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Abstract

Microgrids are decentralised systems supplying local demands with reliable, low-emission energy from internal
distributed energy resources (DER), while adding extra flexibility to the main grid. Meanwhile, the deregulation
of electricity markets drives operators of energy systems to develop market strategies to maintain their economic
competitiveness. This work investigates the bidding problem of a microgrid consisting of a battery, power generator,
photovoltaic (PV) system and a commercial electricity demand. The daily operational task is to determine hourly
bidding curves for the day-ahead electricity market that are feasible under present market rules and optimal for
recourse schedules of microgrid resources after market clearing. A mixed integer linear programming (MILP) model is
formulated using stochastic programming with uncertainty in electricity price and PV power. Particularly, the proposed
optimisation model optimally selects both price and quantity values of individual bidding curve points subject to a
limit on the total number of utilised bid points per curve enforced by market rules. Conditional value-at-risk (CVaR) is
applied as a risk-measure to guard the microgrid from undesirable losses of its bidding decisions. Tradeoffs between
expected total cost and CVaR are found using the e-constraint method. A computational study is conducted to show the

applicability of the optimisation framework.
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The recent 2021 Texas power outage demonstrates that tra-
ditional energy consumers, who rely entirely on the main
grid, are exposed to grid outages through extreme weather
events and rising price instabilities. The latter is expected to
increase further due to an expansion of non-dispatchable re-
newables in the grid generation mix. Microgrids offer great
potential to soften such challenging effects for its integrated
energy consumers. A microgrid is a local network of loads
and distributed energy resources controllable as a single en-
tity. It can operate either grid-connected or decoupled from
the main grid known as island mode. Microgrid deployments
in the power sector are growing rapidly providing resilient
and mostly green energy to internal energy loads through
its locally deployed DERs (Feng et al., 2018; Silvente et al.,
2018).

Bidding problems of energy systems in short-term energy
markets are widely studied in research, utilising the flexi-
bility of energy systems to buy (sell) electricity during pe-
riods of low (high) prices (Fleten and Pettersen, 2005; Liu
et al., 2016; Krishnamurthy et al., 2018; Leo et al., 2021).
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Before gate closure on a current day, bidding decisions need
to be submitted for each trading block of the following day.
After gate closure the electricity market is cleared, market
prices reveal and quantities from accepted bids become com-
mitted, i.e. they must physically settle at the correspond-
ing trading block of the day ahead. In general, a bid is a
pair of price and quantity, expressing the willingness to buy
(sell) an energy quantity below (above) or equal to a partic-
ular price threshold. A bidding curve can be expressed as a
collection of multiple price-quantity points submitted for the
same trading block. Among other market rules, the cardi-
nality of bid points per curve is restricted, for instance to a
maximum of ten bid points in the Electric Reliability Coun-
cil of Texas (ERCOT) or the California Independent System
Operator (CAISO) day-ahead electricity market. Typically,
bidding approaches respect this limit heuristically by fixing
a selection of price values for each bidding curve a-priori to
the bidding optimisation problem (Ottesen et al., 2016).

In contrast, this work integrates the selection of bid prices
in the stochastic optimisation model to optimally determine
both bid price and bid quantity values of bidding curves si-
multaneously. Overall, the microgrid bidding problem is for-
mulated as MILP using a two-stage stochastic programming



approach with day-ahead market bidding as first stage deci-
sions and uncertainty considered for the electricity price and
PV power (Birge and Louveaux, 2011). Moreover, the ex-
posure to financial risks from bidding curves is taken into
account (Fleten and Pettersen, 2005; Zhao et al., 2020). Fi-
nancial risk may be quantified for instance by an expectation
of not meeting a monetary target (Barbaro and Bagajewicz,
2004) or an expected deviation from the mean profit (Shao
and Zavala, 2019). Particularly, this work applies CVaR as
a risk measure to compromise expected cost against the risk
of undesirable losses (Verderame and Floudas, 2010; Zhang
et al., 2016). The multi-objective problem is solved through
a solution procedure based on the e-constraint method.

Mathematical Model

The microgrid bidding problem is formulated as a multi-
objective, two-stage stochastic MILP model. First stage deci-
sions are day-ahead market bidding curves, second stage de-
cisions are DER schedules over the day ahead and electricity
trades in the real-time market. The set of constraints consists
of two main bodies. One is related to DERs of the micro-
grid system, the other represents technical constraints from
electricity market rules enforced on bidding decisions. In
the mathematical model, index ¢ € T represents hourly time
intervals whose time horizon is the day ahead; index s € S
jointly represents scenarios for day-ahead market electricity
price and PV power.

DER Constraints

The following constraints are related to DERs of the mi-
crogrid. Battery storage (EZ) in scenario s at time ¢ is the
battery storage from the previous time point adding charged
electricity using charge rate Qg’c with efficiency n¢ and sub-
tracting discharged electricity using discharge rate di with
efficiency n¢ over time step length §.
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where Eg is the initial battery storage at the beginning of the
time horizon. Moreover, the operational range of the battery
storage is limited by upper limit EZ”"%* and lower limit E8-"
at any time ¢ of scenario s.

EB.min S Eg S EB,ma)c7 VS,I (3)

Additionally, the battery storage at the end of the time hori-
zon in scenario s must be greater or equal to the initial battery
storage.
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Furthermore, battery charging (Qg’c) and discharging (Qg’d)
at time ¢ of scenario s cannot exceed battery’s maximum
(dis)charge rate R5.
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Figure 1. Microgrid overview and internal energy balance of
electricity supply and demand.

Electricity demand

To curb long-term degradation of the battery, its daily total
amount of (dis)charged electricity must not exceed a multiple
LB of its maximum battery storage capacity in scenario s.
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Furthermore, generator power (Qg) cannot exceed its capac-
ity limitation R® at any time ¢ of scenario s.

0% <RG, Vst )
Microgrid energy balance of internal electricity supply and
usage around a central node must hold at any time ¢ of sce-
nario s. This energy balance is illustrated in Fig. 1. Internal
electricity supply at time ¢ of scenario s consists of battery
discharge, generator power, PV power (Q") and electricity
bought in the day-ahead market (QQAJ’) and real-time mar-
ket (Qf,T’b). Internal electricity usage at time ¢ of scenario
s consists of battery charge, known electricity demand (QP)

and electricity sold to the day-ahead market (QSD,A’se) and real-
time market (Q%7 ).
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The examined microgrid is assumed to act as a price-taker
in energy markets, whose bids do not influence the electricity
market price. The following constraints are related to techni-
cal requirements from market rules enforced on bidding deci-
sions submitted by the microgrid on a daily base before mar-
ket closure. They were motivated by the ERCOT day-ahead
market.

Monotonicity Constraints

Bidding curves for buying (selling) electricity have to be
monotonically decreasing (increasing). Hence, the buy (sell)
quantity of the bidding curve at day-ahead market price of
scenario s at time ¢ has to be equal or larger than the quantity



of its closest but higher (lower) price of scenario s'.
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where Oy € Z* represents the order of scenario s from

low to high day-ahead market electricity prices at time f,

O = max (Oy ) represents its maximum at time #, positive
N

slack variables AQ2*? and AQP** represent the incremen-
tal quantity increase of the bidding curve at time ¢ for buy-
ing and selling, respectively, at day-ahead market electricity
price of scenario s. Subset S” represents scenarios with dis-
tinct day-ahead market electricity price values at time #, i.e.
CPt # €, fors,s' € S at time 7.

Nonanticipativity Constraints

To respect nonanticipativity of uncertainty across the time
horizon, a certain realisation of an electricity price at time
¢t must imply a certain accepted quantity after market clear-
ing based on submitted bidding curves for this hour (Birge
and Louveaux, 2011). Therefore, buy (sell) quantities at day-
ahead market electricity prices of scenario s and s” have to be
equal if prices of both scenarios are the same at time 7.
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where C2A represents the day-ahead market electricity price
at time ¢ of scenario s.

Price-quantity Point Limit Constraints

If the bid quantity at day-ahead market electricity price of
scenario s of the bidding curve for buying (selling) at time
t increases incrementally by AQ2* (AQP**9), it represents
an active price-quantity point and implies binary variable
YPAY (yPA5¢) o be equal one. Any incremental bid quan-
tity increase within a bidding curve must exceed a minimum
threshold (AQ™™").
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where M2? and M2 are sufficiently large values and binary
variable Y24 (vPA5¢) equals one if the bid quantity at day-
ahead market electricity price of scenario s increases incre-
mentally and forms an active price-quantity point of the bid-
ding curve for buying (selling) at time 7. Conversely, we label
a bid point as inactive if its bid quantity does not increase in-
crementally and binary variable Y24 (vPA%) equals zero.

Figure 2 further illustrates the mathematical construction of
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Figure 2. Mathematical construction of bid points for a bid-
ding curve for buying electricity at time t.

an inactive and active price-quantity point for a buy bid-
ding curve. Generally, inactive price-quantity points contain
no additional information to construct or evaluate bidding
curves once a bidding solution has been obtained. Conse-
quently, bidding curves as first stage decisions can be ex-
pressed by B = {( gA’b,CgA) |se st AYDAL — 1} for buy-
ing and B = {(Q2"* CPAY | s € SP AYPY = 1} for sell-
ing, using only its active price-quantity points.

Furthermore, to comply with restrictions on the number of
points per bidding curve, the sum of active price-quantity
points of the bidding curve for buying (selling) electricity at
time ¢ is not allowed to exceed N points per curve.
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where the value of N is determined by electricity market
rules.

Simultaneous Buy and Sell Bid Constraints

We assume that buy and sell bidding curves can be sub-
mitted together at the same time ¢ as long as their quantity
commitments after market clearing for buying and selling
electricity at a certain electricity price are mutually exclu-
sive. For this purpose, auxiliary variables P/ and P/**
are introduced to represent the highest price value of active
price-quantity points of the bidding curve for buying and the
lowest price value of active price-quantity points of the bid-
ding curve for selling at time ¢, respectively. Their values are
determined by the following logical constraints.

oY <, e st @
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where MF is a sufficiently large value. In case all price-
quantity points of the buy (sell) bidding curve at time ¢ are
inactive, these logical constraints are non-binding.



Due to the monotonicity property enforced in Eqs. (11)-(14)
it is sufficient that the highest price value of active price-
quantity points of the bidding curve for buying is lower than
the lowest price value of active price-quantity points of the
bidding curve for selling at time 7 to prevent both buy and
sell bids to be accepted simultaneously at a certain electricity
price.

PP <P e, Wi (23)

where a small positive number € ensures strict inequality.

Expected Total Cost Objective Term

Two objectives are to be minimised, the expected total cost
and CVaR. The expected total cost (¢”€) is determined by:

=Y =, TC,
N

where T, is the probability and T'Cy the total cost associated
with scenario s. It is notable that the examined microgrid
bidding problem has no scenario-independent cost term. The
total cost (T'Cs) for scenario s is the summation of battery
degradation cost (O1), generator fuel cost (O2), net cost from
day-ahead market trading (O3) and net cost from real-time
market trading (04).

(24)
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where CB¢¢" is battery degradation cost per charge or dis-
charge power, HRY is generator heat rate, C5% is natural gas
price, CXT% (CRT5¢) is the price for buying (selling) electric-
ity in the real-time market at time ¢ of scenario s. Particularly,
real-time market prices for buying or selling electricity are
assumed to be less favourable than prices for trading in the
day-ahead market (Liu et al., 2016; Leo et al., 2021). Hence,

we assume real-time market prices at time ¢ of scenario s as:
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where parameter ® represents the extend of premium charge
that is assumed to be paid on electricity in the real-time mar-
ket compared to the day-ahead market.

Conditional Value-at-Risk Objective Term

CVaR as a measure of financial risk is considered as a sec-
ond objective term (Rockafellar and Uryasev, 2000). It re-
quires to specify a loss function, which in this case is the

total cost defined by Eq.(25). In its primal definition, CVaR
for a continuous loss distribution represents the expected loss
greater than or equal to the value-at-risk (VaR) for a given
confidence value o € (0, 1), with VaR being the a-quantile
of the loss distribution (Rockafellar and Uryasev, 2000). For
a general loss distribution, not necessarily continuous and
for instance discretised by scenarios, CVaR is a weighted
average of VaR and an "upper” CVaR, the latter defined as
the conditional expectation of loss strictly greater than VaR
(Rockafellar and Uryasev, 2002). We refer to Rockafellar
and Uryasev (2002) for further details. Based on their work,
CVaR can be included into our stochastic optimisation prob-
lem by minimising the following special objective function:

=C+1/(1-a) ) (m-max {0,TC; — C})

N
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where CVaR = ming g (§V“R) and { being an optimisation
variable that results in VaR in case its optimal solution is a
singleton. Finally, a linear reformulation of the max-operator
yields the following constraints.

=C+1/(1—a)- Y (n,-ATC,)

N

q)CVaR (29)

TC,—{ < ATC;, Vs (30)
where ATC, > 0 represents the excess of total cost over  in
scenario s.

Multi-objective Problem

Overall, the multi-objective problem (MOP) is given by:

min (q)TC’ (l)CVaR)

x€Q S

where x represents the vector of all decision variables and
Q its feasible region defined as Q = {x | Egs. (1)-(10) N
Egs. (11)-(25) N Egs. (29)-(30)}. Furthermore, we define
single objective problem SOP-TC as a special case of MOP
exclusively minimising ¢”€ (hence, ignoring ¢"*R) and sin-
gle objective problem SOP-CVaR as a special case of MOP
exclusively minimising $¢V*R (hence, ignoring ¢7©).

Solution Procedure

The e-constraint method is applied to transform the prob-
lem in Eq. (31) into a single-objective problem (e-SOP) by
converting the minimisation of ¢¢VF into inequality with up-
per bound €.

: TC
min (¢"€)

s.it. VR < ¢ (32)
Based on this method, a solution procedure is applied
to generate |J| bidding solutions with objective values

{( JTC,Q)JC»V“R Y| jed } from which a decision maker would
select a favourite solution depending on his risk awareness.

Stepl: best case for total cost (j = 1)
1.1: ¢T€ « solve SOP-TC



1.2: ¢¢V*R + solve SOP-CVaR with ¢7¢ < ¢T¢
Step?2: best case for risk (j = |J])

2.1: |CJ“/“R + solve SOP-CVaR
2.2: ¢|ij < solve SOP-TC with ¢CVR < ¢‘CJ‘VaR

Step3: compromise solutions
For j=2to |J|—1 do:
32: ) = 0" — (9VR — oG/ < 1) (G~ 1)
3.3: (¢]TC , q)]CVaR) + solve e-SOP with € =¢;

Computational Study

The microgid bidding approach was demonstrated for a

particular day of a microgrid operating in the Houston area,
Texas. Input data such as DER technical parameters as well
as time series data for PV power and electricity demand were
provided by the industrial partner. Time series data for the
day-ahead market electricity price were taken from the ER-
COT market. The extend of premium applied on real-time
market electicity price was assumed to be ® = 0.2. PV
power scenarios were generated using a seasonal autoregres-
sive moving average (SARIMA) model, day-ahead market
electricity price scenarios were received directly from the
industrial partner. From their cartesian product, |S| = 400
scenarios were randomly drawn without replacement and ap-
plied in the stochastic optimisation. The presented solution
procedure was performed with cardinality |J| = 5 yielding
in five alternative bidding solutions for the microgrid with
different emphasis between total costs and risk measured by
CVaR.
All calculations were executed on an Intel Xeon Processor
E5-1650 v3@3.5 GHz with 32 GB memory. Optimisation
problems were modelled in GAMS 27.1.0 and solved using
Gurobi 8.1.1. Termination criteria for each optimisation were
1800 s CPU time limit or two percent relative optimality gap.
Stochastic optimisation problems were each comprised of
92050 equations and 113650 variables, from which 13200
were binary. In the examined runs, their average relative op-
timality gap was 2.2 %. Furthermore, the total CPU time of
the solution procedure was 4960 s on average for three inves-
tigated cases with oo = 0.85, 0.9 and 0.95. Overall, these re-
sults demonstrate the computational applicability of the pro-
posed solution procedure to generate multiple alternative bid-
ding solutions on a daily base for microgrid operations; and
the applicability of the microgrid bidding model to find near
optimal solutions in a reasonable time using standard optimi-
sation solvers.

Furthermore, it can be seen in Fig. 3 that the risk of high
losses measured by CVaR could be successfully reduced with
relatively small additional expected total cost. For instance
in the case of oo = 0.95, CVaR could be reduced by over 6 %
with a cost increase of just below 1 %. Moreover, histograms
in Figs. 4-6 reveal that a tighter constraint on the CVaR ob-
jective term effectively shifted probability from the right tail
of cost distribution to the left towards lower cost values. For
instance, cost between 12$ and 18$ in Fig. 5 was less fre-
quent for bidding solutions of cases j =5 and j = 3, com-
pared to case j = 1 that exclusively prioritised minimising
expected total cost. In addition, histograms such as in Fig. 5
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Figure 3. Tradeoff solutions between expected total cost and
CVaR for different confidence values Q.
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Figure 4. Histogram of total cost values over scenarios for
confidence value o = 0.95.
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Figure 5. Histogram of total cost values over scenarios for

confidence value o = 0.90.

exhibit an accumulation of cost values between 10 $ and 13 $
for increasing risk awareness, which coincides with the solu-
tion value of { displayed in Table 1. Particularly, the optimi-
sation had extra incentive through the CVaR objective term
to determine bidding decisions that reduce total cost values
larger than its incumbent solution for £, eventually compro-
mising on the expected total cost. However, Fig. 3 and his-
tograms in Figs. 4-6 demonstrate that to a certain extend high
total cost values were unavoidable. For oo = 0.95, the best-
case bidding solution for risk (j = 5) could not reduce CVaR
further than 13.5 % compared to CVaR when expected total
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Figure 6. Histogram of total cost values over scenarios for
confidence value o0 = 0.85.

cost is exclusively optimised (j = 1). Particularly, in scenar-
ios with extremely low PV power the microgrid may likely be
forced to buy electricity even at unfavourable prices to serve
its internal electricity demand. Additionally, in around 11 %
of cases total cost values were in a range below —10 $. These
cases correlated with scenarios characterised by a high, spiky
peak electricity price during which the microgrid took advan-
tage of its flexibility to store electricity before selling it at the
peak electricity price with profit.

Table 1. Solution values of variable C.

gt

o[
=l =2 =3 =S
0.85 11.09 10.84 10.82 10.75 10.81
0.9 12.16 12.01 11.69 11.50 11.69
095 1325 1337 13.14 1278 12.34

Concluding Remarks

This work has presented a multi-objective, two-stage
stochastic MILP formulation for a microgrid bidding in the
day-ahead electricity market. Its overall goal is to min-
imise the expected total cost of the microgrid over the day
ahead and simultaneously reduce the risk of undesirably high
losses measured by CVaR. The proposed MILP model out-
puts bidding curves for buying and selling electricity as first
stage decisions utilising multiple price-quantity bid points
per curve while complying with market rules. The latter
explicitly includes a limit on the number of utilised bid-
ding points per curve. A solution procedure based on the
e-constraint method has been suggested solving a sequence
of single-objective problems to find tradeoff solutions be-
tween expected total cost and CVaR. A computational study
has demonstrated the applicability of the proposed solution
framework to determine a sequence of near optimal bidding
solutions with different emphasis between the two conflicting
objective terms.

Acknowledgments

The authors gratefully acknowledge financial support and
the provision of data from Shell plc.

References

Barbaro, A. and Bagajewicz, M. J. (2004). Managing finan-
cial risk in planning under uncertainty. AIChE Journal,
50(5):963-989.

Birge, J. R. and Louveaux, F. (2011). Introduction to Stochastic
Programming. Springer Publishing Company, Incorpo-
rated, 2nd edition.

Feng, W., Jin, M., Liu, X., Bao, Y., Marnay, C., Yao, C., and Yu, J.
(2018). A review of microgrid development in the united
states — a decade of progress on policies, demonstrations,
controls, and software tools. Applied Energy, 228:1656—
1668.

Fleten, S. E. and Pettersen, E. (2005). Constructing bidding curves
for a price-taking retailer in the norwegian electricity mar-
ket. IEEE Transactions on Power Systems, 20(2):701-
708.

Krishnamurthy, D., Uckun, C., Zhou, Z., Thimmapuram, P. R., and
Botterud, A. (2018). Energy storage arbitrage under day-
ahead and real-time price uncertainty. /EEE Transactions
on Power Systems, 33(1):84-93.

Leo, E., Dalle Ave, G., Harjunkoski, I., and Engell, S. (2021).
Stochastic short-term integrated electricity procurement
and production scheduling for a large consumer. Com-
puters & Chemical Engineering, 145:107191.

Liu, G., Xu, Y., and Tomsovic, K. (2016). Bidding strategy for
microgrid in day-ahead market based on hybrid stochas-
tic/robust optimization. IEEE Transactions on Smart
Grid, 7(1):227-237.

Ottesen, S., Tomasgard, A., and Fleten, S. (2016). Prosumer bidding
and scheduling in electricity markets. Energy, 94:828 —
843.

Rockafellar, R. T. and Uryasev, S. (2000). Optimization of condi-
tional value-at-risk. Journal of risk, 2:21-42.

Rockafellar, R. T. and Uryasev, S. (2002). Conditional value-at-
risk for general loss distributions. Journal of Banking &
Finance, 26(7):1443-1471.

Shao, Y. and Zavala, V. M. (2019). Space-time dynamics of electric-
ity markets incentivize technology decentralization. Com-
puters & Chemical Engineering, 127:31-40.

Silvente, J., Kopanos, G. M., Dua, V., and Papageorgiou, L. G.
(2018). A rolling horizon approach for optimal manage-
ment of microgrids under stochastic uncertainty. Chemi-
cal Engineering Research and Design, 131:293-317.

Verderame, P. M. and Floudas, C. A. (2010). Operational plan-
ning of large-scale industrial batch plants under demand
due date and amount uncertainty: Ii. conditional value-
at-risk framework. Industrial & Engineering Chemistry
Research, 49(1):260-275.

Zhang, Q., Cremer, J. L., Grossmann, I. E., Sundaramoorthy, A.,
and Pinto, J. M. (2016). Risk-based integrated produc-
tion scheduling and electricity procurement for continu-
ous power-intensive processes. Computers & Chemical
Engineering, 86:90-105.

Zhao, T., Pan, X., Yao, S., Ju, C., and Li, L. (2020). Strategic bid-
ding of hybrid ac/dc microgrid embedded energy hubs:
A two-stage chance constrained stochastic programming
approach. [EEE Transactions on Sustainable Energy,
11(1):116-125.



