. To overcome these
challenges, hybrid modeling methods that build grey-box models are being used increasingly because of their ability to
develop models that are dependent on the data of the process and also based on the physics of the process. This study
explores a hybrid model-building methods based on symbolic regression to build physics-based surrogate models. This
hybrid modeling method is then demonstrated by building a physics-informed surrogate model for a complex physical
phenomenon of precision machining tool wear.
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Introduction

With the advent of the fourth industrial revolution, the
manufacturing industry has developed enhanced technology
to generate high-quality data. This, coupled with the im-
proved computing capabilities to use data, has helped de-
velop data-driven models. Building a data-driven model for
a process requires good quality data that captures the behav-
ior of the entire physical process. Data-driven models utilize
pattern recognition algorithms to build classification or re-
gression models of a physical phenomenon. These models
help capture the behavior of unknown, complex factors that
influence a process, which cannot be captured using the first-
principle/mechanistic models. This attribute of data-driven
models can help first principle models improve their predic-
tions. These data-driven models are good at capturing a phe-
nomenon, but these models are limited to the data that are
used to build the model. Furthermore, there is no insight into
the model as these models are black-box. To overcome this
challenge, many recent studies are exploring hybrid models.
Hybrid models are developed using data and the knowledge
of the physics of the process. Sansana et al. (2021) catego-
rized hybrid models based on the structure of the model. A
hybrid model has a serial structure when the data-driven ap-
proach is used to model a phenomenon that is too complex
to model using a first principle model. A parallel structure is

1 Corresponding author: G. M. Bollas
(E-mail: george.bollas@uconn.edu).

utilized when some effects of the process cannot be captured
by a first principle model. In this case, a parallel structure
helps to improve the predictions. Both serial and parallel hy-
brid model structures improve the model prediction of the
first principle models. The third category of hybrid models is
surrogate models or grey-box models. Surrogate models are
a simple approximate representation of a complex process
in the form of a mathematical model developed using min-
imal data. In the manufacturing industry, surrogate models
are being used increasingly because these models are simple
to develop and are computationally less expensive than first
principle or data-driven models. They can be used for pro-
cess monitoring, optimization, and predictive maintenance.
Here, we discuss a few popular grey-box model/surrogate
model building toolboxes that can be used to build physics-
informed models. Two of these toolboxes, namely ALAMO
(Automated Learning of Algebraic Models for optimization)
and GPTIPS (Genetic Programming Toolbox for Identifica-
tion of Physical Systems), are used to build generic surrogate
models of the fault that are physics-informed, in a manufac-
turing process.

Surrogate modeling methods

Surrogate models are approximate models of a physical
process cast as simple mathematical expressions. Several
software toolboxes can be used to develop surrogate mod-
els with minimal data. A few of the modeling software
that have been used to build surrogate models are Eureqa
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Figure 1: Workflow of tool wear surrogate model develop-
ment.

(Schmidt and Lipson, 2009) (now DataRobot), AI Feyn-
man: A physics-inspired method for symbolic regression
(Udrescu and Tegmark, 2020), Automated Learning of Alge-
braic Models for optimization (ALAMO) (Cozad et al., 2014,
2015; Wilson and Sahinidis, 2017), and Genetic Program-
ming Toolbox for Identification of Physical Systems (GP-
TIPS) (Searson et al., 2010; Searson, 2015). These tool-
boxes apply symbolic regression to develop a model in the
form of an algebraic expression. Symbolic regression is a
kind of regression analysis that gives a mathematical expres-
sion that best fits the design space. This approach is dif-
ferent from the traditional regression methods because, in
symbolic regression the model structure and the regression
coefficients are determined simultaneously. In developing a
surrogate model, first, the input features that influence the
response variable are selected, along with proper relevant ba-
sis functions. These basis functions vary from software to
software, but primarily consist of simple mathematical oper-
ators, such as +, −, \, ×, √, exp, log, ln, sin, cos, tan, x2, x3,
etc. Many software programs have the capability to provide
user-defined custom basis functions that can be used to in-
fuse domain expert knowledge in building the model. These
custom basis functions are simple, functional forms of the
inputs used to build the model. As mentioned earlier, these
custom basis functions can be used to provide expressions
that have actual physical significance, and can be used to in-
fuse the information of the physics of the process and assist
the toolboxes in coming up with mathematical models for
the response variable that has a physical meaning. The best
fit model is selected by minimizing a metric corresponding
to the overall model prediction error with the actual values
of the response variable. To obtain a model of a good fit,
these software packages have several hyperparameters that
can be tuned, besides selecting the mathematical operators
or the basis functions. For example, in GPTIPS, the number
of genes, depth of the tree, and mutation depth are some of
the hyperparameters that can be tuned for model building. In

this study, we discuss how to build physics-informed surro-
gate models or grey-box models using ALAMO and GPTIPS
as the software toolboxes. These software packages are dis-
cussed in more detail below.

Automatic Learning of Algebraic models (ALAMO)

The Automatic Learning of Algebraic models software
(ALAMO) generates algebraic models using machine learn-
ing and optimization methods (Cozad et al., 2014; Wilson
and Sahinidis, 2017). To develop a low-complexity surro-
gate model using minimal experimental data, ALAMO fol-
lows a series of steps. First, an evenly spaced initial sam-
ple space is defined as the training set to build a surrogate
model. In the second step, integer optimization is used to se-
lect the basis functions to build a model for the initial data
set. In the third step, adaptive sampling is performed using
derivative-free optimization methods to find a data point for
which the model does not predict accurately. This data point
is added to the training set, and steps 2 and 3 are repeated to
obtain a model for which the model accuracy does not im-
prove any further. ALAMO provides 8 fitness metrics to se-
lect for model building. These are the Bayesian information
criterion (BIC), Mallow’s Cp (Cp), correlated Akaike’s in-
formation criterion (AICc), Hannan-Quinn information cri-
terion (HQC), mean square error (MSE), the sum of squared
error plus a penalty proportional to the model size, risk infor-
mation criterion (RIC), maximum absolute deviation plus a
penalty proportional to model size (MADp). In addition, the
user can select between the basis functions of, exp, ln, log,
sin, cos, and constant. To build a model, values of the basis
functions that are power of a term (Monomial power), power
of the product of two terms (Multi2Power), power of the
product of three terms (Multi3Power), power of the ratio of
two terms (RatioPower), can be tuned to improve the model
fit. Further, user-defined custom functions can be provided
to ALAMO. These models are functions of the inputs and
are considered by ALAMO during model building. Physics-
based functions can be provided as custom basis functions
to make physics-inspired surrogate models. More details on
ALAMO can be found in Cozad et al. (2014, 2015) and Wil-
son and Sahinidis (2017).

Genetic programming toolbox for Identification of Physical
systems (GPTIPS)

The Genetic programming toolbox for Identification of
Physical systems (GPTIPS) is a free, genetic programming-
based toolbox to build models using symbolic regression.
Genetic programming (Koza, 1994) is a technique to evolve
programs by performing operations similar to the biological
operation performed by genes, such as mutation, crossover,
etc. GPTIPS performs symbolic regression to build models
in simple algebraic forms of function of the input/predictor
variables. GPTIPS generates equations using multigene ge-
netic programming, where the response variable is weighted
functions of genes (represented in the form of trees). These
genes (tree structures) are evolved iteratively by perform-
ing generation, mutation, and crossover. GPTIPS provides



a variety of tournament selection approaches to choose from.
These tournament selection options are regular tournament
selection, Pareto tournament selection, and lexicographic
tournament section. GPTIPS also has a large set of ba-
sis functions +, −, ×, \, mult3(product of three terms),
add3(sum of three terms), tanh, cos, sin, exp, log10, x2, abs,
x3, √, exp(−x), if-then-else, >, <, exp(x2)), threshold and
step functions, to select from for model building. Similar to
ALAMO, user-defined functions can also be provided to GP-
TIPS. Because, GPTIPS is an open-source toolbox, where
the fitness criterion for the model building can be defined
by the user. The default fitness metric used by GPTIPS is
the root mean squared error (RMSE) value. GPTIPS has an
extensive list of settings or parameters that linked to the ge-
netic programming that can be selected and tuned for model
building. Few of the settings are population size, number of
generations, maximum tree depth, maximum mutate depth.
More details on GPTIPS and the model building parameters
and setting options can be found in Searson et al. (2010) and
Searson (2015).

Application of surrogate modeling methods in a manu-
facturing process

Computer numerical control (CNC) machines are the
backbone of the manufacturing sector, which spans from
small-scale use to manufacturing the parts for the aerospace
and automobile industries. Milling is one of the operations
performed in these industries using CNC machines. During
milling, a circular tool with high-grade metal inserts is used
to remove material from a workpiece in the form of metal
chips, which results in high shear stresses, friction between
tool and workpiece, and high temperature at the interface.
These extreme conditions cause the abrasion of the inserts on
the tool, resulting in the tool to get worn out, which impacts
the surface finish of the workpiece. If the tool is not replaced,
it may damage the workpiece and the machine. Admissible
machine settings include the spindle speed, feed rate, width
of cut, and depth of cut. These settings control the cutting op-
erations and can impact/wear the tool. The properties of the
workpiece and the tool will also influence the tool wear. The
machine settings need to be considered in a model of tool
wear. In this study, the same workpiece material and tool
were used for data generation. Therefore, the impact of the
workpiece and material properties cannot be demonstrated
due to lack of diverse data.

Machining data

Machining data were collected by experiments in a HAAS
Mini Mill and a DMG MORI LASERTEC 65 3D hybrid ma-
chining centers. The HAAS mini mill is a 3-axis compact
machining center, and the DMG machine is a hybrid machine
that can perform milling as well as additive manufacturing.
For both the machines, milling was performed on an AISI
4340 cylindrical steel block of 177.8 mm diameter and 20
HRC hardness using a tool with two Kennametal inserts of
grade KC725M and a lead angle of 90◦. Each of these steel
blocks was called a “Part”. A spiral tool path was selected

to generate tool wear data and design a cylindrical boss of
height 10.16 mm and a diameter of 76.2 mm. One complete
spiral tool path was called a “Run”, and while following the
spiral tool path, the tool went around the workpiece for five
times. The width of cut for this spiral path was 10.16 mm,
and the depth of cut was 2.54 mm. At the end of the spiral
tool path, when a boss of 76.2 mm diameter was obtained,
the machining was stopped, and the flank wear measurement
was taken. This whole process was repeated four times on
a part to form a boss height of 10.16 mm and a diameter of
76.2 mm. This process was performed on the HAAS, and
the DMG machines and tool wear data were collected. In
the case of the HAAS machine, a total of 7 parts were ma-
chined, part#1-part#4 were machined for the machine set-
tings of feed rate 710.184 mm/min and spindle speed 2330
RPM. The part#5-part#7 were machined for a feed rate of
970.483 mm/min and a spindle speed of 3184 RPM. For the
experiments performed on the DMG machine, a total of 4
parts were machined with a feed rate of 970.483 mm/min and
spindle speed of 3184 RPM. Table 1 shows the machine set-
tings for the experiments. In the case of the HAAS machine,
the flank wear measurements were estimated using the values
of the tool radius change. The tool diameter was measured
after each run, and for the last run of the part#7, the flank
wear measurements were taken using a Keyence VHX-500,
with a VH-Z100 lens and OP-72402 light ring microscope.
To determine the flank wear, the tool radius change was cal-
culated from the tool diameter measurements. In milling, the
tool radius change follows the same trend as that of the flank
wear. Therefore, by using the tool radius change values and
the flank wear value for the last run, the flank wear values
were estimated because they both were assumed to have the
same profile. In the case of the DMG machine, the flank wear
was measured using the Keyence VHX-500, with a VH-Z100
lens and OP-72402 light ring microscope. Table 2, shows the
values of the machine settings of spindle speed, width of cut,
depth of cut, and feed rate, that are used to build a surrogate
model for tool wear using ALAMO and GPTIPS.

Custom basis functions

Symbolic regression was aided to come up with physics-
informed, user-defined functions of the input/feature vari-
ables, as basis functions provided to ALAMO and GPTIPS.
The custom basis functions provided were the mean material
removal rate (MRR), mean material removed (MR), and the
product of feed rate and cutting time.

The Mean material removal rate (MRR) is defined as the
product of width of cut (ae), depth of cut (ap) and feed rate
( f ) (Awasthi and Bollas, 2020; Awasthi et al., 2022). MRR
corresponds to the rate at which the material is removed from
the workpiece, and high MRR values imply aggressive ma-
chining conditions. The second custom basis function was
the mean material removed (MR), which corresponds to the
amount of work done by the tool. The mean material re-
moved was calculated as the product of the mean material
removal rate with the cutting time (tcut ). The mean material
removed is a good indicator of the condition of the tool be-
cause it considers the machine settings and the time for which



Table 1: Machine settings for the experiments performed on HAAS and DMG machines.

Machine # of parts Tool path Diameter Teeth Width of cut Depth of cut Feed rate Spindle speed
(mm) (mm) (mm) mm/min RPM

HAAS machine #1-#4 Spiral 20 2 10.16 2.54 710.184 2330
HAAS machine #5-#7 Spiral 20 2 10.16 2.54 970.483 3184
DMG Machine #1-#4 Spiral 20 2 10.16 2.54 970.483 3184

Table 2: Nomenclature of the symbols.

Symbol Description
vs Spindle speed
f Feed rate

ae Width of cut
ap Depth of cut
tcut Cutting time
si Indicator

MR Mean Material removed
MRR Mean Material removal rate

W Tool wear

Table 3: Custom basis functions for the surrogate models.

Description Expression
1 Material removal rate (MRR) aeap f
2 Material removed (MR) aeap f tcut
3 Product of feed rate and time f tcut
4 Product of three inputs x1 × x2 × x3

machining was performed. The third custom basis function
selected for the model building was the product of feed rate
and cutting time. Feed rate is the machine setting that de-
termines the speed at which the tool advances into the work-
piece while cutting. Therefore, the product of the feed rate
with the time of cutting would give us the distance the tool
has moved while machining. The cutting distance is also an
important quantity that would be correlated with tool wear.
GPTIPS only accepts the functional form of an expression
as a custom basis function. Therefore, the product of three
inputs was used as the custom basis functions. These cus-
tom basis functions correspond to the expressions of mean
material removed. The custom basis function used for model
building are mentioned in Table 3.

Physics-informed surrogate model

To build the surrogate models, the machine settings se-
lected as inputs were the spindle speed, vs, width of cut, ae,
depth of cut, ap, feed rate, f , and cutting time tcut . In addi-
tion to the machine settings, an indicator feature, si, shown
in Table 2, was also provided as an input. This indicator was
a label representing the selection of the HAAS or the DMG
data sets. The natural logarithm of the tool wear was taken as
the output. The log transformation of the output was selected
for model building because it reduces the variability of the
data. All the input and output variables data were normal-
ized for model building.

Table 4 shows the settings for ALAMO and Table 5 shows
the settings for GPTIPS. In ALAMO, BIC was selected as the

fitness metric to develop the tool wear model, and log, ln, and
exp were selected as the basis functions. Monomial power,
Multi2Power, Multi3Power were tuned to obtain a model of
good fit. The detailed settings of model building are tabulated
in Table 4. The Mean material removal rate, mean mate-
rial removed, and product of feed rate and cutting time were
provided as custom basis functions to ALAMO. To build a
model using GPTIPS, +, log, exp, ×, x3, √ were used as
the basis functions. The product of three terms was provided
as a custom basis function. In GPTIPS, the maximum num-
ber of genes per individual and the maximum depth of trees
were the hyperparameters that were tuned to obtain a good
model fit. To construct a GPTIPS model, the population size
was selected to be 100, and the number of generations to run
was selected to be 100. The optimal values of the maximum
number of genes and the maximum tree depth obtained after
tuning were 6 and 2, respectively, and are tabulated in Table
5. As shown in Table 6, both models had a high coefficient
of determination value. The ALAMO model for tool wear
had a R2 value of 0.962, and the GPTIPS model had a R2

value of 0.969. This shows that both models could capture
the behavior of tool wear during machining and provide good
predictions.

After tuning the hyperparameters, the best model obtained
using ALAMO is shown in the first row of Table 6. The
ALAMO model was a function of tcut , exp(si), v2

s , t2
cut , t3

cut ,
vssitcut . As shown by Binder et al. (2017), the tool wear pro-
file has three phases. The first is an initial increase in the tool
wear, the second is a steady state wear, where the tool wear
gradually increases, and the last is an exponential increase of
tool wear. Under moderate milling conditions, the tool wear
profile is similar to a cubic function. If the cutting conditions
are aggressive, the slope of the steady state region increases,
which means that the tool wear increase will be more like an
exponential increase (Schmitz and Smith, 2008). This is re-
flected in the tool wear model developed using ALAMO. In
the ALAMO model shown in Table 6, the log of tool wear is a
function of the cutting time and the cube of the cutting time.
Indeed, tool wear is an exponential function of the cutting
time, evident from the tool wear vs Run# profile shown in
Fig. 2. The exponent of the cube of the cutting time gives the
model the nonlinear profile, that captures the slow increase
in the tool wear followed by an exponential increase. The
tool wear model was also a function of the product of spindle
speed, indicator, and cutting time. This is interesting because
spindle speed corresponds to the number of revolutions per
minute by the tool, and the product of the spindle speed and
cutting time gives the total number of revolutions performed
by the tool for machining. This product is proportional to
the cutting distance or the work done by the tool during ma-



chining. Therefore, it captures tool wear as a function of the
cutting conditions and the time the tool has been machined.
There are other terms in the ALAMO model, such as exp(si),
v2

s , and t2
cut . ALAMO adds these terms to improve the fit of

the tool wear model. ALAMO did not select the custom ba-
sis functions provided for model building because the width
of cut, and depth of cut values in the data sets were con-
stant. With a more diverse data, the ALAMO model would
select the custom basis functions. However, this tool wear
model is physics-informed and was able to represent how the
tool wear progresses during machining, and building a model
with more data would help build a model that considers the
custom basis functions.

Table 4: ALAMO toolbox settings for model building.

Basis functions

Expressions: exp, log,
ln , +, −, ×, \, constant
Monomial power: 2, 3
Multi2Power: 1, 2, 3

Multi3Power: 1
Miscellaneous options Fitness metric: BIC

Screener: Lasso

The model obtained using GPTIPS is shown in the second
row of Table 6. The tool wear model was a function of si,
v2

s , t3
cut , 0.23sitcut , and t2

cutsi. As discussed for the tool wear
model obtained using ALAMO, the tool wear was an expo-
nential function of the cube of cutting time. This basis func-
tion captures the progression of tool wear during machining.
The GPTIPS model discovered a relationship between tool
wear and cutting time. GPTIPS selected the custom basis
function of the product of three terms and also the function
0.23sitcut . The tool wear model obtained by GPTIPS was an
excellent fit of the experimental data, as shown in Fig. 2

Table 5: GPTIPS toolbox settings for model building.

Basis functions Expressions: exp, ln, x3, +, ×, \

Parameters

Population size: 100
Number of the generation: 100

Tournament size: 2
Max. tree depth : 5

Max. mutate depth : 2
Crossover (%): 84 (default)
Mutation (%): 14 (default)
Elitism (%): 15 (default)

Direct reproduction (%): 2 (default)

Overall, the models obtained using ALAMO and GPTIPS
provided a good estimate of the tool wear. Both models fit
the data well, as shown in Fig. 2. The functions developed
during model building are explainable by the physics of the
process. This gives confidence in the structure of these mod-
els, and if more diverse data sets were available, ALAMO
and GPTIPS would evolve better informed models that may
make use of the custom basis functions inspired by the do-
main expert knowledge.

Table 6: Tool wear models obtained using ALAMO and GP-
TIPS for HAAS and DMG machines.

Model R2

ALAMO
ln(W ) = 3.77tcut −1.93exp(si)

−0.32v2
s −5.32t2

cut +4.32t3
cut

+1.89vssitcut

0.962

GPTIPS
ln(W ) =−4.022si +0.68v2

s

+8.81t3
cut −3.55(0.23sitcut)

−12.43(t2
cutsi)−2.09

0.969
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Figure 2: (a) Tool wear predictions of the surrogate model
developed using ALAMO for tool wear data from experi-
ments performed on HAAS and DMG machines, (b) tool
wear predictions of the surrogate model developed using
GPTIPS for tool wear data from experiments performed on
HAAS and DMG machines.

Conclusion

Grey-box models are a better approach for building data-
driven models that capture the physics of the system. These



models are less complex in structure and are easy to build.
This study discussed two approaches to building grey-box
models using symbolic regression. ALAMO and GPTIPS,
were used to build physics-informed surrogate models of tool
wear for a manufacturing process. The key features of these
models were that they were in an algebraic form of the in-
put variables, which made the models interpretable. Both
ALAMO and GPTIPS were shown successful in building
surrogate models for complex physical phenomena for which
the exact models do not exist. In future work, a generic and
better surrogate models can be developed for tool wear using
more diverse data.
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