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Abstract 

In this work, we propose a generalized Multi-Echelon Inventory Optimization (MEIO) model based on 

the Guaranteed-Service approach for allocating safety stocks across the network, seeking to meet customer 

service levels at minimum holding costs. This is especially challenging in multi-echelon supply chains, 

which face supply and demand uncertainty, and the decisions on one echelon impact the other echelons. 

The proposed model offers a more realistic representation of real-world supply chains, accounting for 

several features such as non-normal demand distributions, specified time periods between reviews, 

Minimum Order Quantities (MOQ), and different service level performance indicators (fill rate and cycle 

service levels). To improve the computational efficiency and make the model effective to use in industrial 

practice, we propose to reformulate the nonlinear programming model as a Mixed-Integer Quadratically 

Constrained Program (MIQCP) reformulation, a stepwise function and a piecewise linear approximation. 

This solution strategy leads to order of magnitude reductions in computational time. The performance of 

the model is evaluated by solving several instances of a real-world case study. 
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Introduction

Multi-echelon inventory optimization (MEIO) seeks to 

optimize safety stock setting for the entire supply chain with 

centralized coordination (You & Grossmann, 2009). MEIO 

eliminates over-buffering of inventory, and builds 

confidence in product availability. De Kok et al. (2019) 

present a general typology and review of stochastic MEIO 

models in which they summarize the extensive research on 

multi-echelon inventory management. The authors state 

that multi-echelon inventory systems are still a very active 

area of research because of their complexity and practical 

relevance. Recently, Gonçalves et al. (2020) present a 

systematic literature review, and they also highlight that the 

number of contributions to MEIO has seen a significant 

increase from the year 2005 onwards, and they list many 

potential directions and trends for future research.  
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The present paper relies on the Guaranteed-Service 

Model (GSM) to optimize safety stocks (Graves & Willems, 

2000; Simpson, 1958). The objective is to develop an MEIO 

model to address the problem of safety stocks in real-world 

complex systems. Managing a real-world supply chain 

gives rise to two important challenges: (i) the model must 

represent industrial practice features and dynamics, and (ii) 

the optimal solution must be found with modest 

computational time. Over the years, many authors have 

worked on extending the original GSM assumptions to 

enable real-world supply chain characteristics to be 

captured, as presented in the survey by Eruguz et al. (2016). 

However, the GSM for multi-echelon supply chains 

proposed in the literature does not fully account for all the 

issues and characteristics arising in industrial practice. We 



  

 

extend the work of Achkar et al. (2022) to account for a 

novel approach to include stochastic lead times, and we 

specially focus on new solution strategies. In this work, the 

following characteristics are included: (i) non-normally 

distributed demands, (ii) manufacturing plants placed at any 

location in the network, (iii) fill rate as an alternative key 

customer service performance indicator apart from the 

Cycle Service Level (CSL), and (iv) Minimum Order 

Quantities (MOQ) for replenishment orders and the period 

between reviews. Furthermore, this work presents solution 

strategies to increase computational efficiency. From an 

optimization perspective, inventory decisions in multi-

echelon systems are challenging because the problems are 

nonlinear and nonconvex. We introduce a solution approach 

that allows solving real-world size problems in modest 

computational time. The NLP model is reformulated as an 

MIQCP by exploiting the structure of the constraints of the 

base model. In addition, the problem involves piecewise 

and stepwise functions, reducing additional complexities. 

Computational examples for a real industrial system are 

presented to illustrate the application of the proposed model 

and its resulting improved computational performance.  

The outline of the paper is as follows. The problem 

statement is described first, followed by the model 

formulation. Next, an extension to account for nonnormal 

distributions for the demand is described. The paper ends 

with the application of the model to illustrate its application 

to real-world case studies. Conclusions are drawn in the 

final section.  

Problem Statement 

Given is a supply chain with a fixed design for 

locations j ∈ J and a set of materials p ∈ P that can be either 

raw materials or finished goods. Holding costs are incurred 

at all the nodes. If the customer places an order of size djp(t) 

on node j at time t, this order will be fulfilled by time t + 

Sjp, with Sjp being the guaranteed-service time of node j 

(Graves & Willems, 2000). Moreover, each node j receives 

a service commitment from its upstream node i ∈ J, called 

inbound service time SIjp, and has an order processing time 

or lead time of LTj. The Net Lead Time (NLT), as shown in 

Figure 1, represents the time period that is not covered 

within the guaranteed service time, and must be covered 

with safety stock, defined as NLTjp = SIjp + LTjp - Sjp. If 

NLTjp = 0, the node works under a make-to-order policy 

without storing any inventory. On the other hand, if NLTjp 

> 0, there is a time period that should be covered with safety 

stock. The objective is to determine the guaranteed-service 

times (SIjp and Sjp) for each material at each location, and 

consequently how much safety stock to maintain to 

minimize the total holding costs and satisfy a specified 

customer service level. The service times at the initial and 

the final nodes are given. 

 

Figure 1. Guaranteed-service model elements 

Demand is assumed to be bounded. If the demand in a 

certain time period exceeds the bound, it is assumed that 

other extraordinary measures are used to satisfy the excess 

demand. In addition, each stage of the supply chain operates 

under a periodic review inventory policy with a basestock 

level. The demand is independent and identically 

distributed at each demand node. The statistical 

distributions of the demand are not necessarily normal. 

Similarly, lead times are variable but assumed to be 

normally distributed.  

Demand is propagated upstream considering the risk 

pooling assumptions described in You and Grossmann 

(2009). At plant locations, there is a coefficient ϕpq that 

represents the bill of materials for product transformation 

and depends on material-finished good relationships. We 

assume divergent networks: a node that holds a material p 

can only receive this material from a single node and can 

distribute it to one or more locations, as is usual in finished 

goods supply chains. The same node can be supplied with 

another material q ∈ P from another location, but this last 

one should be the only supplier of q for that node. 

Furthermore, a Minimum Order Quantity moqjp may be 

required for the replenishment orders. Each node makes its 

own replenishment decisions and has no delay in ordering. 

For each node, there is a safety stock factor kjp related to the 

Cycle Service Level (CSL), which reflects the percentage 

of replenishment cycles with non-stocking out. 

Alternatively, the modeler can also ask for a fill rate to be 

considered as a target service measure, which equals the 

proportion of the demand met over the total demand placed. 

This option is assumed to be active only if demand is 

normally distributed. 



  

Model Formulation 

The following formulation involves four positive 

continuous variables: the guaranteed-service time Sjp of a 

product on a given node, the inbound service SIjp, the safety 

factor 𝐾̂𝑗𝑝 related to CSL, and the Net Lead Time NLTjp. The 

objective function is to minimize safety stock holding cost 

as defined by Eq. (1), where hjp is the coefficient that 

represents holding cost for each material p at each location 

j, and the square root represents the “sigma-combination” 

formula, known from the stochastic-service approach  

(Clark & Scarf, 1960). We introduce stochastic lead times 

into the GSM by extending the approach proposed by 

Minner (1998) because it faces all the variability sources 

using safety stock. The mean demand and the standard 

deviation are represented by µjp and σjp, respectively. We 

introduce a new parameter σNLTjp that refers to the NLT 

variability instead of using the lead time variability. 

𝑚𝑖𝑛 ∑ ∑ ℎ𝑗𝑝 𝐾̂𝑗𝑝 √𝑁𝐿𝑇𝑗𝑝 𝜎𝑗𝑝
2 + 𝜇𝑗𝑝

2  𝜎𝑁𝐿𝑇𝑗𝑝

2

𝑗 ∈ 𝐵𝑗𝑝𝑝

 (1) 

The first set of constraints comes from the classic 

GSM. Equation (2) defines the first inbound service time 

for the starting nodes in the network J0, where si0 is a given 

input. Equation (3) links the inbound guaranteed-service 

time SIjp and the guaranteed-service time of upstream nodes 

Siq. A is a set with elements (i,j,p) indicating that there is an 

enabled route for material p from i to j. Note that q = p and 

i ≠ j if it is a distribution link (i to j) of the same product p, 

and q ≠ p and i = j if node j is a plant location that produces 

p from q. The service time Sjp is bounded by Eq. (4), and 

Eq. (5) becomes active if there is a maximum accepted 

service time. The NLT is defined in Eq. (6), with ltjp being 

the lead time and rjp the time period between reviews. 

𝑆𝐼𝑗𝑝 = 𝑠𝑖𝑗𝑝
0                                          ∀ 𝑗 ∈ 𝐽0, 𝑝 ∈ 𝑃𝑗 (2) 

𝑆𝐼𝑗𝑝 ≥ 𝑆𝑖𝑞              ∀ (𝑖, 𝑗, 𝑝) ∈ 𝐴, (𝑞, 𝑝) ∈ Φ, 𝑝 ∈ 𝑃𝑗 (3) 

𝑆𝑗𝑝 ≤ 𝑆𝐼𝑗𝑝 + 𝑙𝑡𝑗𝑝 + 𝑟𝑗𝑝                      ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (4) 

𝑆𝑗𝑝 ≤ 𝑚𝑎𝑥𝑆𝑗𝑝                                     ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (5) 

𝑁𝐿𝑇𝑗𝑝 ≥ 𝑆𝐼𝑗𝑝 − 𝑆𝑗𝑝 + 𝑙𝑡𝑗𝑝 + 𝑟𝑗𝑝      ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (6) 

As mentioned above, the GSM uses the CSL as the 

customer service performance indicator when setting safety 

stocks. As mentioned before, the fill rate is another measure 

that represents the fraction of demand that was met on-time 

from the inventory. We extend the GSM to allow specifying 

fill rates if desired (j,p ∈ F). Chopra and Meindl (2013) 

propose a formula to obtain the corresponding fill rates 

given a safety stock level for continuous review policies. 

From this formula, we can derive Eq. (7) that links the fill 

rate (frjp) to the safety factor kjp, and consequently to the 

CSL. The safety factor, in this case, becomes a positive 

continuous variable, and the aim is to find the lower 

required CSL that is able to meet the desired fill rate. We 

assume that Qjp is the average replenishment quantity of 

product p on location j, with Qjp = max{µjp rjp, moqjp}for 

periodic-review policies. Fs(kjp) and fs(kjp) correspond to the 

cumulative and normal density distribution functions, 

respectively.  

𝑓𝑟𝑗𝑝 ≤ 1 +
√𝑁𝐿𝑇𝑗𝑝 𝜎𝑗𝑝

2 + 𝜇𝑗𝑝
2  𝜎𝑁𝐿𝑇𝑗𝑝

2

𝑄𝑗𝑝

(𝐾𝑗𝑝[1 − 𝐹𝑠(𝐾𝑗𝑝)] −  𝑓𝑠(𝐾̂𝑗𝑝)) 

      ∀ 𝑗 ∈ 𝐽,  𝑝 ∈ 𝑃𝑗 ,  (𝑗, 𝑝) ∈  𝐹 

(7) 

On the other hand, if the service level target is CSL, the 

safety factor is given as an input kjp, as in Eq. (8): 

𝐾̂𝑗𝑝 = 𝑘𝑗𝑝                     ∀ 𝑗 ∈ 𝐽,  𝑝 ∈ 𝑃𝑗 ,  (𝑗, 𝑝) ∉  𝐹 (8) 

Solution Approach 

The model (1)-(8) corresponds to a nonconvex 

nonlinear problem (NLP). These problems can be in 

principle be solved with nonlinear global optimization 

solvers. However, the computational time required to find a 

global solution with these solvers may be very expensive. 

Eq. (7) includes the normal distribution density and 

cumulative functions. Moreover, Eqs. (1) and (7) include 

the value σNLTjp, whose calculation significantly affect the 

computational burden. To overcome this difficulty, we 

propose three solution strategies: (i) an exact quadratically 

constrained reformulation, (ii) a stepwise function to obtain 

the value of σNLTjp, and (iii) a piecewise linear 

approximation of Eq. (7) to replace normal density and 

cumulative functions.  

First, we reformulate the NLP as a MIQCP, that is 

guaranteed to obtain the global optimum. Solvers like 

CPLEX and Gurobi can solve MIQCPs quite effectively in 

reasonable computational times and we avoid to use general 

nonlinear solvers such as BARON. To account for this 

reformulation, a new positive continuous variable, Ujp, 

represents the square root, i.e. 𝑈𝑗𝑝 ≥ √𝜏𝑗𝑝, as shown in 

Figure 2, being τ the argument of the square root. We 

include Eq. (9) to define 𝑈𝑗𝑝
2 : 

𝑈𝑗𝑝
2 ≥ 𝑁𝐿𝑇𝑗𝑝 𝜎𝑗𝑝

2 + 𝜇𝑗𝑝
2  𝜎𝑁𝐿𝑇𝑗𝑝

2           ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (9) 

Hence, the objective function becomes a linear function 

given by Eq. (10): 

𝑚𝑖𝑛 ∑ ∑ ℎ𝑗𝑝 𝐾̂𝑗𝑝 𝑈𝑗𝑝

𝑗 ∈ 𝐵𝑗𝑝𝑝

 
(10) 



  

 

 

Figure 2. Reformulation from NLP to QCP 

In second place, we introduce a stepwise function to 

represent the NLT standard deviation, σNLTjp. We assume 

that the variability of the lead time is pushed downstream if 

the NLT of node j for product p is not enough to cover the 

total replenishment time inherent to node j. In other words, 

if NLTjp ≤ SIjp +ltjp + rjp, then, σLTjp should be propagated 

downstream. We introduce a stepwise function as depicted 

in Figure 3 to represent the value of σNLTjp, dependent of the 

value of NLTjp. 

Equation (9) is replaced by Eq. (11), with Xjp being a 

positive continuous variable that represents σNLTjp.  

𝑈𝑗𝑝
2 ≥ 𝑁𝐿𝑇𝑗𝑝 𝜎𝑗𝑝

2 + 𝜇𝑗𝑝
2  𝑋𝑗𝑝               ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (11) 

 

Figure 3. Stepwise function to define σNLTjp 

The lower and upper bounds for each step s ∈ S1 are 

defined as lbjps and ubjps, respectively. For example, for the 

first step (s1) of product p at node j, lbjps1 = 0 and ubjps1 = ltjp 

+ rjp. As NLTjp increases, the bounds increase by adding the 

lead times and the review periods of upstream nodes. The 

new binary variable Vjps defines what the active step in Eqs. 

(12) and (13) is according to the value of NLTjp. Equation 

(14) ensures that only one step is active for each product on 

each location. Eq. (15) assigns the value of σNLTjp associated 

with the step s, given by the parameter cjps, which represents 

the sum of lead time variances according to Figure 3. In the 

example, cjps1 = 0, cjps2 = 𝜎𝐿𝑇𝑗𝑝

2 , and cjps3 = 𝜎𝐿𝑇𝑗𝑝

2 + 𝜎𝐿𝑇𝑖𝑝

2 . It 

is worth to mention that this coefficient also includes the 

lead time variance of raw materials if they are involved in 

the production of product p. 

∑ 𝑙𝑏𝑗𝑝𝑠𝑉𝑗𝑝𝑠

𝑠∈𝑆1

≤ 𝑁𝐿𝑇𝑗𝑝                    ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (12) 

𝑁𝐿𝑇𝑗𝑝 ≤ ∑ 𝑢𝑏𝑗𝑝𝑠𝑉𝑗𝑝𝑠

𝑠∈𝑆1

                ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (13) 

∑ 𝑉𝑗𝑝𝑠

𝑠∈𝑆1

= 1                                   ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (14) 

𝑋𝑗𝑝 = ∑ 𝑉𝑗𝑝𝑠

𝑠∈𝑆1

𝑐𝑗𝑝𝑠                       ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (15) 

Finally, the last solution strategy involves the fill rate 

constraint. We aim to improve the model tractability by 

replacing ℎ(𝐾̂) = 𝐾̂[1 − 𝐹𝑠(𝐾̂)] −  𝑓𝑠(𝐾̂) with a piecewise 

linear approximation, as shown in Figure 4. This function 

will be the same for all nodes on all locations, while demand 

is normally distributed. In the example there are four 

breakpoints and three segments. If the number of 

breakpoints increases, the precision of the estimation also 

does, but the computational efficiency decrease. For the 

current formulation we propose 7 breakpoints. 

 

Figure 4. Piecewise linear approximation 

Variable Yjp is added to the model to represent the 

piecewise linear function as in Eq. (16). The value of 𝐾̂𝑗𝑝 

defines which segment s ∈ S2 is active, and it forces the 

activation of the binary variable Wjps and the continuous 

variable 𝐾𝑗𝑝𝑠 as in Eqs. (17), (18). Equations (19) and (20) 

force only one segment to be active.  

𝑌𝑗𝑝 = ∑(𝑎𝑗𝑝𝑠𝐾𝑗𝑝𝑠 + 𝑏𝑗𝑝𝑠 𝑊𝑗𝑝𝑠)

𝑠∈𝑆2

    ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (16) 

𝑙𝑏𝑗𝑝𝑠𝑊𝑗𝑝𝑠 ≤  𝐾𝑗𝑝𝑠                   ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗, 𝑠 ∈ 𝑆2 (17) 

𝐾𝑗𝑝𝑠 ≤ 𝑢𝑏𝑗𝑝𝑠𝑊𝑗𝑝𝑠                  ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 , 𝑠 ∈ 𝑆2 (18) 

∑ 𝑊𝑗𝑝𝑠

𝑠∈𝑆2

= 1                                     ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (19) 
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∑ 𝐾𝑗𝑝𝑠

𝑠∈𝑆2

= 𝐾̂𝑗𝑝                                    ∀ 𝑗 ∈ 𝐽, 𝑝 ∈ 𝑃𝑗 (20) 

Finally, Eq. (7) is redefined including the new variables 

related to the piecewise and stepwise functions: 

𝑓𝑟𝑗𝑝 ≤ 1 +
𝑈𝑗𝑝

𝑄𝑗𝑝
𝑌𝑗𝑝        ∀ 𝑗 ∈ 𝐽,  𝑝 ∈ 𝑃𝑗 ,  (𝑗, 𝑝) ∈  𝐹 (21) 

The new mathematical reformulation is a MIQCP 

given by Equations (2)-(6), (8), (10)-(20). 

Extension for non-normal demand 

In industrial practice, it is frequently found that demand 

data histograms do not fit the shape of a normal distribution. 

This is generally detected when the coefficient of variation 

(CV) increases. For distributions with large CV, the model 

predicts a slightly lower CSL than expected when targets 

are large, as shown in Figure 5. The plot presents the results 

of several simulations in Excel for 10,000 periods, 

assuming a deterministic lead time equal to 1, period 

between reviews equal to 1, and normally distributed 

demand datasets with different CVs. 

 

Figure 5. Expected vs Effective CSL 

In this work, we aim to find an alternative to adapt the 

model to set safety stocks for cases that are able to achieve 

at least the desired customer service level. Mirzaee (2017) 

proposes an alternative way to set safety stocks by adjusting 

the service level, using the equivalent k safety factor that is 

equal to the empirical cumulative distribution function 

(h(x)) value. We simulate several datasets of gamma-

distributed demands. In Table 1 we present the results 

obtained for CSL using the k safety factors obtained from 

the normal distribution, and the k equivalent from the 

empirical distribution function h(x). Note that the empirical 

correlation fits better than the normal for large CSL but it 

does poorly for low values. We propose a new approach that 

selects the maximum value between the classic safety factor 

and the one obtained using the empirical distribution, as 

stated in Eq. (22): 

𝑘̂𝑗𝑝 = 𝑚𝑎𝑥 {𝛷−1(𝐶𝑆𝐿𝑗𝑝),  
ℎ𝑗𝑝

−1(𝐶𝑆𝐿𝑗𝑝) − 𝜇𝑗𝑝

𝜎𝑗𝑝
}  (22) 

Table 2 presents the results of using Eq. (22). All CSLs 

are achieved or surpassed. Note that this extension only 

applies when the target service level is the CSL, and the 

main disadvantage is that it can over-buffer (as in Table 2, 

row 80%). Future work will extend it for fill rate targets.  

Table 1. Effective CSL for large CVs with 

original and adapted safety factors 

Expected 

CSL 

CV = 0.56 CV = 2 CV = 5 

Normal 

(N) 

Empirical 

(E) 
N E N E 

50% 55% 55% 68% 68% 68% 68% 

60% 64% 58% 75% 68% 75% 68% 

70% 73% 68% 81% 68% 81% 68% 

80% 81% 79% 86% 75% 86% 75% 

90% 89% 90% 91% 88% 91% 88% 

96% 95% 96% 94% 96% 94% 96% 

98% 97% 98% 95% 98% 95% 98% 

Table 2. Effective CSL for proposed safety factor 

Expected CSL CV=0.56 CV=2 CV=5 

50% 55% 68% 68% 

60% 64% 75% 75% 

70% 73% 81% 81% 

80% 81% 86% 86% 

90% 90% 91% 91% 

96% 96% 96% 96% 

98% 96% 98% 98% 

Application 

In order to illustrate the application of the proposed 

solution strategy, we carry out a computational experiment 

based on a real-world case study with 800 products and 18 

locations, as shown in Figure 6. The numbers next to each 

node refer to the number of products that can be stored in 

that location, because not all products follow the same 

route. Nodes with people icons mean that those nodes 

receive external demand. The demand is different for each 

product, all of them are all stochastic, independent and 

identically distributed. Lead times are normally distributed. 

Figure 7 displays the computational time required to 

solve different instances ranging from 100 to 800 products. 

All the instances are modeled with Pyomo and solved with 

Gurobi 9.5.0, on an Intel Core i7 16 MB RAM. The same 

instances were tested using both targets: the orange line 

corresponds to the problem with CSL targets of 97% for all 

products, and the blue line represents the results fixing a fill 

rate (FR) target of 98%. Note that real-world cases can be 



  

 

solved to optimality within few seconds of CPU time. The 

computational burden increase when the fill rate is the target 

measure, because more constraints and variables become 

active. Table 3 shows the detailed model sizes and the 

objective values for some instances. It is worth to mention 

that using BARON to solve the smallest instance for both 

the NLP and the QCP formulations could not yield a 

feasible solution within 1000 seconds. This demonstrates 

that the proposed MIQCP reformulation solving with 

Gurobi yields order of magnitude increases in efficiency. 

 

 

Figure 6. Case-study network 

 

Figure 7. Instance size vs. computational time 

Table 3. Model sizes and optimal solutions 

Items Constraints 
Continuous 

variables 

Integer 

variables 

Total cost 

($) 

200 40 502 22 581 30 171 2 652 585 

400 78 284 43 499 58 422 5 655 908 

600 111 471 63 139 84 507 6 814 902 

800 153 123 86 819 115 877 13 738 148 

Conclusion 

The proposed model integrates several features 

commonly found in industrial practice that have a strong 

impact on inventory levels. Moreover, the model with the 

proposed solution strategy outperforms the original NLP 

formulation, by finding optimal solutions at minimal 

computational expense for large scale problems.  Therefore, 

the proposed tool is able to accurately represent real 

systems, and to set tight safety stock levels in order to 

achieve target customer service levels with minimum 

inventory cost. To the best of our knowledge, this is the first 

model that brings together an MIQCP reformulation with 

piecewise linear functions to improve the computational 

efficiency of this optimization model. Future work will 

address an extension by including responsive characteristics 

to account for supply chain disruptions and by including 

storage capacity limitations. 
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