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Abstract 

Solid oxide electrolysis cells (SOECs) are a promising technology to generate hydrogen through water 

electrolysis. However, intermittent renewable energy requires SOECs to transition between hydrogen 

production setpoints as the price of electricity fluctuates. A well-functioning control system is important 

to avoid cell degradation during setpoint tracking operation. In this work, we apply nonlinear model 

predictive control (NMPC) to an SOEC module and supporting equipment and compare NMPC 

performance to classical PI control while ramping between hydrogen production setpoints. We find that 

these control methods provide similar performance in many metrics, but NMPC significantly reduces cell 

thermal gradients during the setpoint transition. 
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Introduction

Hydrogen production may play a crucial role in the energy 

transition and decarbonization. Today, most industrial 

hydrogen is produced through steam methane reforming, 

which uses fossil fuels as a feedstock. Water electrolysis is 

a potential replacement, producing no direct greenhouse 

gas emissions when renewable energy is used. 

For water electrolysis, the Nernst potential---the 

minimum potential difference at which electrolysis can 

occur---decreases with increasing reaction temperature. 

Because solid oxide electrolysis cells (SOECs) operate at 

600 °C to 1000 °C, much higher temperatures than other 

electrolysis technologies, they are good candidates for 

efficient water electrolysis. However, high temperature 

operation comes with significant drawbacks. SOECs 

require additional heat exchange equipment and good 

thermal insulation. Transitions between operating points 

must be controlled carefully to minimize power 

requirements and avoid thermal stress.  

Flexible operation is necessary to operate profitably 

with intermittent renewable energy but switching between 

setpoints risks damaging the cells. Therefore, tight controls 

are needed to reduce degradation during frequent 

transients. Cai et al. (2014) use optimal control to ramp 

from minimum to maximum hydrogen production in a 

simplified flowsheet consisting of only a compressor and 

an SOEC stack. Saeedmanesh et al. (2019) present a 

standalone SOEC flowsheet and use proportional integral 

(PI) controllers to control power usage to match generation 

from a photovoltaic cell.
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SOEC systems are good candidates for model 

predictive control (MPC) since many manipulated variables 

(MVs) are highly interactive. MPC (see (Rawlings et al., 

2022) and (Raković & Levine, 2019)) is a method of 

advanced control that uses a system model to predict system 

response to a sequence of MVs and optimizes it with respect 

to some performance metric. Simultaneous handling of 

constraints where the controller can manipulate several 

degrees of freedom affords a quicker response than classical 

control.  

In this paper, we apply nonlinear MPC (NMPC) to an 

SOEC module and supporting equipment and compare the 

performance of NMPC to classical PI control while ramping 

from a minimum hydrogen production rate of 0.4 kg/s to a 

maximum of 2 kg/s. Performance is judged based on the 

speed of production rate transition, whether safe SOEC feed 

and effluent concentrations are maintained, and whether 

unsafe temperature levels or gradients occur in the SOEC. 

Process Modeling 

Figure 1 shows a process flow diagram for the SOEC 

module and supporting equipment. The SOEC model was 

developed in the open-source, equation-oriented IDAES1 

(Institute for the Design of Advanced Energy Systems) 

modeling framework (Lee, et al., 2021). Saturated steam 

entering the system at 105 °C and 1.2 bar passes through 

two heat exchangers to absorb heat from the hot SOEC 

effluent streams. Air for use as a sweep gas enters at 

 

1  https://github.com/IDAES/idaes-pse 

atmospheric pressure and 15 °C. This air is compressed up 

to the stack operating pressure of 1.2 bar, and then heated 

using hot sweep gas leaving the SOEC. Both the steam feed 

and the sweep gas streams are then mixed with the hot 

recycled effluent streams from the SOEC hydrogen-side 

and oxygen-side, respectively. They are further heated by 

trim heaters before entering the SOEC. 

While a complete discussion of SOEC modeling and 

parameter estimation is beyond the scope of this paper, we 

provide an overview of the first-principles non-isothermal 

Figure 1: Process flow diagram of SOEC system  

Figure 2: Schematic of SOEC model. Note that this diagram 

is not to scale---the cell is millimeters thick, and the electrolyte 

and oxygen electrode are micrometers thick. 



  

planar SOEC model used here (Figure 2). To avoid 

ambiguity in the terms “anode” and “cathode” when 

considering reversible SOECs, we use “fuel electrode” for 

the electrode in which water is reduced into hydrogen and 

“oxygen electrode” for the electrode to which O2- ions 

diffuse. The default SOEC model uses one (spatial) 

dimensional channel sub-models with two-dimensional 

electrode, electrolyte, and interconnect sub-models, 

discretized using a finite volume method. However, many 

configuration options exist enabling approximations and 

model reduction as called for by different applications.  

The core dynamic modeling equations used are given 

in (Bhattacharyya et al., 2007), suitably adjusted for 

Cartesian rather than cylindrical coordinates. However, the 

general form of the Butler-Volmer equation, as given by 

(Noren & Hoffman, 2005), is used instead of the hyperbolic 

sine approximation. To scale between cell-level results and 

module-level results, the cell material flow rates are 

multiplied by the number of cells in the module. Heat loss 

through interaction with the environment is not considered.  

 SOEC model parameters were chosen to match the 

fuel electrode-supported short stack in (Fang et al., 2015). 

Electrochemical parameters were determined by comparing 

the experimental V-I curve with model predictions. In cells 

built to this specification, the oxygen electrode and 

electrolyte combined are only 5% as thick as the fuel 

electrode. Therefore, those layers were reduced to thin films 

given specific area-squared resistance values without 

appreciable resistance to heat or (in the case of the oxygen 

electrode) mass transport. On the other hand, the 

interconnect in the experimental stack was 5 mm thick 

(probably to facilitate insertion of thermocouples, but no 

reason was explicitly given). A value of 2 mm was used in 

the cell model in this study under the assumption that cells 

in a production stack would have a thinner interconnect.  

First-principles one-dimensional dynamic models are 

used for the three heat exchangers and two trim heaters. 

Multipass crossflow heat exchangers are used, while the 

trim heaters are modeled as cross flow heat exchangers with 

empty tubes heated through resistive heating. Material and 

energy balances and performance equations are included for 

the heat exchangers and heaters, while the mixers and 

splitters have only material and energy balances. The 

blower assumes a fixed isentropic efficiency. 

Gas-phase material and energy holdups in the SOEC 

module and throughout the flowsheet are ignored due to 

their small magnitude and short gas residence times. 

Therefore, dynamic behavior is dominated by the thermal 

holdup in the metal mass of the SOEC, heat exchangers, and 

trim heaters. While the system is open-loop stable, the large 

amount of heat exchanged between SOEC feed and effluent 

combined with the metal mass in various units cause an 

open-loop setpoint transition to take nearly a week to come 

to steady state. Therefore, for flexible operations, a tight 

control system is necessary to transition between setpoints. 

Classical Process Control 

A control system for the flowsheet in Figure 1 needs to 

transition quickly between setpoints without large spatial 

temperature gradients occurring in the SOEC. Several 

performance constraints govern stack operation. Overall 

conversion of steam to hydrogen should not exceed 75% to 

avoid steam starvation due to uneven gas distribution. Also, 

conversion should not drop below 75% so that the system 

uses steam efficiently. Hydrogen content in the feed should 

mostly remain above 5% (mole basis) to avoid degradation 

and oxygen content in the sweep outlet should mostly 

remain below 35% to prevent oxidation of process 

components. To avoid stack thermal stress, the maximum 

magnitude cell thermal gradient is kept below 200 K/m. 

Seven manipulated variables (MVs) are available for 

control purposes: steam and sweep gas feed rates, steam and 

oxygen trim heater duties, steam and oxygen recycle ratios, 

and cell potential. However, there are no obvious controlled 

variables (CVs) to pair with many of these MVs. Cell 

potential has a large and immediate effect on overall water 

conversion, so pairing those variables is natural. Overall 

water conversion cannot be measured directly, but, in the 

absence of current leaks, it can be calculated from the steam 

feed rate and total SOEC module current, both of which can 

be easily measured. With cell potential so paired, steam feed 

rate can be paired with H2 production rate. Trim heater 

duties can be paired with trim heater outlet temperatures to 

create tight control loops.  

However, those pairing leave relatively few variables 

available for SOEC thermal management. Although the 

sweep flow rate and both recycle ratios impact stack 

temperature, they are far less impactful than trim heater 

duties and cell potential. Furthermore, they also impact 

hydrogen content in the feed and oxygen content in the 

sweep effluent, whose regulation is a task for which PI 

control is ill-suited. Therefore, cascade control is 

appropriate; trim heater outlet temperature setpoints should 

be manipulated by controllers regulating SOEC effluent 

temperatures.  

Table 1: Manipulated variables and their pairings in classical 

control. Artificial variables marked with *. 

Controller 

Type 

Manipulated Variable 

(MV) 

Controlled 

Variable (CV) 

PI Cell potential Water conversion 

PI Steam heater duty Steam heater 

outlet temperature 

PI Sweep heater duty Sweep heater 

outlet temperature 

PI Steam feed rate H2 production rate 

None Sweep feed rate - 

None Steam recycle ratio - 

P Sweep recycle ratio SOEC sweep 

outlet temperature 

P Steam heater outlet 

temperature setpoint* 

SOEC steam 

outlet temperature 

P Sweep heater outlet 

temperature setpoint* 

SOEC sweep 

outlet temperature 

 

 

 



  

 

In a typical cascade arrangement, the inner controllers 

regulating trim heater outlet temperature would be 

proportional (P) controllers while the outer controllers 

regulating SOEC outlet temperatures would be PI 

controllers to remove offset. However, simulations showed 

that this arrangement resulted in controllers fighting to 

maintain their setpoints at the expense of others. Much 

better results are obtained when the inner controllers are PI 

and the outer controllers are purely P. Finally, another P 

controller pairs SOEC sweep effluent temperature with 

sweep recycle ratio; faster setpoint transitions are obtained 

with acceptable transient behavior of sweep effluent oxygen 

fraction. The final controller pairings are given in Table 1. 

Anti-windup is accomplished through smooth clamping 

using steep logistic functions as smooth approximations to 

the Heaviside function (unit step function). 

Nonlinear Model Predictive Control 

To compare the performance of classical and advanced 

control strategies, an NMPC framework was developed for 

setpoint transition using all seven MVs shown in Table 1. 

The objective function contains the weighted sum of 

squared errors of the trajectory-tracking of H2 production 

rate as well as deviations of MVs and CVs from their 

reference values. An additional rate of change penalty on 

the trim heater duties is added to prevent oscillatory 

trajectories.  

To prevent cell thermal degradation over time, the 

magnitude of the temperature gradient along the cell length 

(z direction) is constrained to be below 205 K/m. Applying 

such a state inequality constraint is known to be non-robust, 

as perturbations in inputs can lead to an infeasible problem. 

To avoid this, an l1-penalty relaxation of this constraint in 

(1) maintains robustness of the controller by treating it as a 

soft constraint with non-negative slack variables 𝑝 and 𝑛, 

which are penalized in the objective function.  

𝑑𝑇

𝑑𝑧
− 205 ≤ 𝑝      and      −

𝑑𝑇

𝑑𝑧
− 205 ≤ 𝑛 (1) 

 

The objective function is defined as: 

𝑓obj = ∑ 𝜌𝐻2
(𝑦𝑖 − 𝑦𝑖

𝑅)2

𝑁

𝑖=0

+  ∑ ∑ 𝜌𝑗(𝑢𝑖𝑗 − 𝑢𝑖𝑗
𝑅 )

2

𝑗∈𝐽

𝑁

𝑖=0

+ ∑ ∑ 𝜌𝑘
′ (𝑥𝑖𝑘 − 𝑥𝑖𝑘

𝑅 )2

𝑘∈𝐾

𝑁

𝑖=0

+  ∑ 𝜌′(𝑣𝑖 − 𝑣𝑖−1)2

𝑁

𝑖=1

+ 𝜌𝑠  ∑ ∑(𝑝𝑖𝑧 + 𝑛𝑖𝑧

𝑧𝐿

𝑧=1

)

𝑁

𝑖=0

 

 

(2) 

The first term in the objective is the sum of squared errors 

of the H2 production rate, 𝑦𝑖, compared to its target, 𝑦𝑖
𝑅 at 

time 𝑡 = 𝑡𝑖, with 𝜌𝐻2
= 1 selected as the penalty weight. 

The second term involves penalties on the deviation of the 

seven MVs, 𝑢𝑖𝑗, from their nominal values 𝑢𝑖𝑗
𝑅 , with 𝜌𝑗 =

0.01 applied after scaling the terms to be O(1). Also, 𝐽 

represents the set of MVs. Similarly, the third term 

penalizes the deviation of the CVs (represented by set K) 

from their reference trajectories. The terms are scaled to 

O(1) and 𝜌𝑘
′ = 0.01 is selected as the penalty weight. The 

fourth term is the rate of change penalty on trim heater 

duties represented by 𝑣, and 𝜌′ = 0.01 is selected as the 

penalty weight after scaling the terms to O(1). The last term 

penalizes the slack variables in (1), and 𝜌𝑠 = 0.001. 𝑁 is 

the number of time steps in the prediction horizon. 

For this study, we assume that the system state is 

known by the controller; in a real application, moving 

horizon estimation can be used to infer the system state 

from measurements. Using the system state, the controller 

uses the system model to predict the response of a given MV 

trajectory over the controller horizon, then optimizes the 

trajectory to minimize the objective function. Then the first 

element of the MV trajectory is injected into the system, 

and, at the next sampling time, the MV trajectory is re-

optimized over a shifted horizon.  

Simulation Results 

To compare the performance of classical control and 

NMPC, we simulated the SOEC system ramping hydrogen 

production from minimum to maximum and back to 

minimum. The ramps were carried out over thirty minutes, 

with two hours for the system to settle at its new operating 

point after both the ramp up and down. The dynamic 

simulations using classical process control were conducted 

using the IDAES interface to the PETSc suite of differential 

algebraic equation (DAE) solvers (Abhyankar, et al., 2018). 

Because this DAE system is stiff, a variable time step 

implicit Euler method was used. The time step was 

initialized at 1 second, after which it typically grew to 5-10 

seconds during the initial transient after ramping started or 

stopped and then to 5–10 minutes by the end of the 

integration interval. When anti-windup was turned on or off 

in the PI controllers, the timestep decreased to 0.5-1 

seconds, due to the steep transition between error 

integrating and not integrating. The fully discretized control 

problem for NMPC had about 16,000 equations and 

variables. The studies were performed on an Intel Core i7 

CPU @ 2.11 GHz processor with 24 GB memory. On 

average, the solution time was 35.5 seconds for a prediction 

horizon of 750 seconds. In each instance, the problem was 

solved well within the sampling time of 150 seconds. 

Figure 3 compares the performance of the two control 

strategies. Both classical control and NMPC reach the 

maximum production rate of 2 kg/s and the minimum 

production rate of 0.4 kg/s after the thirty-minute ramps 

with a small amount of overshoot. They both also maintain 

overall steam conversion around 75% without transgressing 

either the 35% upper bound on sweep effluent oxygen 

content or the 5% lower bound on fuel feed hydrogen 

content. Classical control has higher peaks in the SOEC 

temperature gradients than NMPC, as the latter can impose 

these constraints while minimally affecting cell 

performance. However, in both cases the SOEC takes 

nearly two hours to settle thermally after the ramp finishes.  
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Figure 3: Comparison of classical control with NMPC. Efficiency is defined as the ratio of lower heating value (LHV) of H2 

produced to total system power consumption (i.e., not just the SOEC itself, but including trim heaters and the blower).
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The trim heater duties reveal that the system is not even then 

at steady state, but rather the control systems are shielding 

the SOEC module from the slow time dynamics of the heat 

exchangers. Classical control is somewhat more efficient 

than NMPC during the ramp down, but at the cost of larger 

temperature gradients and a more oscillatory response. 

Conclusions 

A dynamic process flowsheet of an SOEC module and 

supporting auxiliary equipment was developed in the open-

source, equation-based IDAES modeling framework. 

Control of this system for ramping between minimum and 

maximum hydrogen production rates was conducted with 

both classical control and NMPC. Dynamic simulation 

results show that while both control methods attain similar 

performance in several areas, NMPC can mitigate 

temperature gradients in the SOEC more effectively than PI. 

The performance of PI control might suggest that linear 

MPC might control this system well. There are two major 

sources of nonlinearity that would hinder such an 

application. First, the time constants of the units in this 

system are dependent on the flow rate through them, and the 

hydrogen production rate increases by a factor of five 

ramping between production points. Second, the effective 

heat of reaction depends strongly on the cell potential. At 

full load, the SOEC operates near the thermoneutral point, 

where Joule heating in the cell provides the necessary heat 

of reaction for electrolysis. At minimum load, however, the 

SOEC is operated at a lower potential, resulting in less Joule 

heating and requiring the heat to be provided externally. 

Any linear system model would strongly depend on the 

operating point where the model is identified. 

One factor in PI control having higher efficiency while 

ramping down to minimum production is that NMPC is not 

optimizing for efficiency, but instead for reducing the 

temperature gradients while tracking a setpoint. Economic 

MPC allows non-tracking objectives like maximizing 

efficiency to be used and is well-suited to this SOEC system 

since its response time is slow compared to the rate at which 

electricity prices change. Another challenge is how to 

manage the trade-off between operating efficiency and cell 

degradation; this is a topic for further research. 
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