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Abstract – The kernel of advanced process control (APC) technology lies in the formulation and solution of model predictive
control (MPC) problems. A significant challenge in the contemporary practice of APC is its efficient online implemen-
tation on large-scale industrial systems. As the state-of-the-art APC technology, the Platform for Advanced Control
and Estimation (PACE) of Shell and Yokogawa has adopted a systematic framework of handling dynamic optimization
of large-scale systems, where an automatic decomposition procedure has been developed to generate subsystems for
distributed MPC. The decomposition is implemented on network representations of the MPC models that capture in-
teractions among process variables, and is based on the concept of community detection which aims to maximize the
statistical significance of the subsystems as subnetworks with preferred internal interconnections. This paper introduces
the fundamentals of such a decomposition approach and the incorporation of this functionality into PACE, followed by a
case study on a crude distillation process to showcase the advantages of its application on industrial problems.
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Introduction

The deployment of advanced process control (APC) in the
chemical process industry since the 1970s has brought sig-
nificant benefits (Qin and Badgwell, 2003). An APC plat-
form typically adopts a model predictive control (MPC) for-
mulation to handle multi-input-multi-output constrained sys-
tems. The control decisions are thus made according to
the solution of an optimal control problem, where a cost
function is minimized subject to model dynamics and con-
straints (Rawlings et al., 2017). Such an APC platform al-
lows stable process operations, increases economic profits,
reduces emissions, and decreases the frequency of alarms and
operator intervention. Shell’s pioneering APC technology,
from Dynamic Matrix Control (DMC) (Cutler and Ramaker,
1979), Quadratic Dynamic Matrix Control (QDMC) (Garcia
and Morshedi, 1986), Shell Multivariable Optimizing Con-
trol (SMOC) (Marquis and Broustail, 1988), and SMOCPro
(Cott, 2007), to the Platform for Advanced Control and Esti-
mation (PACE) developed in alliance with Yokogawa (Amrit
et al., 2015), has been continually refined with the advance
of computing and software capabilities.

Large scale and tight material and energy integration are typ-

ical features of modern plants (Baldea and Daoutidis, 2012).
A key challenge to the control of such large-scale process
networks is that a centralized paradigm of optimizing mono-
lithically over the entire system is undesirable, either due to
the computational time needed by the optimization solver or
due to its inflexibility. On the other hand, simply partitioning
the system into multiple parts and controlling each of them as
if they do not interact with each other (decentralized control)
usually will not retain the benefits of a system-wide MPC.
Therefore, decomposition and coordination are essential to
achieve large-scale optimal control decisions on the basis of
interacting subsystems. This paradigm, which can be traced
at least back to Morari et al. (1980), is frequently referred
to as “distributed MPC” (Scattolini, 2009; Christofides et al.,
2013).

Two key questions in the implementation of distributed MPC
are how to decompose the process model and how to coor-
dinate the subsystem controllers. In this paper, we focus on
the first question. Specifically, to best maintain the control
performance under decomposition and reduce the computa-
tional time, the subsystems should be configured in such a
way that the overall interactions across the subsystems are
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much weaker than those inside the subsystems. A network-
theoretic framework is used to this end, where the structure
of the dynamic system to be controlled is first represented
as a network (graph) and a community detection procedure
is applied to this network representation to generate a desir-
able decomposition. This approach was proposed by authors
of this paper and their coworkers in their academic research
(Daoutidis et al., 2018, 2019). This paper reports its imple-
mentation on Shell’s industrial process control platform with
a refined community detection algorithm that is more suitable
for practical application.

In the rest of the paper, we provide a conceptual introduction
of the design of the PACE technology and briefly review the
relevant literature to elucidate the fundamental ideas underly-
ing the decomposition strategy. We outline how community
detection has been successfully implemented in PACE and
use a challenging problem from Shell’s petrochemical pro-
cesses to demonstrate the benefits of decomposition and co-
ordination in handling large-scale systems. From a broader
perspective, this work contributes to a better appreciation
of the contemporary theory and practice of APC, of which
Shell-Yokogawa’s PACE technology is representative, and
documents a successful industry-academia synergy for bridg-
ing the gap between theory and practice.

Literature Review on Automatic Decomposition

The query for a decomposition in control problems dates
back at least to the 1970s in the studies pertinent to sta-
bility analysis of decentralized control (Michel et al., 1978;
Vidyasagar, 1980). Based on the idea that in order to guaran-
tee closed-loop stability, mutually impacting variables must
be grouped together in decentralized control, graph-theoretic
approaches using strongly connected components and block-
triangular structures were proposed (Šiljak, 1991). These
methods require restrictive system structures and are not suit-
able for chemical processes that are generally well connected
as a whole. In a different vein, works on interaction anal-
ysis (McAvoy, 1983) used the concept of relative gain ar-
ray (RGA) (Bristol, 1966) to pair inputs and outputs. Espe-
cially with the development of robust control theory after the
1980s, the interaction analysis was combined with stability
analysis (Grosdidier and Morari, 1986; Yu and Fan, 1990),
thus providing systematic guidelines to design base-layer
control loops on plantwide scales (Ng and Stephanopoulos,
1996; Skogestad, 2004). However, for a significant period
after distributed MPC was proposed, the decomposition of
large-scale systems in the sense of partitioning into several
MPC subsystems (i.e., optimization subproblems) had not
been well addressed (Christofides et al., 2013).

The emergence of network science has brought forth the un-
derstanding of the organization of large-scale networks by
investigating their macroscopic topological features and the
dynamics associated with them (Barabási, 2016). Commu-
nity structure is a typical block structure existing in many bi-
ological networks (Girvan and Newman, 2002), which refers
to blocks with significantly denser interconnections inside
these blocks than those among them. As pointed out in a

number of studies (Tang and Daoutidis, 2018b; Constantino
et al., 2019; Constantino and Daoutidis, 2019; Tang et al.,
2019), the fundamental role of community structures in the
control of networks lies in that they lend themselves to the
adoption of modular controllers, which promotes the feed-
back sparsity (i.e., reduces the controller complexity) while
preserving the control performance. This paves the way for a
systematic framework of large-scale process decomposition.

A versatile range of network representations of dynamical
systems has been proposed, which flexibly capture the inter-
actions among process variables under different characteri-
zations. These include directed graphs (digraphs) for the in-
teractions among manipulated inputs, states, and controlled
outputs (Jogwar and Daoutidis, 2017) and bipartite graphs
for input–output relations, which can be weighted by appro-
priately defined interaction measures (Tang and Daoutidis,
2018a; Tang et al., 2018b). In Tang et al. (2018a), net-
work representations were proposed to directly capture the
variable-constraint interactions in the optimization formula-
tion of the MPC problem, which allows the decomposition of
optimization problems in general (Allman et al., 2019; Mitrai
and Daoutidis, 2020).

In the above-mentioned works, two algorithms of community
detection were highlighted, namely Newman’s spectral algo-
rithm (Newman, 2006) and the Louvain (fast unfolding) al-
gorithm (Blondel et al., 2008). Both algorithms aim to max-
imize a quality index, called modularity, which character-
izes the difference between the density of interconnections
among nodes inside the same communities and such den-
sity in a randomized network (Newman and Girvan, 2004),
and can be interpreted as the statistical significance of the
existence of community structures in the network (Newman,
2016). The difference between the two algorithms lies in the
path to search for the partition. The former algorithm recur-
sively partitions a larger community into two smaller ones,
starting from the entire network as a single community and
terminated when further partition does not increase modular-
ity. In contrast, the latter algorithm is initiated from single-
tons and recursively agglomerates smaller communities into
larger ones. Compared to the spectral method, the Louvain
algorithm is usually more efficient in finding decompositions
with a higher modularity value. However,

• In the context of distributed MPC, the subsystems are
usually at most one order of magnitude smaller than
the whole network but may contain hundreds of single-
tons, i.e., a top-down approach follows a shorter path
to the solution.

• A bottom-up procedure as in the Louvain algorithm
starts from small increase in modularity while larger
increases appear at later stages, i.e., the major steps
are dependent on less important steps.

• In the Louvain algorithm, it is hard to rule out the gen-
eration of extremely small communities with very little
gain in modularity.

Due to the above reasons, we consider Newman’s spectral
algorithm as more suitable for the purpose of decomposing
control problems.



The advantage of community detection-based network de-
composition has been well demonstrated in the literature
through simulations (Pourkargar et al., 2017, 2019). In
these studies, the subsystem controllers in a distributed MPC
scheme iterate their decisions according to a block coordi-
nate descent algorithm in sequential or parallel orders. It was
noted in these studies that community-based decompositions
result in significant decrease of computational time without
large degradation in the control performance. With these ob-
servations, we adopt community detection as the method of
choice for decomposing large-scale systems in PACE.

Overview of Platform for Advanced Control and Estima-
tion (PACE)

In this section we give a high-level overview of our cur-
rent technology platform, PACE, highlighting the distinctive
features that differentiate it from its counterparts. Fig. 1
shows a historical roadmap of APC technology at Shell since
the 1970s. The development of PACE since the 2010s was
driven by the needs of improving the performance and oper-
ational acceptance, facilitating migrations and new deploy-
ments, and reducing the cost and time for software mainte-
nance. So far, PACE has been applied to most of the refin-
ing, chemical, liquified natural gas, and gas-to-liquid plants
in Shell as well as to processes outside Shell through partner-
ship with Yokogawa.

Figure 1: History and differentiation of APC technology

In a nutshell, PACE is an APC platform for all-in-one so-
lution of data analysis, system identification and modeling,
model quality validation, disturbance estimation and Kalman
filtering, and static, dynamic, and economic optimization,
and automatic step testing. The PACE software is divided
into a “Design-Time” part, responsible for offline procedures
including identification, controller design, simulations, and a
“Run-Time” part for online controller configuration and tun-
ing, step tests, and performance reporting (Carrette, 2020).

Modeling and Step Testing

PACE enables the modeling of rich cause-and-effect struc-
tures. As illustrated in Fig. 2, the skeleton of a PACE model
is dynamics (transfer functions) from manipulated variables
(MVs) and disturbance variables (DVs) to intermediate vari-
ables (IVs) to process output variables (POVs). The involve-

ment of IVs allows the modeling of complex systems con-
voluted from simpler transfer functions, easier maintenance,
and the feedforward of non-output measurements as cali-
bration contributions. It also facilitates the incorporation of
base-layer control (BLC) models, ranging from simple BLC
loops, saturated, coupled, to cascaded ones, in a highly flexi-
ble manner. Nonlinear blocks can also be specified for POVs
based on user-defined equations.

Figure 2: Illustration of PACE model structure

The step test is a crucial yet expensive prerequisite proce-
dure of collecting the necessary data for model identification.
In PACE, the step test becomes automated with an internal
package integrated with control, thus simplifying the transi-
tion between control and testing. The exciting signals for the
auto-step are designed such that the information content con-
tained in data is optimized. During the step test, constraints
are well managed, which is combined with the planning of
subsequent experiments.

Controller Tuning and Calibration

The way that static and dynamic optimization are handled
in PACE improves both the operational flexibility and accu-
racy. First, in static optimization, multiple economic func-
tions (EFs) specified by linear or nonlinear equations, to-
gether with controlled variable (CV) specifications, can be
user-defined with a hierarchy of priorities. Second, the dy-
namic optimization formulation is generated from the con-
troller tuning parameters. Instead of tuning the weighting
matrices (Q,R) as in usual MPC, the PACE users specify the
speeds of MV responses, CV responses and dynamic track-
ing of the EFs. Such a tuning strategy allows more consistent
and accurate responses, management of overshooting, and
also adaptation to activation/inactivation of CVs. Moreover,
a state-of-the-art commercial nonlinear optimization solver
replaces traditional linear programming (LP) solvers for han-
dling nonlinear processes.

To achieve offset-free control (Muske and Badgwell, 2002;
Pannocchia and Rawlings, 2003), the optimization formula-
tions involve a calibration mechanism, which accounts for
and aims at eliminating the discrepancies between model pre-
diction and actual POV values. PACE calibration is a com-
bination of (i) event detection for detecting fast significant
disturbances and (ii) Kalman filter for handling usual white
noise sources (with the filtering speed tuned by the user). The
calibration is furthermore de-tuned for robustness, by assum-



ing uncertainty factors on the transfer function models. In its
unmeasured disturbance modeling, PACE incorporates both
input and output disturbances, whose shape parameters are
tunable. Such flexible designs along with the use of IVs in
the model structure allow the calibration algorithm to bet-
ter capture the disturbances than the classical bias estimation
and update scheme (e.g., Cutler and Ramaker (1979)).

Subsystems in PACE

Equipped with decomposition and coordination strategies,
PACE is currently developing the capability of handling
large-scale challenging problems. The configuration of sub-
systems can be either directly user-specified (i.e., the user
assigns all MVs and POVs or part of them into several sub-
systems), or preferably determined automatically by commu-
nity detection. With the configuration, the process variables
and model blocks are contained in the subsystems, and hence
the optimization variables, constraints, and objectives in the
dynamic optimization problems of the subsystems are auto-
matically formulated. The distributed MPC essentially ap-
plies an iterative algorithm where in each iteration, the sub-
system problems are solved through parallel computing. For
online implementation, the computational time allowed for
distributed optimization computation is highly restricted. In
practice, we are typically limited to a single or a few itera-
tions at every sampling period. The solutions obtained from
such early termination should be tested before commission-
ing, and ad hoc measures can be taken to ensure that the
closed-loop dynamic behavior is satisfactory.

The iterative algorithm that is currently used involves the fol-
lowing treatment:

• For the dynamic optimization problem of each subsys-
tem, the MV and CV weights are tuned based on the
subsystem model alone. In addition, quadratic terms
associated with the shared variables (i.e., the variables
that affect other subsystems) are added to the subsys-
tem’s objective function, and such quadratic terms are
tuned as if they are CVs.

• After each iteration, the solutions associated with the
predicted trajectories of the shared variables are fed
forward to their downstream subsystems (i.e., those
that they affect), as if such shared variables were DVs.
In this way, the optimization problems are restricted to
the variables inside subsystems.

• The convex combination scheme of Stewart et al.
(2011) is used, i.e., if û∗i (t)

[k+1] is the optimal solution
for MV ui at predicted time t in iteration k+1, only a
fraction βi ∈ [0,1] of the update will be actually taken:

ûi(t)[k+1] = ûi(t)[k]+βi

(
û∗i (t)

[k+1]− ûi(t)[k]
)
. (1)

Here the coefficient βi depends only on the MV index
i and does not vary with time index t throughout the
receding horizon. The choice of βi is rationally per-
formed based on a Hessian approximation procedure.

In the literature, relevant advances have been made for real-
time iterations in centralized MPC (Diehl et al., 2005; Yang

and Biegler, 2013) and acceleration techniques in distributed
optimization (Tang and Daoutidis, 2022, 2021). We believe
that the development of more efficient and real-time imple-
mentable distributed optimization algorithms with guaran-
teed performance is an important direction of future research.

Community Detection in PACE

In the previous sections, we reviewed the literature about de-
composing large-scale systems through community detection
in networks and introduced the main technical features of
PACE. In this section we present how automatic decompo-
sition is realized in PACE.

Network Representation

As described previously, the main body of the model struc-
ture in PACE comprises model blocks (transfer functions)
from MVs, IVs, and POVs. This naturally allows the con-
struction of a directed network G = (V ,E), where the set of
nodes V = {1,2, . . . ,n} represent the variables, and each di-
rected edge (i, j) in the edge set E corresponds to the model
block from variable i to variable j, if such a model block
exists. The topology of the directed network can be repre-
sented by a sparse adjacency matrix A, where its (i, j)-th en-
try ai j = 1 if (i, j)∈E and ai j = 0 if (i, j) /∈E . In our current
implementation, we do not assign weights to the edges for the
following reasons.

1. It can be argued that since the model is established
through system identification, negligible, insignificant,
or physically meaningless model blocks should have
either not been identified or already removed by the
control engineer.

2. The decomposition should be such that the subsys-
tems have minimal number of interactions among them
rather than total weights, since the number may affect
the computational performance more strongly.

3. There does not exist a rigorous and clearly defined way
of defining edge weights that guarantees any property
of the resulting distributed MPC.

We also perform some pre-processing steps on the network
representation. These procedures are needed to ensure that
the complexity of the PACE model is resolved before the de-
composition and that the result can be better understood and
accepted by the user.

• The variables that do not participate in the dynamic
optimization, including disturbance variables and in-
activated MVs, are removed from the network. If such
removal results in isolated nodes (which do not con-
nect to any other node), then the isolated nodes are not
considered for community detection, but only assigned
to a separate subsystem afterwards.

• For each BLC loop, the variables involved should be
assigned to the same subsystem. Hence, these BLC
variables are considered as indivisible groups and first
agglomerated as a single node. The same is carried
out for the variables involved in each static nonlinear
transformation.



Modularity and Resolution Parameter Tuning

The community detection in the directed network aims at
maximizing the modularity (Leicht and Newman, 2008),
which is a function of all possible partitions g = (g1, . . . ,gn):

Q(g) =
n

∑
i=1

n

∑
j=1

1
m

(
ai j− γ

k+i k−j
m

)
δgig j , (2)

where k+i is the out-degree of node i, k−j is the in-degree of
node j, and m is the total number of edges:

k+i =
n

∑
j=1

ai j, k−j =
n

∑
i=1

ai j, m =
n

∑
i=1

k+i =
n

∑
j=1

k−j . (3)

gi is the index of the community to which node i belongs,
and δ is the Kronecker’s delta, i.e., δgig j = 1 if nodes i and j
are in the same community and 0 otherwise. Thus, k+i k−j /m
is regarded as the expected number of edges between nodes
i and j in a randomized network and therefore a “standard
threshold” whose difference with ai j is the extent to which
these two nodes prefer to be in the same community. The
parameter γ > 0 here, called the resolution parameter, offers
a tuning of this threshold (Reichardt and Bornholdt, 2006).
When γ is increased, the community detection tends to find a
larger number of smaller communities, while smaller γ pro-
motes a coarser decomposition.

For the user’s convenience, we allow the user to simply spec-
ify the desired number of communities K and an algorithm is
used to adaptively find the resolution γ such that the resulting
decomposition is into K subsystems.

• If it is known that at γ1 and γ2, the maximization of Q
leads to K1 <K and K2 >K communities, respectively,
then assuming that lnK and lnγ have a linear relation
approximately1, we update γ by

lnγ =
lnK2− lnK
lnK2− lnK1

lnγ1 +
lnK− lnK1

lnK2− lnK1
lnγ2. (4)

• At the first iteration, γ = 1 is used. When either the
lower bound γ1 or the upper bound γ2 of the resolution
parameter γ is not known (without loss of generality,
say that only γ1 is known), then we assume that K ∝ γ,
and update by

γ =
K
K1

γ1. (5)

• After the update, if under γ the number of communities
is exactly K, then terminate the iterations. Otherwise
accordingly update γ1 and K1 or γ2 and K2.

Empirically, we found that the above rules allow us to find
the correct resolution parameter for a given K within 10 iter-
ations.

Spectral Algorithm for Recursive Bisectioning

Under a given γ, the maximization of modularity Q fol-
lows a recursive bisectioning procedure. Defining ci j =
ai j − γk+i k−j /m, as pointed out in Newman (2006), when a
community S is partitioned into two sub-communities S+
and S−, the resulting modularity increase is

∆Q(s) =
1
m ∑

i∈S
∑
j∈S

(sis j−1)ci j =
1
m

(
s>CS s− e>CS e

)
, (6)

where s = (si)i∈S , si = +1 if i ∈ S+ and −1 if i ∈ S−,
CS = [ci j]i, j∈S , e is a vector whose all elements equal to 1.

To maximize ∆Q(s) with respect to s ∈ {−1,1}|S |, the fol-
lowing techniques are used.

• An approximate solution s = sign(v1(C′S )) is taken
first, in which C′S = (CS +C>S )/2, v1(·) refers to the
unit vector associated with the largest eigenvector of
the matrix, and sign(·) is an element-wise sign func-
tion.

• The vector s is further fine-tuned by tentatively flipping
the sign of each component, and the flipping with the
maximum increase in ∆Q is accepted each time.

In the end, if the maximized ∆Q(s) is above a threshold value
α = 10−3, then the bisectioning is accepted. Such a thresh-
old value α prevents the production of extremely small com-
munities2. Also, to guarantee the numerical stability of fine-
tuning, we require that for the sign flipping to be accepted, its
resulting modularity increase must be at least α/10 and the
total number of such flippings in each bisectioning should
not exceed the number of nodes in S .

Connectedness Restoration and Load Balancing

It is possible that after the spectral method, the communities
found are not connected inside themselves, in which case the
subsystems can not be considered as physically coherent por-
tions of the process. Also, the sizes of communities may dif-
fer significantly, which is undesirable from the perspective of
parallel computing in distributed MPC. Therefore, we carry
out two major post-processing steps after modularity maxi-
mization.

First, in every community detected, a depth-first search
(DFS) is performed to characterize all its connected compo-
nents (i.e., subgraphs in which every pair of nodes are con-
nected by at least an undirected path). Except for the largest
connected component, which will preserve the identity of the

1 According to the statistical interpretation of Newman (2016), the resolution γ should be chosen as γ = (ω0−ω1)/(lnω0− lnω1), where the “propensity
parameters” ω0 and ω1 are such that if gi = g j , the expectation of ai j is ω0k+i k−j /m, and if gi 6= g j , the expectation of ai j is ω1k+i k−j /m. Suppose that
we have K communities, and the fraction of edges across communities is ε� 1, then we should have ω0 +(K−1)ω1 = K and (1− ε)/ω0 + ε/ω1 = 1,
which results in γ≈ K/ ln(1/ε).

2 Consider a large network with n nodes in which there are α ·n nodes (α� 1) not connected to the rest of the network. Assigning this group of nodes,
denoted as S , into a separate community leads to ∆Q = ∑i∈S ∑ j/∈S k+i k−j /m2 ≈mS/m. Here mS is the number of edges inside S . If the edge distributions
in and out of S are uniform, then ∆Q≈ mS/m≈ α.



community, every remaining connected component is moved
into another community. This destination community is cho-
sen as the one with which the connected components have
most connections, and in the case that the connected com-
ponent has no connection with any other community, i.e., is
isolated, a new community is created for the isolated compo-
nent. Such adjustment steps are repeated until no community
has more than 1 connected components.

Load balancing is then performed by recursively merging the
smallest community into a larger one.

• Suppose that before balancing, the largest community
has n1 nodes. Then we consider the “effective” number
of communities as Ke = bn/n1c and merging should be
done for the communities smaller than the Ke-th one.

• For each small community to be merged, we look for a
destination community whose size, when added to the
size of this small community, is closest to n/Ke.

• We also require the two communities to merge to be
connected. If a community does not connect to any
other one, then this criterion is not applied.

In the tuning of resolution parameter γ, the number of com-
munities K under the γ should be comprehended as the Ke
here after load balancing.

Case Study

For the purpose of illustration, we consider a crude distil-
lation process for a refinery, whose model contains 363 in-
puts, 381 outputs (among which there are 246 intermediate
variables that are both inputs and outputs), and 801 model
blocks, as visualized in Fig. 3. A full formulation of its
dynamic optimization problem contains 875972 rows (con-
straints) and 828016 columns (variables), with 2430226 non-
zero relations between the variables and constraints3. To our
best knowledge, there has not been any work in the literature
that addresses distributed MPC on a comparable plantwide
scale, although problems with such complexity is common
in practice.

The state-of-the-art optimization solver used in PACE takes
35.4 seconds to solve a single centralized dynamic optimiza-
tion problem on average, which is too high compared to
the sampling time of 60 seconds. Such a controller imple-
mented for online operations has been well known to suffer
from severe delays and also frequent shut-off due to com-
putational timeout4. Therefore, automatic decomposition is
useful in keeping the controllers under normal operations for
such large-scale systems.

The directed network of variables that represents this process
is shown in Fig. 4(a), with 476 nodes and 787 edges. An intu-
itive glance at the network topology suggests that there exists
community structure in the process, and hence decompos-

ing such a system is desirable. By examining the computa-
tional time and control performance under different numbers
of communities K, we empirically set K = 5, which results
in a good trade-off. The resulting decomposition into 5 com-
munities is shown in Fig. 4(b). The number of edges lying
across communities is 31, which is 3.9% of the total num-
ber of edges, and the number of inputs impacting outputs in
other subsystems is 29, which is 8.0% of the total number
of inputs. These indices demonstrate that the subsystems are
indeed weakly coupled.

Figure 3: Model structure of the crude distillation process.
(A black pixel stands for the presence of a model block.
The dashed lines separate non-IVs (upper among inputs, left
among outputs) and IVs (lower among inputs, right among
outputs).

After the decomposition by community detection, a simula-
tion is run for the closed-loop system. The simulated sce-
nario considers disturbances happening on several MVs and
POVs. The average computational time for solving the dy-
namic optimization problem at each sampling time is now
reduced to 6.1 seconds, with an acceleration factor of 5.8.
The trajectories under centralized MPC and under distributed
MPC exhibit highly similar behaviors (they are omitted for
brevity here). Such significant improvement in the compu-
tational performance of dynamic optimization has also been
observed in several other benchmark processes of Shell. For
a gas-to-liquid process with 68 MVs and 412 CVs, after de-
composition into 4 subsystems, the average computational
time is reduced from 10.0 to 3.3 seconds (i.e., the speed is
accelerated with a factor of 3.0). For a hydrocracking pro-
cess whose model comprises of 25 MVs and 117 CVs, a 4-
subsystem decomposition accelerates the computation from

3 Necessary simplification of the dynamic optimization problem, such as using a minimal horizon length for closed-loop stability and agglomerating time
indices to “sparsify” the receding horizon, have already been used.

4 The average computational time mentioned here was collected under the simulation of a typical normal operating condition. Occasionally, due to the
parameter changes in the dynamic optimization problem, the computational time can reach over 70 seconds.



16.0 to 3.9 (with a factor of 4.1).

(a)

(b)

Figure 4: Network representation (a) and a 5-subsystem de-
composition (b) of the crude distillation process. (Different
colors correspond to communities.)

Conclusions

In this paper, we focused on the idea of automatic decom-
position, which is necessary for structured, systematic solu-
tion of dynamic optimization problems arising in the MPC
of large-scale systems. Following a literature review on the
evolution of relevant academic research throughout multiple
decades, we presented the successful implementation of an
automatic decomposition method in the Shell-Yokogawa’s
new-generation APC platform – PACE, and showed its ad-
vantages when applied to real-world large-scale industrial
processes. We thus demonstrated how the fundamental idea
of decomposition originating in the early ages of APC, cross-
pollinated with recent academic advances, has reshaped and
empowered a leading modern process control technology.
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