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Abstract
Achieving real-time capability is an essential prerequisite for the industrial implementation of nonlinear model
predictive control (NMPC). Data-driven model reduction offers a way to obtain low-order control models from complex
digital twins. In particular, data-driven approaches require little expert knowledge of the particular process and its model,
and provide reduced models of a well-defined generic structure. Herein, we apply our recently proposed data-driven
reduction strategy based on Koopman theory [Schulze et al. (2022), Comput. Chem. Eng.] to generate a low-order
control model of an air separation unit (ASU). The reduced Koopman model combines autoencoders and linear latent
dynamics and is constructed using machine learning. Further, we present an NMPC implementation that uses derivative
computation tailored to the fixed block structure of reduced Koopman models. Our reduction approach with tailored
NMPC implementation enables real-time NMPC of an ASU at an average CPU time decrease by 98 %.
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Introduction

Computationally tractable models are a main requirement
for real-time NMPC (Marquardt, 2002). Data-driven non-
intrusive model reduction comprises a class of model-free
methods for producing low-order representations of high-
order dynamical systems from data, e.g., Antoulas et al.
(2017). Similar to classical model reduction approaches
(Marquardt, 2002), these data-driven methods project a high-
order system from the full state space to a lower dimen-
sional subspace, reducing the system to its dominant latent
patterns. However, applying data-driven approaches shifts
the reduction efforts from system-specific expert knowledge
for reduced modeling towards data-based system identifica-
tion. Notably, data-driven approaches allow for automated
reduction frameworks as well as exploitation of the generic
reduced model structure in optimization.

In recent years, a variety of data-driven frameworks for
model reduction of dynamical systems has been presented in
the literature, e.g., the Loewner framework (Antoulas et al.,
2017), lift-and-learn methods (Qian et al., 2020), and autoen-
coder network structures (Watter et al., 2015). In particular,
Koopman theory (Mezić, 2005) has attracted considerable

1 Corresponding author. Email: amitsos@alum.mit.edu.

attention. Model reduction using Koopman theory as well
as the related dynamic mode decomposition (Schmid, 2010),
build on a lift-and-project concept and aim to construct lin-
ear representations of nonlinear dynamics through (nonlin-
ear) coordinate transformation. Applied Koopman theory has
a system-theoretic foundation and naturally combines sim-
ple dynamic forms with data-driven identification of coordi-
nate transformations, e.g., through Kernel methods (Williams
et al., 2015), deep learning (Lusch et al., 2018), or sparse re-
gression techniques (Brunton et al., 2016).

While Koopman theory was originally developed for au-
tonomous systems, several extensions to systems with exoge-
nous inputs have been introduced. These works derive linear
(Proctor et al., 2016; Korda and Mezić, 2018) as well as bi-
linear (Surana, 2016) Koopman control models. Recently,
we proposed a Wiener-type Koopman form (Schulze et al.,
2022). More specifically, we developed a Koopman-based
deep learning framework that combines autoencoders net-
works with linear latent dynamic blocks. Further, we demon-
strated that such Wiener-type Koopman models can offer a
favorable compromise between linear dynamics and nonlin-
ear modeling. Related works using autoencoders and latent
dynamics have also been presented independent of Koop-
man theory, e.g., Watter et al. (2015); Masti and Bemporad
(2021).



Despite the potential of Koopman-based NMPC for pro-
cess control, applications have been limited to single unit
operations like a reactor (Narasingam and Kwon, 2019) and
a distillation column (Schulze and Mitsos, 2022). Herein,
we aim to demonstrate that applied Koopman theory enables
real-time NMPC of complex processes, while requiring lit-
tle expert knowledge for the model reduction procedure. We
use our deep learning framework to train Wiener-type Koop-
man models on simulation data of a detailed digital pro-
cess twin, whose solution computation requirements are pro-
hibitive for online applications. As a further extension of
our previous work (Schulze and Mitsos, 2022), we present an
NMPC implementation that is tailored to the reduced Koop-
man structure, thereby realizing an additional speed-up in on-
line optimization. Finally, we apply the resulting Koopman
NMPC framework to an ASU case study. Our numerical re-
sults demonstrate the real-time capability and tracking per-
formance of Koopman NMPC in load change scenarios.

Koopman-based model reduction framework

Koopman theory postulates the global linearization of non-
linear autonomous dynamics by means of nonlinear coordi-
nate lifting to a high (generally infinite) dimensional coordi-
nate space (Mezić, 2005). For practical application of Koop-
man theory, finite truncation of this lifting is sought, often us-
ing data-driven methods, e.g., Williams et al. (2015); Lusch
et al. (2018). We consider the class of asymptotically stable
input-affine systems:

ẋ(t) = f(x(t))+
nu

∑
i=1

gi(x(t))ui(t) , (1a)

y(t) = h(x(t)) , (1b)

where x(t)∈Rnx are the differential states, y(t)∈Rny are the
outputs, u(t) ∈ Rnu are external inputs, and f : Rnx → Rnx ,
gi : Rnx → Rnx , h : Rnx → Rny are continuously differen-
tiable. For this system class, we have derived a Koopman
representation of Wiener form (Schulze et al., 2022; Schulze
and Mitsos, 2022), which uses linear time-invariant dynam-
ics (LTI) in time-discrete form (zeroth-order hold), sand-
wiched by nonlinear coordinate transformations:

zk+1 = Azk +Buk , (2a)[xk
yk

]
= T †(zk) , (2b)

z0 = T (x0) . (2c)

Herein, zk ∈ Rnz are the Koopman coordinates, k is the time
index, T : Rnx → Rnz (encoding) represents the nonlinear
transformation to the Koopman coordinates and provides ini-
tial conditions, and T † : Rnz → Rnx+ny (decoding) maps the
Koopman coordinates to the original states and outputs. A, B
are constant matrices. Since we target model reduction, we
focus on nz ≪ nx. Based on sampled process data, we aim
to directly identify the discrete-time reduced form, which
relieves the need for numerical integration in dynamic op-
timization. Further, note that the dynamics in z are linear
instead of nonlinear, constituting a crucial simplification step
for the computation of the Jacobian.

Deep learning implementation

We employ the Wiener-type Koopman form, Eq. (2), for
data-driven model reduction. To this end, we adopt our deep
learning strategy from (Schulze et al., 2022; Schulze and Mit-
sos, 2022), where we train reduced models on sampled data
from numerical simulations of the full-order model (e.g., a
digital twin). Specifically, we use artificial neural networks
to learn suitable mappings T and T †. To simplify the train-
ing, we modify the mapping z = T (x) to z = T (x,y), al-
lowing us to train autoencoder networks.

We compute the training loss C as the sum of mean
squared error (MSE) terms for single and multi-time-step
predictions:

C =
1

s−1

s−1

∑
k=0

∥∥∥[xk+1
yk+1

]
−T †(zk+1(k))

∥∥∥
MSE

+
1

s−1

s−1

∑
k=0

∥∥∥[xk+1
yk+1

]
−T †(zk+1(0))

∥∥∥
MSE

,

(3)

where:

zk+1( j) :=

{
zk+1 = Azk +Buk , k = j, j+1, ...
z j = T (x j,y j) ,

and s is the number of snapshots per trajectory. The dimen-
sion nz and number of network layers and respective neu-
rons are hyperparameters. If system knowledge is available,
a (block) diagonality of A can be prespecified which enforces
learning Koopman eigenfunctions and reduces the number of
trainable parameters. In contrast to our previous work, we do
not formulate an additional autoencoder loss term. Thereby,
we promote direct feedthrough of inputs to states and out-
puts, which improves the reduction procedure with respect to
fast modes. Case-specific details on the data sampling and
model training procedures are provided within the control
study.

Figure 1: Model reduction and control workflow.

Fig. 1 depicts the model reduction workflow implemented
in Python 3.9 and TensorFlow 2.5. We conduct the simula-
tion experiments using our open-source dynamic optimiza-
tion software DyOS with integrator NIXE (Caspari et al.,
2019). However, other simulation environments may be used
as well. The preliminary model structure is selected based
on analysis of the simulation data set and refined iteratively
by the user if necessary. After training, the reduced model is
used to control the real process (or as herein, its digital twin).

Koopman NMPC

We employ the reduced Koopman models for NMPC of
chemical processes. While Wiener-type Koopman models



promise a higher accuracy than linear models (Schulze et al.,
2022), their nonlinear type requires nonlinear optimization.
However, the sequential Wiener architecture can be exploited
by a tailored implementation of the NMPC. Consider the fol-
lowing optimal control problem solved by the NMPC:

min
u,z

Nc

∑
k=1

ℓk(T
†(zk+1)) (4a)

s.t. zk+1 = Azk +Buk , (4b)

c(T †(zk+1))≤ 0 , (4c)
uk ∈ U , (4d)
z0 = T (x0,y0) , (4e)
k = 0,1, ...,Nc −1 , (4f)

where Nc is the control horizon and Eq. (4a) describes the
cost function with stage cost ℓk. Eq. (4b) are the linear
dynamics, Eq. (4c) represents nonlinear path constraints on
states and outputs, and U is the admissible set of controls.
Eq. (4e) provides process feedback and is evaluated prior to
solving the problem. Due to the sequential model structure,
the decoding can be directly inserted into the cost function
and constraints. Consequently, the control problem is con-
densed to the variables u and z. Further, the sparsity of the
Jacobian is known beforehand due to the well-defined model
structure. These attributes enable a computationally efficient
and reusable Koopman NMPC framework.

We implement Koopman NMPC in Python 3.9 by combin-
ing the NLP solver IPOPT (Wächter and Biegler, 2006) and
automatic differentiation using TensorFlow. Therein, we tai-
lor the derivative computation to the block-diagonal sparse
structure of the Jacobian and compute the non-zero entries
using automatic differentiation. We cache the gradient tape
to avoid expensive online re-computation. We use piecewise
constant control moves (zeroth-order hold) and warm-start
consecutive optimizations. In contrast to, e.g., Masti and Be-
mporad (2021), we exploit the model structure in the opti-
mization rather than embedding the full model.

Fig. 2 visualizes how the underlying graph structure of
the model and control problem predetermines the Jacobian.
Neighboring z nodes are coupled through LTI dynamics,
Eq. (2a), resulting in non-zero constant Jacobian blocks. In
addition, decoding branches for cost and constraints are lo-
cally attached, Eq. (2b), with non-constant Jacobian blocks.

Figure 2: Graph structure of Koopman model prediction.

Case study: NMPC of an air separation unit

Cryogenic air separation units (ASUs) produce industrial
gases such as nitrogen and oxygen. Due to their high electric
energy demand, ASUs are considered as a promising can-
didate for load flexible operation and demand side manage-
ment (Pattison et al., 2016). NMPC is a promising operating

strategy for realizing major load changes on a frequent basis
(Chen et al., 2010). However, especially the detailed mod-
eling of distillation columns and heat exchangers, e.g., by
means of tray-to-tray balancing and finite volume discretiza-
tion, respectively, results in process models that are too com-
plex for NMPC (Caspari et al., 2020). Thus, different model
reduction approaches for individual process units have been
investigated, e.g., Chen et al. (2010); Schäfer et al. (2019);
Caspari et al. (2020); Schulze et al. (2021). While these
physics-motivated approaches preserve the flowsheet struc-
ture of the dynamic model, their application requires addi-
tional modeling efforts and expert knowledge. In contrast,
data-driven reduction is particularly suitable if the flowsheet
structure does not need to be preserved and the size and com-
plexity of the input-output data sets is thus limited.
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Figure 3: Air separation unit. Manipulated variables in blue.

We consider the ASU depicted in Fig. 3, which serves as a
classic literature problem (Pattison et al., 2016). The process
consists of the main air compressor (MAC), multi-stream
heat exchangers (PHX), turbines, high-pressure distillation
column (HPC) and integrated reboiler condenser unit (IRC).
The nitrogen product has molar impurity fraction 1−xN2 , and
molar flow rate ṅprod. The control degrees of freedom are the
feed air flow rate ṅmac, the stream split fraction to the pri-
mary turbine ξtur, the reflux fraction at the column top ξreflux,
and the liquid drain from the reboiler ṅdrain. The process is
equipped with a stabilizing P-controller manipulating ṅdrain
to counteract the integrating response of the liquid reboiler
inventory Mr to the other inputs. We use a detailed dynamic
process model, referred to as digital twin, taken from our pre-
vious work (Caspari et al., 2020). In particular, we formu-
late mass and energy balances for all process units, including
tray-by-tray modeling of the column and finite volume dis-
cretization of PHX1 and PHX2. We complement these equa-
tions by thermodynamic correlations, including Margules ac-
tivity model for equilibrium computations.

The digital twin (Caspari et al., 2020) is implemented in
the modeling language Modelica and has 118 differential and
2675 algebraic equations. We assume that the model captures
the process response sufficiently accurately, and we use it as a
starting point for model reduction as well as a plant represen-
tative in closed-loop operation. The model is an index-one
nonlinear semi-explicit differential-algebraic equation sys-
tem (DAE), having a unique and smooth solution to resemble
the behavior of Eq. (1b). All computations run on a terminal
server with Intel XEON E5-2630 v2 CPU at 2.6 GHz and
128 GB RAM.
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Figure 4: Independent open-loop step test of the reduced Koopman model.

Table 1: Parameters of data sampling.

Variable Symbol Value Unit

Sampling time ∆ts 5 min
No. diff. states nx 118 −
No. outputs ny 3 −
Dynamic traj. length t f ,d 1000 h
Stationary traj. length t f ,s 1000 h
Air feed rate ṅmac [28, 52] mols−1

Turbine split ξtur [0.88,1.0] −
Reflux ratio ξreflux [0.5,0.55] −
Reboiler setpoint Mr,sp [19,41] kmol
P-controller gain Kp 5 mols−1 kmol−1

Data sampling

The data sampling and model training procedure is similar
to our previous work (Schulze et al., 2022). We obtain the
training data set by simulating the full-order digital twin sub-
ject to a series of input steps comprising 800 random combi-
nations of all control degrees of freedoms. For the purpose
of data sampling, we retain the P-controller to ensure asymp-
totic stability and vary the inventory setpoint Mr,sp. How-
ever, we record the (biased) manipulation of ṅdrain to enable a
Koopman model without P-controller, deciding against train-
ing a model of the process with base-layer control here. The
duration of all input steps varies between 0.5 and 2 h (1000 h
in total) to mix excitation of varying frequency. Moreover,
we add 500 steady-state trajectories of 2 h length (1000 h in
total), to ensure stability properties and small steady-state
offset of the trained model.

Table 1 collects the information about the sampling. The
input ranges are chosen slightly larger than the intended use
in order to reduce boundary phenomena. For the simulation
of the digital twin, we specify relative and absolute tolerances
of 10−5 and 10−8, respectively. We collect the snapshots as
tuples of states, outputs, and controls. The three algebraic
outputs y are the product impurity, production rate, and driv-
ing temperature difference in the IRC.

Model architecture and training

To identify suitable hyperparameters, we perform a sys-
tematic parameter study varying the autoencoder morphol-
ogy (number of neurons and hidden layers) and the latent
Koopman state dimension. Therein, we find that nz = 30 and
symmetric encoding and decoding with two hidden layers
providing a constant relative decrease in the number of neu-
rons, i.e., (76, 48) and (48, 76), respectively, are a suitable
choice. Both encoder and decoder networks use tanh activa-

tion and linear output layers. Since the training data do not
indicate oscillatory behavior, we preset a diagonal structure
of A, confirmed by a training using full A. We use projection
constraints to bound all elements of A to aii ≥ 0.

We log-transform all molar fractions and scale all variables
between zero and one. The trajectory data set is created by
sliding along the recorded data in a moving horizon fashion,
stopping every 5 sampling instants and copying s = 24 con-
secutive snapshots. We group random sets of 32 trajectories
as mini-batches and divide the batched data into 80 % train-
ing and 20 % validation data. Model training is performed for
20000 epochs using the optimizer Adam. After the training,
we retrieve the weights with smallest validation loss.

Model testing

We perform an open-loop test of the reduced Koopman
model in an independent test scenario in which the model is
subject to two random steps of all inputs. Fig. 4 compares
the open-loop prediction of the target quantities (production
rate, product impurity, and reboiler hold-up) by the Koop-
man model to trajectories generated using the digital twin.
The graphs show both a single multi-step simulation sweep
over the entire horizon and a series of single-step predictions
initialized along the reference trajectory. The single-step pre-
dictions are most important for short-term tracking and sta-
bilization, whereas the multi-step prediction reflects the ac-
curacy of the model to open-loop predict long-term trends.
Despite the high degree of reduction, the Koopman model
captures both short and long-term trends accurately. At high
product impurities, we observe an opposite gain in a number
of single-step predictions, which will be the subject of fu-
ture improvements. However, this artifact did not affect the
NMPC performance in the control study below.

Control case study

Since we target demand side management based on fre-
quent load changes (Pattison et al., 2016), the control task is
tracking of a series of instantaneous changes in the produc-
tion rate, while maintaining product quality and stabilizing
the liquid reboiler level Mr. We use the digital twin as plant
representation in closed-loop operation and leave the effect
of mismatch between digital twin and plant for future work.
We formulate the NMPC tracking stage cost as:

ℓ := w1 · (ṅprod − ṅprod,sp)
2 +w2 · (Mr −Mr,sp)

2 . (5)

Table 2 summarizes the NMPC tuning.
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Figure 5: Closed-loop results (process response) of the controlled variables in the NMPC case study.

Table 2: NMPC tuning.

Variable Symbol Value Unit

Sampling time ∆ts 5 min
Control horizon Tc 120 min
Tuning weight 1 w1 1.0 s2 mol−2

Tuning weight 2 w2 0.0005 kmol−2

Level setpoint (fixed) Mr,sp 3.0 kmol
Level constraint Mr [20, 40] kmol
Impurity constraint 1− xN2 [100, 2000] ppm
Air feed rate ṅmac [30, 50] mols−1

Turbine split ξtur [0.9,1.0] −
Reflux ratio ξreflux [0.51,0.54] −
Reboiler drain ṅdrain [0, 1.0] mols−1

Integrator tolerances (only DyOS) 10−6 −
Optimality tolerance 10−5 −
Feasibility tolerance 10−3 −

We scale all terms in Eq. (4) and warm-start all optimiza-
tions. The NMPC does not anticipate the setpoint changes,
i.e., we expect a considerable CPU effort in re-optimization
at setpoint updates. We apply full state feedback to exclude
state estimation errors and focus on the model reduction.

We compare the tailored Koopman NMPC implementation
to an ideal NMPC optimizing the full-order control model us-
ing a general-purpose DAE optimizer (DyOS). In addition,
we compare to Koopman NMPC implemented with DyOS,
i.e., an NMPC implementation similar to our previous work
(Schulze and Mitsos, 2022). These two benchmarks enable
us to evaluate two effects separately: 1) The model reduc-
tion, i.e., benefit from full-order vs. reduced Koopman using
the same optimization platform, and 2) the benefit from a
tailored optimization exploiting the specific problem struc-
ture. To enable 1), we transform the Koopman model to
continuous-time form using MATLAB 2019a and translate it
to the Modelica language. In all cases, we neglect the closed-
loop effect of CPU delays on the controlled process.

Fig. 5 shows the closed-loop results of the case study, i.e.,
the process response to the control action. All controllers ac-
complish fast and precise setpoint tracking of the primary tar-
get (Fig. 5a) and feasible operation of the ASU (Figs. 5b+c),
consistent with the excellent open-loop predictions by the
reduced models (Fig. 4). While benchmark and Koopman
NMPC using the same optimization platform (DyOS) yield
almost indistinguishable closed-loop trajectories, the tailored
Koopman implementation exhibits slight deviations from the
other trajectories, most pronounced for the impurity. How-
ever, these deviations are limited and not associated with a
noticeable tracking or feasibility loss. We attribute the devia-
tions to numerical effects in the sensitivity computations and

the respective local optimization algorithms.

Table 3: CPU effort reduction achieved by the proposed
Koopman NMPC implementation.

NMPC ∅ CPU time ∅ Red. Max. CPU time

Ideal 481 s – 3358 s
Koopman (DyOS) 47 s 90 % 330 s
Koopman (tailored) 9 s 98 % 48 s

We compare the CPU effort of solving the NMPC imple-
mentations and assess the real-time capability in Table 3.
The computational effort of ideal NMPC vastly exceeds the
sampling time of 300 s and thereby introduces severe control
delay. In contrast, employing the reduced Koopman model
in the same NMPC framework generates a speed-up of fac-
tor 10, resulting in average CPU cost below the sampling
time. However, the maximum CPU effort still lies beyond
the sampling rate and the average computational delay is no-
ticeable. Finally, the tailored NMPC facilitates most efficient
optimization at an additional speed-up of over factor of 5,
yielding an average CPU time decrease by 98 %. The CPU
effort lies well below the sampling time and is of acceptable
magnitude. Further, this speed-up is slightly improved com-
pared to previous works applying classical model-based re-
duction methods to the same ASU (Schäfer et al., 2019; Cas-
pari et al., 2020), where an average CPU reduction by 95 %
was reported. Compared to these methods, our approach in-
volves considerably less modeling effort, as the full-order
process model is not modified in the reduction process and
our deep learning framework is automated.

Conclusions

We apply Koopman theory for data-driven model reduc-
tion and real-time NMPC of a chemical process, specifically
an ASU. The reduced model is trained using deep learning
and consists of an autoencoder and linear latent dynamics,
overall referred to as Wiener-type Koopman model. The
data-driven nature of our approach greatly reduces the re-
quired process knowledge and enables an automated reduc-
tion procedure. In addition, we present an NMPC implemen-
tation tailored to the block structure of the reduced models.

Despite the high degree of reduction, the low-order mod-
els are accurate and enable precise control of the ASU at a re-
duction of CPU costs by 98 %. If required, a further speed-up
could be achieved by applying a more efficient NLP solver,
stronger reduction, or by increasing the tolerances at the cost
of tracking performance. Additionally, employing decompo-



sition strategies for further exploitation of the graph structure
(Jalving et al., 2019) may enable faster optimization.

In this study, we did not consider state estimation to ex-
clude the effect of estimation errors on closed-loop perfor-
mance, thereby allowing an isolated study of the reduction
approach. However, we have recently proposed a strategy
to train state estimation into the data-driven Koopman model
structure (Schulze and Mitsos, 2022). Future work will apply
this integrated approach in extended studies. Moreover, we
will compare against conventional controller types. Finally,
we have assumed that the provided digital twin captures the
real plant exactly. To account for plant-model mismatch, fu-
ture work will investigate methods for online model improve-
ment in closed-loop operation.
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Jülich, as well as from the Helmholtz Association of German
Research Centers as part of the Helmholtz School for Data
Science in Life, Earth and Energy (HDS-LEE).

References

Antoulas, A. C., S. Lefteriu, A. C. Ionita, P. Benner, and A. Cohen
(2017). A tutorial introduction to the Loewner framework for
model reduction. Model Reduction and Approximation: Theory
and Algorithms 15, 335.

Brunton, S., B. W. Brunton, J. L. Proctor, and J. N. Kutz (2016).
Koopman Invariant Subspaces and Finite Linear Representations
of Nonlinear Dynamical Systems for Control. PLOS ONE 11(2),
e0150171.

Caspari, A., A. Bremen, J. M. Faust, F. Jung, C. D. Kappatou,
S. Sass, Y. Vaupel, R. Hannemann-Tamás, A. Mhamdi, and
A. Mitsos (2019). DyOS − a framework for optimization of
large-scale differential algebraic equation systems. In Computer
Aided Chemical Engineering, Volume 46, pp. 619–624. Elsevier.

Caspari, A., C. Offermanns, A. M. Ecker, M. Pottmann, G. Zapp,
A. Mhamdi, and A. Mitsos (2020). A Wave Propagation Ap-
proach for Reduced Dynamic Modeling of Distillation Columns:
Optimization and Control. Journal of Process Control 91, 12–24.

Chen, Z., M. A. Henson, P. Belanger, and L. Megan (2010). Non-
linear model predictive control of high purity distillation columns
for cryogenic air separation. IEEE Transactions on Control Sys-
tems Technology 18(4), 811–821.

Jalving, J., Y. Cao, and V. M. Zavala (2019). Graph-based model-
ing and simulation of complex systems. Computers & Chemical
Engineering 125(1), 134–154.
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