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Abstract 

The rapid adoption of non-dispatchable renewable energy increases electricity market volatility and creates an urgent 

need for more flexible energy systems to balance supply and demand. Integrated energy systems (IES) can offer this 

flexibility by combining multiple technologies and providing the option to switch between multiple inputs and outputs (e.g. 

electricity + hydrogen).  Detailed market analysis of such IES systems is a challenging task, due to nonlinear models of 

system operations and modeling switching between operation modes. In this work, we present a framework for rapidly 

evaluating IES concepts through optimization-based market-informed technoeconomic analysis (TEA). Detailed equation-

oriented process models are developed in the IDAES® PSE modeling platform. We then use ALAMO to generate algebraic 

surrogates for operating costs, capital costs, and co-production constraints.  These surrogates enable us to account for 

complex system dynamics in larger, time-dependent models. Finally, these surrogates are embedded in a Generalized 

Disjunctive Programming (GDP) model to account for mode-switching system behaviors and the GDP model is solved to 

output optimal size and output schedule. Here, we demonstrate the method’s capabilities by co-optimization of system 

design and operation of a solid oxide fuel cell (SOFC) power production system and find SOFC systems have economic 

advantages based on electricity market projections.  
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Introduction

With the global climate crisis looming and 

populations steadily rising, electric demand is expected to 

continue increasing. The U.S. Energy Information 

Administration EIA (2022) reports that renewable energy is 

the fastest growing generation type. While renewable 

energy has clear environmental and societal benefits, its 

inherent non-dispatchable nature challenges the operation 

of the electric grid, in which supply and demand must 

always be in balance. 

Integrated energy systems (IES) can help support 

renewable integration by providing flexibility to the overall 

energy infrastructure. IESs combine multiple technologies 

(e.g., natural gas combined cycles, solid oxide fuel or 

electrolyzer cells, carbon capture, energy storage, and 

renewables) and tightly couple them, creating systems that 

can switch between inputs and outputs (Arent et al. 2021).  

IESs increased flexibility make them particularly attractive 

with increased variable renewable energy (VRE) scenarios 

(Lund et al. 2012). Solid oxide fuel cells (SOFC) present 

unique advantages for integration with other technologies. 

They show excellent promise as an energy conversion 

technology utilizing natural gas, as they have a higher 

efficiency and are more environmentally friendly than 

competing generation technologies utilizing natural gas 

(Singh, Zappa, and Comini 2021). Their high operating 

temperature, while posing operational challenges, allows 

waste heat from electricity generation to be collected and 

used in other integrated processes such as cogeneration 

(Napoli et al. 2015), biofuels processing (Mehrpooya, 

Ghorbani, and Abedi 2020), and gas turbines (Meratizaman, 

Monadizadeh, and Amidpour 2014). Moreover, most 

technoeconomic analyses (TEA) of SOFC-based IES 

(Behzadi et al. 2019; Chen et al. 2019) focus on levelized 

cost of electricity (LCOE) and similar metrics which 

neglect the dynamic nature of modern wholesale energy 

markets.  

In this work, we present a framework for 

conducting market-informed TEA of IES. The framework 



  

 

allows co-optimization of design (e.g., subsystem sizes) and 

operation (e.g., energy flows, modes) under different 

locational marginal price (LMP) signals. The problem is 

formulated as a generalized disjunctive programming 

(GDP) model and implemented in Pyomo. Detailed 

equation-oriented process models are developed in v1.13.0 

of the IDAES® PSE modeling platform (Lee et al. 2021). 

We then use ALAMO v2021.12.28 (Cozad, Sahinidis, and 

Miller 2014) to generate algebraic surrogates for operating 

costs, capital costs, and co-production constraints. Using 

these surrogates embedded in the GDP optimization model, 

we can directly compare the economic performance of 

different IES concepts such as SOFC-based IESs that co-

produce hydrogen and electricity. In this study, we consider 

a projected LMP scenario in the 2035 CAISO region. 

Methods 

Market analysis was done using a GDP model with 

disjunctions for operating modes of the systems. Input data 

for the model include LMP, 𝜋𝑡
𝑝
, in $/MWh, hydrogen price, 

𝜋𝑡
ℎ in $/kg, and technical characteristics of the 

power/hydrogen systems. These characteristics include 

minimum system capacities, 𝑃 and 𝐻, in MW and kg/s 

respectively, maximum system capacity, 𝑃 and 𝐻, in MW 

and kg/s respectively, fractional turndowns, 𝜏 and 𝜙, both 

unitless, and ramp rates, 𝑟𝑝 and 𝑟ℎ, in MW/hr and kg/s/hr 

respectively.  The formulation utilizes a self-schedule price-

taker approach, assuming the system sets its own schedule 

based on the LMPs, and the addition of this system to the 

grid will not have an impact on the LMPs (Dowling, Kumar, 

and Zavala 2017).  

Sets and Variables 

The GDP model is indexed over the set 𝑡 ∈ 𝑇 =
{1, … ,8760}, representing the timesteps in the horizon in 

hours. The decision variables include 𝑝𝑡 , the power output 

of the system at time 𝑡 in MW, and 𝑃, the maximum 

capacity of the power system in MW. For IES that 

coproduce hydrogen, decision variables ℎ𝑡, hydrogen 

output of the system at time 𝑡 in kg/s and 𝐻, maximum 

capacity of the hydrogen production system in kg/s, are 

added.  

Power Only Model 

For systems that produce power only (two modes: 

system off and system producing power) the model is as 

follows: 

max 
∑(𝜋𝑡

𝑝
𝑝𝑡 − 𝐶fixed(𝑃) − 𝐶variable(𝑝𝑡)

𝑡∈𝑇

− 𝐶fuel(𝑝𝑡)) 

(1) 

s.t. 𝑝𝑡 ≤ 𝑃    ∀𝑡 ∈ 𝑇 (2) 

 𝑃 ≤ 𝑃 ≤  𝑃   (3) 

 𝑝𝑡 ≤ 𝑝𝑡−1 + 𝑟𝑝   ∀ 𝑡 ∈ 𝑇 (4) 

 

[

𝐶variable(𝑝𝑡) = 0

𝐶fuel(𝑝𝑡) = 0
𝑝𝑡 = 0

]  ∨  

[

𝐶variable(𝑝𝑡) = 𝑓1(𝑝𝑡)

𝐶fuel(𝑝𝑡) = 𝑓2(𝑝𝑡)
𝑝𝑡 ≥ 𝜏 × 𝑃

] ∀ 𝑡 ∈ 𝑇 

(5) 

Equation (1), the objective, maximizes system 

profit. The first term represents system revenue from selling 

power on the wholesale electricity market, 𝐶fixed is the fixed 

capital costs of the system in $/hr and is a function of system 

capacity, 𝐶fuel is the natural gas cost associated with system 

operation, a function of system output, and 𝐶variable is the 

variable operating cost of the system in $/hr, a function of 

system output. Global constraints include Eq. (2), power 

output must be less than the system capacity, Eq. (3), 

installed capacity must be within specified bounds, and Eq. 

(4), describing ramping behavior. Equation (5) is the 

disjunction describing the two modes of operation. When 

the system is off, variable cost, fuel cost, and power output 

are both zero. When the system is producing power, 

variable cost and fuel cost are described by surrogate 

equations 𝑓1 and 𝑓2 and the power output must be greater 

than the fractional turndown of maximum capacity. 

Surrogate Equations 

Algebraic surrogate equations for fixed costs, fuel 

costs, and other variable costs were developed using 

detailed equation-oriented models developed in IDAES-

PSE (Lee et al. 2021) and trained using ALAMO (Cozad, 

Sahinidis, and Miller 2014). See Table 1 for the surrogates 

used in this case study (Eslick et al. 2022). 

 

Table 1: Surrogate Equations for SOFC 

 

Surrogate Equations 

Fixed Cost 

(MM$/yr) 
70.37(P

650⁄ )
0.77

+ 49.53(𝑃
650⁄ )

0.779

 

Fuel Cost 

($/hr) 

2.4981𝑝𝑡 + (0.22 × 10−3)𝑝𝑡
2 + (0.11 ×

10−5)𝑝𝑡3 + 38.617  

Variable 

Cost ($/hr) 

0.795309𝑝𝑡 + (0.16 × 10−4)𝑝𝑡
2 +

(0.82 × 10−7)𝑝𝑡
3 + 10.6  



 

   

Figure 2: SOFC operation from hours 100 to 300 of the annual simulation. Power output of the system (left 

vertical axis) is represented by the red line and LMP (right vertical axis) at that point is represented by the 

blue circles. 

Results and Discussion 

To demonstrate the use of the proposed 

formulation, we co-optimize the design and operation of an 

SOFC system using an annual projected LMP signal 

modeled by implementing a $100/ton carbon tax on the 

2035 CAISO region (Cohen and Durvasulu 2021). Figure 1 

shows the price distribution of this LMP signal.  

 

Figure 1: CAISO LMP signal used for analysis. 

The system was modeled using Pyomo and solved 

in a two-step process: first fixing integer variables 

(operation mode at each time step) and solving the resulting 

nonlinear programming (NLP) model solving with Ipopt 

3.12.8, then unfixing the integers and solving the mixed-

integer nonlinear programming (MINLP) model solved 

using Bonmin 1.8.6 to obtain the final optimal operating 

strategy and system capacity. 

Figure 2 shows the resulting operation scheme 

from hours 100 to 300 for the SOFC system. In this price 

scenario, the optimal plant capacity was 650 MW 

(maximum for the system) and the plant capacity factor was 

0.61. From Figure 1, we can see this LMP signal is 39% very 

low prices (<$10/MWh) and 48% high prices (>$75/MWh) 

with a mean price of $52.9/MWh. Because of this, the plant 

spends the horizon either operating at maximum output or 

shut down. For this solution, we assumed the plant can ramp 

from off to maximum power in a single 1-hour time step. 

Adding stricter ramping limits or minimum up/down time 

constraints would likely impact the operating profile. 

Economically, the SOFC system would be 

profitable under this LMP scenario. This operating strategy 

results in annual power revenues of M$299.3, with costs 

(fixed + variable + fuel) totaling M$202.6 annually. This 

brings annual system profit to M$96.7. These results are 

consistent with prior, traditional LCOE TEA showing SOFC 

systems have economic advantages (Adams et al. 2012) 

Future Work 

Here, we have demonstrated the capability of our 

framework to co-optimize the design and operation strategy 

of a power system in the market. As future work, we plan to 

quantify the impact of stricter ramping and minimum 

up/down time constraints on the optimal system operation 

and profitability. We plan to model seven IES concepts 

hybridizing NGCCs, SOFCS, SOECs, rSOFCs, and 

compressed air energy storage (CAES) across over ten 

future LMP scenarios under various carbon tax policies, 



  

 

ultimately developing guidance on which strategies to 

incorporate SOFC and SOEC technologies into IES are most 

promising. 
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