
COMPUTATIONAL PERFORMANCE OF ALGEBRAIC MODELING
LANGUAGES WITH ALTERNATE SOLVER INTERFACES AND

ADVANCED MODELING COMPONENTS
B. L. Ammari a,1, S. Kompalli a,1, M. Meraklı b, Y. Qian a, J. L. Pulsipher a, M. Bynum c, K. C. Furman b, C. D. Laird a,2

a Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
b ExxonMobil Upstream Research Company, Spring, TX 77389

c Center for Computing Research, Sandia National Laboratories, Albuquerque, NM

Abstract
Algebraic modeling languages (AMLs) have seen widespread success, enabling transparent formulation and rigorous
solution of engineering, science, and business optimization problems. As we tackle larger, more complex problems, we
often require specialized approaches and tailored meta-algorithms for efficient solution. AMLs implemented in high-
level programming languages (e.g., Pyomo in Python, and JuMP in Julia) bring significant flexibility and promise rapid
development of optimization applications. However, there are often concerns about performance of open-source AMLs.
The JuMP team has long demonstrated comparable performance with compiled tools and recent development efforts
in Pyomo have sought to shrink the performance gap. In this paper, we evaluate the performance of the open-source
languages JuMP and Pyomo, and we demonstrate how to improve performance on large-scale case studies using alternate
solver interfaces, advanced modeling components and new capabilities that support efficient “resolves” of problems
with similar structure. The case studies selected for comparison include a modified facility location problem, a linear-
quadratic control problem, a maritime inventory routing problem, and an unconstrained nonlinear optimization problem.
For Pyomo, our computational studies show that a 35-40 % performance improvement is possible for linear problems by
switching from the “direct” interface to the LP file-based interface. Furthermore, for repeated solution of problems with
similar structure (but different parameter values), over an order of magnitude performance increase is possible with new
solver interfaces in Pyomo.

Keywords
Algebraic Modeling Languages, Pyomo, JuMP

Introduction

Algebraic Modeling Languages (AMLs) have emerged
as the popular choice of frameworks to represent models in
applied mathematical optimization (Fragniere and Gondzio,
2002). With advancements in solution algorithms in the
1950’s, the high cost and error-prone nature of directly in-
terfacing with solvers necessitated development of computer
programs to automate the process (Fourer, 2013), and the first
AMLs were introduced as matrix generators for linear pro-
gramming problems (Kallrath, 2004). In 1976, discussions
on creation of a general algebraic modeling language ulti-
mately led to the development of GAMS by the World Bank
(Meeraus, 1976).

Subsequently, AML environments expanded significantly
through the introduction of more commercial and open-
source AMLs (Fourer, 2012). In addition to GAMS, AMPL
was developed in 1985 to handle separate model and data
files and included options to run batch operations (Chen

et al., 1996; Fourer et al., 2003). Later, AIMMS was de-
veloped with a graphical user interface to assist engineers in
coding mathematical programs and provide tools for enter-
prise deployment. In contrast to commercial AMLs, recent
developments in high-level programming languages such as
Python and Julia have led to several open-source AMLs. For
example, PuLP is a Python package tailored for linear pro-
gramming and mixed integer linear programming problems
(Mitchell et al., 2011). GEKKO specializes in dynamic op-
timization for mixed-integer, nonlinear, and differential al-
gebraic equations (DAE) problems (Beal et al., 2018). For
general classes of optimization problems, Pyomo provides a
comprehensive suite of capabilities in Python (Bynum et al.,
2021). Likewise, JuMP has emerged as the primary opti-
mization package in Julia (Dunning et al., 2017).

Open-source tools like Pyomo and JuMP are imple-
mented in full-featured, high-level programming languages
that provide significant flexibility for implementation of ad-

1 Authors contributed equally to this work.
2 Corresponding author. Email: claird@andrew.cmu.edu.

vanced modeling and solution approaches with access to a
range of external libraries to support rapid development of
end-to-end optimization applications. The primary concerns
with open-source packages compared with their commercial
counterparts is language stability and computational perfor-
mance. JuMP is known to have performance comparable to
compiled languages (Dunning et al., 2017), however, for Py-
omo in particular, performance can be a concern, especially
for the subset of problems where model generation time ex-
ceeds solver time (typically large LPs). While packages de-
veloped in C++ like Gravity may provide faster instance gen-
eration (Hijazi et al., 2018), the simplicity and syntax of high-
level programming languages still makes tools like Pyomo
and JuMP favorable alternatives.

Performance comparisons between AMLs do exist in the
literature. Dunning et al. (2017) provide a comparison be-
tween Pyomo and JuMP, however further development of
both packages since 2017 warrants new investigation, and
there is a need to investigate performance differences across
an array of available solver interfaces. More recently, Ju-
sevičius et al. (2021) conducted computational experiments
between AIMMS, AMPL, GAMS, Pyomo, and JuMP by uti-
lizing models from the GAMS model library. They use auto-
mated tools to convert GAMS models into explicit, expanded
forms of models compatible with the other AMLs - that is, all
constraint equations are written explicitly as opposed to uti-
lizing compact set notation. This expanded form may impact
the performance of an AML and is not representative of how
models are typically formulated in these languages. Further-
more, this comparison is performed with relatively small test
problems where language overheads (e.g., package imports)
may dominate the computational time.

Our work aims to provide several contributions over the
existing literature. We compare the computational perfor-
mance of Pyomo and JuMP, and show how the performance
can be significantly improved through selection of solver
interfaces and the use of advanced modeling components.
We add additional test cases, including the maritime inven-
tory routing problem and the multivariate Rosenbrock exam-
ple. Furthermore, we investigate the performance differences
when performing multiple optimizations with similarly struc-
tured models (showing that over an order of magnitude per-
formance improvement is possible). This use case is very
common in industrial applications where:

• multiple optimizations are required on a single model
with changes in parameter values

• the application solution requires a meta-algorithm that
may include parameter changes and activation or deac-
tivation of constraints

• addition of new constraints is required between solves,
usually through a cut-generation approach

In these applications, it is desirable for these “resolves” to
be computationally efficient, avoiding the overhead of initial
model construction for subsequent solves.

The remainder of this paper is structured as follows. The
next section provides a description of the benchmark prob-
lems used in this study. We then present the numerical results

along with methodology used to perform the computational
experiments. We close the paper with a short discussion of
the conclusions and directions for future work.

Benchmark Model Formulations

In this section, we describe the benchmark problems that
are used in this study. This includes two mixed-integer pro-
gramming problems, a quadratic programming problem, and
a nonlinear optimization problem. We adopted the modi-
fied facility location problem and the linear-quadratic con-
trol problem formulations described in Dunning et al. (2017)
with implementations from GitHub (https://github.com/or-
fusion/OptimizationModelComparisons, accessed 2022-05),
and we included the multivariate Rosenbrock example from
Dixon and Mills (1994). Each of these test cases have pa-
rameters that allow us to adjust the size of the problem and
investigate scalability. Furthermore, we include the maritime
inventory routing problem formulation presented by Papa-
georgiou et al. (2018) using four examples of group 2 in-
stance data from MIRPLib (Papageorgiou et al., 2014). Each
of these formulations is discussed in more detail below.

Facility Location Problem (FAC)

This formulation is a modification of the classic facil-
ity location problem proposed by Owen and Daskin (1998).
Dunning et al. (2017) generate data by placing C customers
evenly on a grid of size G x G with F number of facilities.
Thus, the sets are defined as c∈ {1, ...,C} and f ∈ {1, ...,F}.
The objective is to minimize the maximum distance between
a customer and its nearest facility. The original formulation
involves a second-order cone, which can be further trans-
lated into a quadratic form using additional constraints and
auxiliary variables. Assuming that there is a customer lo-
cated at each coordinate (i, j) where i, j ∈ {0, 1

G , ...,1} of a
2-dimensional unit square, the problem is described as,

min
d,r,s,y,z

d

s.t.
F

∑
f=1

zi, j, f = 1 ∀ i, j

si, j, f = d +M(1− zi, j, f) ∀ i, j, f

ri, j, f ,1 =
i
G
− y f ,1 ∀ i, j, f

ri, j, f ,2 =
j

G
− y f ,2 ∀ i, j, f

r2
i, j, f ,1 + r2

i, j, f ,2 ≤ s2
i, j, f ∀ i, j, f

zi, j, f ∈ {0,1} ∀ i, j, f

si, j, f ≥ 0 ∀ i, j, f .

Here, the big-M parameter is given as M = maxc,c′ ||xc −
xc′ ||2. As in Dunning et al. (2017), we consider the problem
sizes of F ∈ {25,50,75,100} with G=F .

Linear-Quadratic Control Problem (LQCP)

The linear quadratic control problem (LQCP) formula-
tion is a simplified version of the formulation presented by
Mittleman (2001). Here, m and n are parameters that allow

us to scale the number of variables and constraints. The sets
are defined as I = {0, ...,m}, J = {0, ...,n}, I′← I\{m}, and
J′← J\{0,n}. The problem formulation from Dunning et al.
(2017) is shown below, and we consider the same instance
sizes with m=n and n ∈ {500,1000,1500,2000}.

min
u,y

1
4

∆x((ym,0− yt
0)

2 +2
n−1

∑
j=1

(ym, j− yt
j)

2 +(ym,n− yt
n)

2)

+
1
4

α∆t(2
m−1

∑
i=1

u2
i +u2

m) (1)

s.t.
1
∆t

(yi+1, j− yi, j) =
1

2h2
(yi, j−1−2yi, j + yi, j+1)

+
1

2h2
(yi+1, j−1−2yi+1, j+yi+1, j+1) ∀ i ∈ I′, j ∈ J′ (2)

y0, j = 0 ∀ j ∈ J (3)
yi,2−4yi,1 +3yi,0 = 0 ∀ i ∈ I (4)

1
2∆x

(yi,n−2−4yi,n−1 +3yi,n) = ui− yi,n ∀ i ∈ I (5)

−1≤ ui ≤ 1 ∀ i ∈ I (6)
0≤ yi, j ≤ 1 ∀ i ∈ I, j ∈ J (7)

Maritime Inventory Routing Problem (MIRP)
A single product maritime inventory routing problem

(MIRP) is formulated using a discrete-time arc-flow MILP
model involving T time periods as described in group 2 in-
stances in Papageorgiou et al. (2014). This formulation con-
tains port, vessel, and vessel classes as the main components.
Ports can be classified either as loading ports JP or con-
sumption ports, JC, and ∆ j is set to +1 or −1 respectively.
Each port j has a fixed number of berths B j which restricts
the number of vessels that can load or discharge simultane-
ously and a non-constant per-period production or consump-
tion rate D j,t . There is an inventory of capacity Smax

j,t for ev-
ery port irrespective of the type of port. A simplified version
of spot market has been included to sell excess inventory or
buy product whenever necessary. Trading with spot market
at port j in time period t incurs a penalty Pj,t per unit volume
such that Pj,t > Pj,t+1 to ensure that the spot market is used
as late as possible.

Each vessel of vessel class vc has a capacity Qvc and it is
assumed that only direct deliveries are possible, i.e., vessels
load and discharge fully at respective ports. Port inventory
capacities are assumed to be always greater than the maxi-
mum vessel capacity Smax

j,t > max(Qvc : vc ∈VC) ∀ j, t. Load-
ing and discharge operations are completed within the same
time period that they started for each vessel at any port.

The formulation is based on a time-space network (Song
and Furman, 2013), where each port-time period pair corre-
sponds to a node and arcs between nodes represent vessel
movements between ports and/or time periods. The network
consists of a set of nodes N0,T+1 and a set of directed arcs
A. The set of nodes N0,T+1 consists of N regular nodes (port-
time pairs) as well as a source node n0 and a sink node nT+1.
The set of arcs available to vessel class vc is denoted as Avc.
In general arcs can be divided into four categories: source
arcs, travel arcs, waiting arcs and sink arcs. Avc,inter ⊂ Avc

consists of set of travel and sink arcs associated with a par-
ticular vessel class. A set of incoming RSvc

n , outgoing arcs
FSvc

n and incoming inter-regional arcs RSvc,inter
n are defined

with respect to a node and a vessel class.
Decision variable xvc

a denotes the number of vessels of
vessel class vc travelling on arc a ∈ Avc, s j,t represents the
inventory at port j at the end of time period t, and α j,t de-
notes the amount bought from or sold to the spot market at
port j in time period t. The formulation for group 2 instances
described in Papageorgiou et al. (2014) is

min ∑
vc∈VC

∑
a∈Avc

Cvc
a xvc

a + ∑
j∈J

∑
t∈T

Pj,tα j,t

s.t. ∑
a∈FSvc

n

xvc
a − ∑

a∈RSvc
n

xvc
a =

+1 i f n = n0

−1 i f n = nT+1

0 i f n ∈ N
∀ n ∈ N0,T+1,vc ∈ VC

s j,t = s j,t−1 +

∆ j(D j,t −α j,t −

∑
vc∈VC

∑
a∈FSvc,inter

n

Qvcxvc
a) ∀ n = (j, t) ∈ N

∑
vc∈VC

∑
a∈FSvc,inter

n

xvc
a ≤ B j ∀ n = (j, t) ∈ N

α j,t ≥ 0 ∀ n = (j, t) ∈ N

s j,t ∈ [0,Smax
j,t] ∀ n = (j, t) ∈ N

xvc
a ∈ {0,1} ∀ vc ∈ VC,a ∈ Avc,inter

xvc
a ∈ Z+ ∀ vc ∈ VC,a ∈ Avc\Avc,inter

For the benchmark studies, we selected four examples from
group 2 instances of MIRPLib (Papageorgiou et al., 2014)
(as shown in Table 1). We wrote a parser to read the individ-
ual data files and create the necessary sets and parameters for
constructing the model in Pyomo and JuMP.

Multivariable Rosenbrock Problem (ROSEN)
The classic two-variable Rosenbrock function has been

used in many unconstrained nonlinear optimization exam-
ples. To provide a scalable nonlinear example with relatively
large expression trees, we make use of the multivariable ex-
tended Rosenbrock function shown below (Dixon and Mills,
1994).

min
x

N/2

∑
i=1

100(x2
2i−1− x2i)

2 +(x2i−1−1)2

For the case studies in this paper, we select the sizes
N={100000,500000,1000000}.

Methods and Numerical Results
Using the benchmarks described above, we evaluate the

performance of Pyomo and JuMP on several case studies. All
the computational studies were performed on a Linux server
running Ubuntu with 1TB of RAM and 4 Intel(R) Xeon(R)
Gold 6234 CPUs (3.30GHz) with 8 cores each. The key
packages were Python 3.9.12, Pyomo 6.4.1, Julia 1.7.3, and

JuMP v1.1.1. All computational case studies were performed
in serial.

Single Model Generation and Translation: In the first
computational study, we evaluate the performance of Pyomo
and JuMP when generating a single model instance and trans-
lating it appropriately for the required solver interface. Our
focus is on the time spent in the modeling language itself
(not the solver). For each run, we record a wall-clock time
that includes model generation, translation, and solver time,
and then subtract the reported solver time to determine the
time spent in the AML only. This is done since the AMLs
do not provide an easy way to separate the translation step
from the solve step. Also note that we set a timeout on the
solver to reduce the overall execution time for the analysis.
For Pyomo, we show the timing for three different solver in-
terfaces: Gurobi (LP) utilizes an interface that produces an
.lp file from the Pyomo model and calls Gurobi (Gurobi Op-
timization, LLC, 2022) as an executable; Gurobi (Py) (also
known as Gurobi direct) uses a Pyomo interface based on
the Gurobi Python API; and Gurobi (APPSI) uses a newer
set of solver interfaces (called APPSI) recently developed
in Pyomo that are focused on efficient resolves of similar
models. For JuMP we consider two different solver inter-
faces. Default refers to the default or “natural” solver inter-
face. With the Direct interface in JuMP, memory allocation
can be significantly reduced by building models initialized
via direct model which, similar to APPSI, sets up a spe-
cialized solver backend for solvers that support incremental
creation/modification (eliminating the use of the more gen-
eral CachingOptimizer backend that enables incremental
builds/modifications with any solver) (Legat et al., 2022).

Timing results for model generation and translation
across the different AMLs and solver interfaces are shown
in Table 1. For JuMP, we excluded any just-in-time (JIT)
compilation time by performing the model construction and
optimization twice, and timing the second run only. There-
fore, the JIT compilation is invoked on the first set of calls
and this precompiled code is used for the second call. Julia
also provides a mechanism for storing and loading an im-
age to avoid overheads, however, that approach was not used
here. Immediately, we notice that JuMP is approximately an
order of magnitude faster than Pyomo - an observation that is
consistent with other published timing results. However, we
also note that we can obtain approximately a 35-40% perfor-
mance improvement in Pyomo by selecting the Gurobi (LP)
interface over the Gurobi (Py) interface. Likewise, perfor-
mance improvements of approximately 10-40% are possible
with JuMP by utilizing the “Direct” interface.

Advanced Modeling Components: For the FAC-LE and
the LQCP-LE cases in Table 1 we show performance im-
provements that are possible with advanced modeling com-
ponents. In particular, for the facility location and lin-
ear quadratic control problems, we identified the constraints
that were the most time-consuming to construct. We know
that these constraints are linear, and Pyomo supports cre-
ation of LinearExpression objects directly by specify-
ing lists of variables and coefficients. For the LQCP case
study, updating the construction rules for equation 2 with

LinearExpression objects improved performance signifi-
cantly (approximately an additional 45%) with the Gurobi
(LP) solver interface. It should be noted, however, that this
approach requires manual reformulation in matrix notation
and removes many of the benefits of an AML. The JuMP
models already specify that their constraints are linear and
no additional computational experiments were necessary.

End-to-End Computational Performance: Table 2 shows
results for end-to-end computational time that includes lan-
guage overheads and just-in-time (JIT) compilation time. For
these studies, a single script was executed for each test prob-
lem, and the wall-clock time was reported for complete exe-
cution of the script. Then we subtracted the time spent in the
solver. Comparing the times in Table 1 with those in Table 2,
we can see the difference caused by overhead. For smaller
test cases, the JIT overhead for JuMP is substantial, however,
this overhead is a small fraction of the overall time for larger
test cases. For Pyomo, the overhead for small cases is min-
imal, however, for larger test cases, the overhead increased,
likely due to memory cleanup. Note that the maritime inven-
tory routing problem was not included in this analysis since it
involved additional code to parse the data files that could lead
to timing differences unrelated to the modeling language.

Nonlinear Rosenbrock Model: We performed timing on
the multivariable Rosenbrock example considering both the
model generation and translation time, as well as the end-
to-end timing that includes overheads. The solver used in
this case was IPOPT where Pyomo was using an .nl file-
based interface and JuMP was using a direct solver interface.
The Pyomo time without overheads ranged from 3.7 to 43.8
seconds for the smallest and largest test cases respectively,
while the JuMP computational times ranged from 0.1 to 1.2
seconds respectively. To save space, the complete table of
results for this nonlinear case study are not shown, but are
consistent with the linear case studies discussed above.

Repeated solves with similar models: There are many
applications that require repeated solution of problems with
similar structure, including nonlinear model predictive con-
trol where the structure is the same, but some data changes
from run to run. Implementation of meta-algorithms and de-
composition strategies can require repeated solution with dif-
ferent parameter values, constraints activated/deactivated, or
the addition of cuts at each iteration. Recently, the develop-
ers of Pyomo have implemented a new set of solver interfaces
called APPSI. These interfaces support efficient in-memory
modification and resolve of models. Here, we demonstrate
this Pyomo feature on the facility location problem. After
completing an initial solve, we change the value of the big-
M parameter and solve the problem again. This is accom-
plished by specifying that the big-M parameter is mutable to
provide an indicator to Pyomo that the value may change be-
tween calls to the solver. The timing results reflect the model
update and translation time for the “resolve”. Table 3 shows
the timing results for the three solver interfaces investigated
with Pyomo. With the APPSI interface, significant perfor-
mance improvements are possible for this use case, with over
an order of magnitude reduction in computational time com-
pared with the best result for the single solve case. We omit-

ted JuMP from this study as it does not support mutable pa-
rameters in linear/quadratic expressions without an extension
packages (e.g., ParametricOptInterface).
Conclusions and Future Work

In this work, we compared the performance of two open-
source modeling languages, Pyomo and JuMP, and investi-
gated the performance improvements that are possible us-
ing different solver interfaces and advanced modeling com-
ponents. We also investigated the performance benefits that
could be gained with the common use case of repeated solu-
tion of similar problems with different data. In general, JuMP
was approximately an order of magnitude faster than Pyomo
for single model generation and translation. While JuMP has
higher overheads on end-to-end timing comparisons due to
the just-in-time compilation steps, this overhead was negligi-
ble on larger case studies and can be reduced by saving and
loading already compiled images. The end-to-end overhead
with Pyomo was minimal for smaller test cases, but actually
did scale with problem size.

Significant performance improvements were identified,
however. For Pyomo, the Gurobi (LP) interface was ap-
proximately 30-40% faster than the Gurobi (Py) solver in-
terfaces. An additional improvement of approximately 45%
was possible for the linear quadratic control problem using
the LinearExpression object directly for the large PDE
constraint. Furthermore, major performance benefits are pos-
sible when resolving models with different data using Py-
omo’s new APPSI solver interfaces, resulting in over an or-
der of magnitude reduction in computational time for this use
case. Future work will focus on expanding the case studies to
include modification of decomposition approaches (e.g., de-
activation/activation of constraints, and addition of cuts) and
further investigation of extension packages in JuMP.
Acknowledgements: Sandia National Laboratories is a multimission labo-
ratory managed and operated by National Technology & Engineering Solu-
tions of Sandia, LLC, a wholly owned subsidiary of Honeywell International
Inc., for the U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-NA0003525. This paper describes objective
technical results and analysis. Any subjective views or opinions that might
be expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

References
Beal, L., D. Hill, R. Martin, and J. Hedengren (2018). Gekko

optimization suite. Processes 6, 106.
Bynum, M. L., G. A. Hackebeil, W. E. Hart, C. D. Laird,

B. L. Nicholson, J. D. Siirola, J.-P. Watson, and D. L.
Woodruff (2021). Pyomo — Optimization Modeling in
Python (3 ed.), Volume 67. Springer International Pub-
lishing.

Chen, X., K. S. Rao, J. Yu, and R. W. Pike (1996). Com-
parison of GAMS, AMPL, and MINOS for optimization.
Chemical Engineering Education 30(3), 220–227.

Dixon, L. and D. Mills (1994). Effect of rounding errors on
the variable metric method. Journal of Optimization The-
ory and Applications 80(1), 175–179.

Dunning, I., J. Huchette, and M. Lubin (2017). Jump: A
modeling language for mathematical optimization. SIAM
Review 59, 295–320.

Fourer, R. (2012). On the evolution of optimization modeling
systems. Optimization Stories, Documenta Mathematica,
Extra Volume ISMP (2012), 377–388.

Fourer, R. (2013). Algebraic modeling languages for opti-
mization. In Encyclopedia of Operations Research and
Management Science, pp. 43–51. Springer US.

Fourer, R., D. M. Gay, and B. W. Kernighan (2003). AMPL
A Modeling Language for Mathematical Programming (2
ed.). Thomson.

Fragniere, E. and J. Gondzio (2002). Optimization model-
ing languages. In Handbook of Applied Optimization, pp.
993–1007. Citeseer.

Gurobi Optimization, LLC (2022). Gurobi Optimizer Refer-
ence Manual.

Hijazi, H., G. Wang, and C. Coffrin (2018). Gravity: A mod-
eling language for mathematical optimization and machine
learning. In The Thirty-second Annual Conference on Neu-
ral Information Processing Systems (NeurIPS).

Jusevičius, V., R. Oberdieck, and R. Paulavičius (2021). Ex-
perimental analysis of algebraic modelling languages for
mathematical optimization. Informatica (Netherlands) 32,
283–304.

Kallrath, J. (2004). Modeling Languages in Mathematical
Optimization, Volume 88. Springer US.

Legat, B., O. Dowson, J. D. Garcia, and M. Lubin (2022).
Mathoptinterface: a data structure for mathematical op-
timization problems. INFORMS Journal on Comput-
ing 34(2), 672–689.

Meeraus, A. (1976). Toward a general algebraic modelling
system. In IX. International Symposium on Mathematical
Programming, Budapest, Hungary, August 23–27, Volume
185.

Mitchell, S., M. O’Sullivan, and I. Dunning (2011). Pulp: a
linear programming toolkit for python. Technical report,
The University of Auckland, Auckland, New Zealand.

Mittleman, H. D. (2001). Sufficient optimality for discretized
parabolic and elliptic control problems. In K.-H. Hoff-
mann, R. H. W. Hoppe, and V. Schulz (Eds.), Fast Solu-
tion of Discretized Optimization Problems, pp. 184–196.
Springer International Publishing.

Owen, S. H. and M. S. Daskin (1998). Strategic facility lo-
cation: A review. European Journal of Operational Re-
search 111, 423–447.

Papageorgiou, D. J., M.-S. Cheon, S. Harwood, F. Trespala-
cios, and G. L. Nemhauser (2018). Recent progress us-
ing matheuristics for strategic maritime inventory routing.
In C. Konstantopoulos and G. Pantziou (Eds.), Modeling,
Computing and Data Handling Methodologies for Mar-
itime Transportation, Volume 131, pp. 59–94. Springer In-
ternational Publishing.

Papageorgiou, D. J., G. L. Nemhauser, J. Sokol, M.-S.
Cheon, and A. B. Keha (2014). Mirplib – a library of mar-
itime inventory routing problem instances: Survey, core
model, and benchmark results. European Journal of Op-
erational Research 235, 350–366.

Song, J.-H. and K. C. Furman (2013). A maritime inventory
routing problem: Practical approach. Computers & Oper-
ations Research 40(3), 657–665.

Table 1: Model generation and translation time (reported in seconds). Timing does not include the time spent in the solver
or the overhead associated with launching the script and any just-in-time compilation.

Pyomo JuMP2

Model & Size Gurobi (LP) Gurobi (Py) Gurobi (APPSI) Default Direct
FAC-25 4.2 7.3 7.2 0.5 0.4
FAC-50 33.3 57.5 57.6 4.2 2.7
FAC-75 111.6 196.6 191.8 14.0 10.7
FAC-100 264.2 454.8 459.2 33.9 23.8
LQCP-500 23.4 36.1 35.0 1.6 1.3
LQCP-1000 94.6 144.6 140.8 8.4 5.3
LQCP-1500 214.0 326.9 309.7 18.5 11.8
LQCP-2000 378.9 598.2 561.6 33.0 21.3
MIRP-LR1 DR08 VC05 V40a 360 3.8 5.5 5.4 1.3 1.0
MIRP-LR1 DR08 VC10 V40b 360 8.0 10.6 10.4 2.7 1.8
MIRP-LR1 DR12 VC05 V70a 360 5.9 8.6 7.6 1.9 1.5
MIRP-LR1 DR12 VC10 V70a 360 11.7 15.6 15.1 3.3 3.3
FAC-LE-25 3.9 6.7 6.7 − −
FAC-LE-50 28.8 55.3 51.0 − −
FAC-LE-75 105.1 183.6 167.3 − −
FAC-LE-100 246.7 441.8 403.9 − −
LQCP-LE-500 13.1 21.8 25.6 − −
LQCP-LE-1000 49.7 86.5 103.0 − −
LQCP-LE-1500 119.6 202.1 237.2 − −
LQCP-LE-2000 215.1 348.3 419.6 − −
2 For JuMP, the model is solved once to invoke any just-in-time compilation, and then the
reported time is the time for for the second call to build and solve the model.

Table 2: End-to-end wall-clock time (reported in seconds). Values include the overhead associated with launching the script
from the command line and any just-in-time compilation, but not the time spent in the solver.

Pyomo JuMP
Model & Size Gurobi (LP) Gurobi (Py) Gurobi (APPSI) Default Direct
FAC-25 4.9 8.0 8.0 19.3 12.4
FAC-50 36.0 60.3 60.7 21.8 14.8
FAC-75 119.8 204.8 202.0 32.0 21.0
FAC-100 282.9 476.4 482.7 51.3 34.8
LQCP-500 25.7 38.6 37.5 18.4 14.4
LQCP-1000 102.6 153.5 149.9 25.4 18.0
LQCP-1500 231.7 344.5 329.8 35.7 24.6
LQCP-2000 409.8 629.8 595.0 51.7 32.4
FAC-LE-25 4.5 7.3 7.7 − −
FAC-LE-50 31.2 57.5 54.3 − −
FAC-LE-75 113.3 191.5 176.4 − −
FAC-LE-100 262.8 459.7 425.2 − −
LQCP-LE-500 14.1 22.7 27.5 − −
LQCP-LE-1000 52.4 89.5 110.1 − −
LQCP-LE-1500 125.2 208.5 252.7 − −
LQCP-LE-2000 225.2 358.2 445.2 − −

Table 3: Computational time for “resolve” with different parameter values (reported in seconds)

Pyomo
Model & Size Gurobi (LP) Gurobi (Py) Gurobi (APPSI)

FAC-25 2.6 5.5 0.3
FAC-50 20.0 45.0 2.0
FAC-75 68.4 147.6 6.8
FAC-100 163.6 351.5 16.6

