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Abstract
This paper aims to solve a steady-state optimization problem with simple feedback controllers using the Primal-Dual
approach. Compared to solving the full original optimization (standard real-time optimization (RTO)), this approach
controls the constraints without the need of an explicit model, and has less computation time. The main idea is to
control the constraints in an upper slow layer by manipulating the Dual variables (Lagrange multipliers). Given values
of dual variables, the problem in the lower layer is unconstrained with the Lagrange function as the cost function, and
the Primal variables (inputs) as decision variables. The solution can be obtained by solving the equation set that results
when the gradient of the cost is equal to zero. It is possible to solve this equation set using decentralized feedback
control for a weakly interactive system where the pairing of Primal variables and the gradient is obvious. This results
in a decomposition of the optimization problem which may have significant advantages for practical implementation.
However, the main focus in this paper is to study interactive systems where the pairing is not obvious. In such cases, we
may use the alternative approach where we solve the equation set analytically or numerically to find the Primal variables.
Both strategies are applied to a continuously stirred tank reactor. The simulation results for this case study show that
both approaches obtain similar performance.
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Introduction
Real-time optimization (RTO) deals with the steady-state
economic optimization of the entire plant based on a detailed
process model. As input, it needs an estimate of the present
state (including constraints) and as output (results from the
steady state optimization), it gives setpoints to the control
layer. The RTO-layer is operating at a slow time scale (of-
ten around an hour) and because disturbances may affect the
operation on a faster time scale, it is desirable to put some
of the optimization into the control layer, so that at least the
control layer moves the inputs in the right economic direction
when there are disturbances. This is the idea of feedback-
optimizing control (Morari et al., 1980), which aims at trans-
lating optimization objectives into control objectives. A com-
prehensive review of RTO as a feedback control problem is
given by Krishnamoorthy and Skogestad (2022).

In this paper, the starting point is that a constrained op-
timization problem can be translated into an unconstrained
optimization problem using Lagrangian/Dual relaxation (see
Uzawa (1960); Rantzer (2009); Krishnamoorthy (2021);
Dirza et al. (2021); Krishnamoorthy and Skogestad (2022),

and Fig. 1). The formulation suggested by Dirza et al. (2021)
enables automatic active constraint region switching.

The main idea is to control the constraints in the upper
(slow timescale) layer by manipulating the Dual variables
(Lagrange multipliers). This is called central constraint con-
troller in this work. These may be controlled using simple
single-loop I-controllers, one for each constraint. For in-
equality constraint, the I-controllers are complemented with
selectors, one for each I-controller, in order to satisfy the
complementary condition. Because of this complementary
condition, there is only one single-loop pairing choice. With
given values for dual variables, the problem in the lower layer
is unconstrained with Lagrange function as the objective, and
the Primal variables (Inputs) as the decision variables. For
fixed values of dual variables, the solution can be obtained
by solving the equation set where the gradient of Lagrange
function is equal to zero, in order to satisfy the stationary
condition. It is possible to solve this equation set using feed-
back control to translate the entire optimization problem into
pure feedback control problem. The controller is also called
gradient controller. For a weakly interactive system, the pair-
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ing of Primal variables and the gradient of Lagrange func-
tion is obvious, and single-loop controllers work well (Kr-
ishnamoorthy, 2021; Dirza et al., 2021, 2022; Dirza and Sko-
gestad, 2022a).

However, the pairing is not obvious when we handle an
interactive system, which may even lead to negative Relative
Gain Array (RGA) elements and instability (Dirza and Sko-
gestad, 2022b).

The main goal of this paper is to compare possible strate-
gies in the primal/lower layer in order to apply Primal-Dual
approach to a (highly-) interactive system.
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Figure 1: Block diagram of original primal-dual scheme with
feedback control in the lower layer (Dirza et al., 2021). The
gray box represents a given plant. The white boxes represent
computational blocks. The red and blue boxes represent con-
troller blocks with different timescales. The symbol of hat (.̂)
represents estimated values, and y denotes the measurement
set (output variables). The remaining notations are explained
in Section Problem Formulation.

Problem Formulation
Consider a steady-state optimization problem

minu J (u,d) (1a)

s.t. g(u,d)≤ 0, (1b)
u ∈U (1c)

where u ∈ Rnu are the set of manipulated variables (physi-
cal inputs/primal variables), d ∈ Rnd denotes the set of pa-
rameters/disturbances, J : U×Rnd → R is the cost function,
g =

[
g1 . . . gng

]⊤ denotes the constraints. For simplicity,
differential state x is not explicitly shown in problem (1).

Primal-Dual

To solve problem (1), the control structure of Primal-Dual
has two layers of controllers as illustrated in Fig. 1. This sec-
tion briefly explains those controllers.

Upper Layer - Central Constraint Controller: Consid-
ering λ=

[
λ1 . . . λng

]⊤ as dual variables/lagrange multi-

pliers, the Lagrangian of Problem (1) is as follows.

L (λ,u,d) = J (u,d)+λ⊤g(u,d) (2)

We assign the central constraint controller to drive gi→ 0 by
manipulating the associated dual variables λi. This is pos-
sible as the constraint gi is the subgradient of the Lagrange
function w.r.t the dual variables λi (Boyd et al., 2008). This
strategy is valid when a constraint gi is active at optimal
steady-state operation.

Note that, according to the KKT (Karush-Kuhn-Tucker)
conditions (complementary slackness and dual feasibility),
λi ≥ 0 must hold for inequality constraints in problem (1).
This requirement is ensured by using a max operator (Dirza
et al., 2021).

This structure indicates that the presence of a central con-
straint controller enables automatic active constraint chang-
ing. Thus, this method is flexible in the presence of active
constraints changing.

Lower Layer - Gradient Controller: Given eq. (2) and
estimated steady-state gradient of cost and constraint, then
the gradient of the Lagrangian function is as follows.

∇uL(u,d,λ) = ∇uJ+∇
⊤
u gλ (3)

As can be seen in eq. (3), the gradient of the Lagrangian is a
function of Lagrange multipliers.

According to François et al. (2005), it is necessary
to control the gradient of the Lagrangian function to 0
(∇uL(u,d,λ)→ 0) to satisfy the stationary condition of the
necessary condition of optimality (NCO). Assuming that the
optimal solution exists, we can consider the gradient of the
Lagrangian function as self-optimizing controlled variables,
and use the gradient controllers to drive ∇uL(u,d,λ)→ 0.

Primal-Dual in Interactive Systems

To understand an interactive system in the context of
Primal-Dual approach, consider the linearized gain matrix G
from u to ∇uL .

∇uL = Gu (4)

To be more precise,
∇uL(1)

...

...
∇uL(nu)

=


G1,1 G1,2 . . . G1,nu
G2,1 G2,2 G2,nu

...
. . .

...
Gnu,1 Gnu,2 . . . Gnu,nu




u1
...
...

unu


In the case of decomposed (decoupled) systems, Gi, j = 0

for i ̸= j. It means that the non-diagonal element of matrix G
is zero or at least close to zero for weakly interactive systems,
and we can use single-loop controllers (e.g. I-controllers) to
drive ∇uL(i) to zero using the pairing ∇uL(i)←→ ui.

In the case of interactive systems, the non-diagonal ele-
ments of linearized gain matrix G are non-zero, and therefore
the pairing is not obvious anymore.

One possible method to select the pairing in the gradient
controllers layer is based on Relative-Gain-Array (RGA) as
used by Dirza and Skogestad (2022c). However, this may



require a dynamic model and in many cases a good pairing
simply does not exist.

Alternative Strategy: Equation Solver
In this paper, we instead consider a general strategy using

an equation solver to find u such that ∇uL̂
(
u, d̂,λ

)
= 0 as

shown in Fig. 2.
We formulate the equation solver as a steady-state

optimization problem that drives each element of vector
∇uL̂

(
u, d̂,λ

)
to zero. This strategy assumes that the decision

variable, u, still explicitly appears in this function. This as-
sumption is satisfied for our case study. Therefore, we define
the objective function as a norm of the vector ∇uL̂

(
u, d̂,λ

)
.

This results in the following (unconstrained-) optimization
problem,

minu ∥−∇uL̂
(
u, d̂,λ

)
∥ (5a)

where ∇uL̂ (u,d,λ) is the estimated gradient of Lagrange
function that can be obtained from eq. (3).

Given λ, estimated differential state, x̂, and estimated dis-
turbance, d̂, we solve unconstrained problem (5) in order to
obtain the calculated optimal input u⋆.

Remark 1: To estimate the steady-state gradients in (3),
which is now inside the equation solver, we use the model-
based gradient estimation framework (see Srinivasan et al.
(2011)).
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Figure 2: Block diagram of the primal-dual scheme with an
equation solver and input filter in the lower layer.

Input filter: In order to ensure a smooth (not too aggres-
sive) implemented input, u, we suggest to use a first-order
input filter combined with input rate limiter as follows,

u(k) = u(k−1)+Ku (∆u(k)) (6)

where ∆umin ≤ Ku∆u(k) ≤ ∆umax, ∆u(k) = u⋆ (k) −
u(k−1), the diagonal matrix Ku < I is the filter gain. Note
that Kui = 1/(1+τ fi/∆t), where τ fi is the filter time constant,
and ∆t is the sampling time. For the case with relatively mild

disturbance, the input rate limiters may not be necessary. The
input filter may be needed to achieve smooth changes of the
inputs to the plant. It may also be needed to achieve closed-
loop stability of the system because of the feedback from the
dynamic plant to the equation solver through the estimator
block.

Case Study
In this section, we apply both approaches to a continu-

ously stirred tank reactor (CSTR) used in Economou et al.
(1986), and Jäschke and Skogestad (2011). This CSTR has
a reversible exothermic reaction A ⇋ B. A system of cou-
pled ordinary differential equations model the process (i.e.,
Reactant mass balance, Product mass balance, and Energy
balance, respectively):

dCA

dt
= f1(x,u,d) =

F
V
(CA,in−CA)− r (7)

dCB

dt
= f2(x,u,d) =

F
V
(CB,in−CB)+ r (8)

dT
dt

= f3(x,u,d) =
F
V
(Tin−T )+

−∆Hrx

ρcp
r (9)

The states x, which are CA, CB, and T denote the concentra-
tions of the two components in the reactor and the reactor
temperature, whereas the independent variables CA,in, CB,in,
Tin and F are the inlet concentrations, the feed inlet reac-
tor temperature, and the feed rate. Further, V is the reac-
tor volume, −∆Hrx is the reaction enthalpy, ρ is the density,
and cp is the heat capacity. The reaction rate r is defined by

r = k1CA−k2CB, where k1 =C1e−
E1
RT and k2 =C2e−

E2
RT ,

Moreover, C1 and C2 are the Arrhenius factors for the reac-
tion constants k1 and k2. Further, E1 and E2 are the activation
energy, and R is the ideal gas constant.

This process has two MVs (primal variables), the inlet
temperature and the feed rate u = [u1 u2]

⊤ = [Tin F ]⊤. The
expected disturbances are the inlet concentration of the two
components d = [d1 d2]

⊤ = [CA,in CB,in]
⊤. The objective of

this CSTR operation is to maximize the throughput rate F
and the product concentration CB while minimizing the heat-
ing cost associated with the inlet temperature Tin. For this
process, we have two constraints (ng = 2), that are associ-
ated with maximum reactor temperature T max, and minimum
product concentration Cmin

B . The steady-state optimization
problem is formulated as,

min
Tin,F

J =−F− pcBCB +(pTin Tin)
2 (10a)

s.t. g1 :
T

T max −1≤ 0, (10b)

g2 : 1− CB

Cmin
B
≤ 0 (10c)

where pcB is 2.009, and pTin is 1.657×10−3.
The gradient of the Lagrangian function of problem (10)

is as follows.

∇uL =

[
−pcB∇TinCB +2pTinTin
−1− pcB ∇FCB

]
+

[
T max−1

∇Tin T −Cmin
B
−1

∇TinCB

T max−1
∇F T −Cmin

B
−1

∇FCB

][
λ1
λ2

] (11)



where λ1 and λ2 are Lagrange multipliers associated with
constraint g1 and g2, respectively. We see that the inlet
temperature (u1 = Tin) appears explicitly in (11) but it may
seem that the expression is independent of the throughput
rate (u2 = F). However, it actually appears in expressions

for the gradients, for example, ∇Tin T = F
V

(
∂ f3
∂T

)−1
. Thus, it’s

possible to solve ∇uL = 0 with respect to u using an equation
solver.

As disturbance, the inlet concentration of component A
CA,in varies in the range 0.28 to 0.42 mol/L, and the inlet con-
centration of component B CB,in varies in the range 0.0253 to
0.0493 mol/L. For this system, we have at most 4(2ng) con-
straint regions (but only two appear for the disturbances con-
sidered): Fully unconstrained (never), Only g1 active (never),
Only g2 active (R-I), and both g1 and g2 are active (R-II).

For the purpose of this work, we compare the perfor-
mance of the following approaches:

• C1: Steady state optimization solver assuming known
disturbances and constraint values (baseline).

• C2: Primal-Dual with PI Feedback control in the
lower/gradient layer.

• C3: Primal-Dual with Equation solver in the
lower/gradient layer.

To obtain the ideal steady-state optimal solutions as the
baseline (C1), we solve the ’whole’ steady state optimization
problem (10) at every seconds. We assume that the distur-
bances are perfectly known in this approach, making it unre-
alistic in practice.
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Figure 3: Control structure based on RGA-based pairing,
where the gradient controllers has off-diagonal pairing. Red
lines and blocks represent controllers, logic and information
that belong to Central Constraint Controller(s). Blue lines
and blocks belong to Gradient Controller(s).

To solve problem (10) using Primal-Dual approach, the
upper (slow) feedback control layer computes the dual
variables (Lagrange multipliers) whereas lower (fast) layer
should find the primal variable u which make ∇uL = 0 in
(11). As discussed, this may be done using feedback control

or equation solver. We first consider the use of two single-
loop feedback controllers. The system is interactive, and
from RGA analysis (Dirza and Skogestad, 2022b), it turns
out that we need to use the off-diogonal pairing. Fig. 3
shows the resulting control structure, where ∇u1 L ←→ u2
and ∇u2 L ←→ u1, is used to drive the system to the steady-
state optimal solution. Appendix A provides the detail of
both central constraint controllers and gradient controllers
used in this approach. To summarize, we find that the pairing
in the gradient controllers layer is not obvious, and it may be
time consuming if we have large numbers of possible pairing.

To obtain ∇uL = 0 in (11) with the Equation Solver (C3),
we use the norm of the gradient of Lagrange function (11) as
the objective function of the unconstrained steady-state op-
timization problem (5). To obtain implemented input, we
use an input filter with ∆t = 1 seconds and Kui = 0.01 cor-
responding to τ fi = 99 seconds. In this case study, we do
not use any input rate limiter as we assume a relatively mild
disturbance.

We use an Extended Kalman Filter (EKF) with aug-
mented differential states and parameters/disturbances in the
(local-) dynamic estimator (Simon, 2006). To estimate the
steady-state gradients in (3), we use the model-based gradi-
ent estimation framework proposed in Krishnamoorthy et al.
(2019). PI controllers are tuned using the SIMC (Simple In-
ternal Model Control) tuning method introduced by Skoges-
tad (2003). The local gradient controllers of C2, and the cen-
tral constraint controller of both C2 and C3 are designed with
a sampling time of 1 second.

The plant simulator is developed using the CasADi ver.
3.5.1 toolbox (Andersson et al. (2019)) in MATLAB R2019b,
and is simulated using the IDAS integrator. The resulting
NLP problems, i.e., problem (10) and (5), are solved using
IPOPT v3.12.2. The simulations are performed on a 2.11
GHz processor with 16 GB memory for 80 minutes (4800 sec-
onds) simulation time.

Fig. 4 compares the simulation results of the three ap-
proaches. This result indicates that both Primal-Dual with
Feedback control (C2) and Primal-Dual with Equation solver
(C3) can reach the optimal steady-state solution, and their
trajectories are very similar. This similarity also leads to sim-
ilar objective trajectories shown in Fig. 5. Therefore, the
accumulated cost is also very similar, i.e., 31034.30 [price
unit] for C2 and 31034.36 [price unit] for C3. These results
confirm that both Primal-Dual with Equation solver (C3) and
Primal-Dual with Feedback control (C2) obtain similar per-
formance in handling a (highly-) interactive system such as
CSTR in this work.

Table 1: Average Computation Time
Approaches Comp. Time [Sec]
Full optimization solver (C1) 4.4807×10−2

Primal-Dual-Feedback control (C2) 0.2406×10−2

Primal-Dual-Equation solver (C3) 1.4354×10−2

Table 1 depicts the average computation of each approach
we consider. This result shows that the use of equation solver
(C3) may need more computation time to provide the optimal



Figure 4: Comparison of Primal-Dual with Feedback control (C2), Primal-Dual with Equation Solver (C3), and Ideal Steady
state Optimal Solutions (C1). The constraints are compared on the top plots. The associated dual variables are compared
on the middle plots. The primal variables (implemented inputs) are compared on the bottom plots.

input, u⋆, than the use of feedback control (C2). However, it
is still much faster than solving the full optimization problem
(C1). This happens because solving an (unconstrained-) op-
timization problem is usually easier than solving constrained
optimization problem.

Discsussion
The main advantages of solving the equations using feed-

back controllers (C2) are simpler implementation and shorter
computational times. The I-controllers also do the filtering
of the input which needs to be added when the equations are
solved numerically (C3). However, the use of feedback con-
trollers (C2) is less general as it does not work for highly
interactive systems because we may get instability because
of changes in the sign of the gain (as may be identified by
negative steady state RGA elements). For weakly interac-
tive systems, where the expressions for ∇uL are decoupled or
weaky coupled, we may also use local solvers for the equa-
tions ∇uL = 0. This may allow for the subsystems being
optimized independently and with different rates. This may
have significant advantages in practical implementations.

In terms of convergence, a nice theorem from Arrow et al.
(1958) proves the convergence of the proposed approach for
the equality constraint case when the Lagrangian function L
is strictly convex in u. If L is not strictly convex, for exam-
ple J depends linearly on the input u, the approach with an
equation solver will not work if the resulting gradient equa-
tions (3) do not depend explicitly on u. In such cases we may
sometimes use a trick, for example, adding the square of the
constraint to the Lagrange function Krishnamoorthy (2021).
If we instead use a controller in the lower layer, such tricks
may not be necessary as we have found numerically in other
case studies Dirza et al. (2021).

Conclusion
In this paper, we compares the primal-dual approach with

the use of equation solver for the unconstrained part (problem
(5)) with the primal-dual with simple feedback controllers
for the unconstrained part (gradient controllers). The prob-
lem with using simple feedback controllers is that the ex-
pected diagonal pairing is not necessarily the best, In fact,
for the CSTR case study we found that we have to use the
off-diagonal pairing in order to avoid pairing on negative
steady-state RGA-values. The general strategy with the use
of equation solver for the unconstrained part plus a simple
dynamic filter is therefore recommended for interactive pro-
cesses. The advantage of the general strategy compared to
solving the full optimization problem is first that the con-
straints maybe controlled in the upper layer, without needing
to use and update the model. Second, the computation time
can be significantly shorter.
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Figure 5: The cost comparison of Primal-Dual with Feed-
back control (C2), Primal-Dual with Equation solver (C3),
and Ideal Steady state Optimal Solutions (C1).
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Jäschke, J. and S. Skogestad (2011, 12). NCO tracking and
self-optimizing control in the context of real-time opti-
mization. Journal of Process Control 21(10), 1407–1416.

Krishnamoorthy, D. (2021). A distributed feedback-based
online process optimization framework for optimal re-
source sharing. Journal of Process Control 97, 72–83.

Krishnamoorthy, D., E. Jahanshahi, and S. Skogestad (2019,
1). Feedback Real-Time Optimization Strategy Using
a Novel Steady-state Gradient Estimate and Transient
Measurements. Industrial & Engineering Chemistry Re-
search 58(1), 207–216.

Krishnamoorthy, D. and S. Skogestad (2022, 2). Real-Time

Optimization as a Feedback Control Problem - A Review.
Computers & Chemical Engineering, 107723.

Morari, M., Y. Arkun, and G. Stephanopoulos (1980, 3).
Studies in the synthesis of control structures for chemi-
cal processes: Part I: Formulation of the problem. Process
decomposition and the classification of the control tasks.
Analysis of the optimizing control structures. AIChE Jour-
nal 26(2), 220–232.

Rantzer, A. (2009). Dynamic dual decomposition for dis-
tributed control. In 2009 American Control Conference,
pp. 884–888.

Simon, D. (2006). Optimal State Estimation: Kalman, H
Infinity, and Nonlinear Approaches. John Wiley and Sons.

Skogestad, S. (2003). Simple analytic rules for model reduc-
tion and PID controller tuning. Journal of Process Con-
trol 13(4), 291–309.

Srinivasan, B., G. François, and D. Bonvin (2011). Compar-
ison of Gradient Estimation Methods for Real-time Op-
timization. In E. N. Pistikopoulos, M. C. Georgiadis, and
A. C. Kokossis (Eds.), 21st European Symposium on Com-
puter Aided Process Engineering, Volume 29 of Computer
Aided Chemical Engineering, pp. 607–611. Elsevier.

Uzawa, H. (1960). Walras’ tatonnement in the theory of ex-
change. The Review of Economic Studies 27(3), 182–194.

Appendix A. Controllers

For central constraint controllers (CCC), we consider the fol-
lowing I-controllers for i = 1,2,

λ
k+1
i = max

[
0,λk

i −
1

Kλiτλi

gi

]
(12)

For gradient controllers (GC), we consider the following I-
controllers.

uk+1
1 = uk

1−
1

Ku1τu1

∇u2 L
(
u, d̂,λ

)
(13)

uk+1
2 = uk

2−
1

Ku2τu2

∇u1 L
(
u, d̂,λ

)
(14)

where λ=
[
λ1 λ2

]⊤. Further, Ku1 ,Ku2 ,Kλ1 and Kλ2 are the
step response gains, and τu1 ,τu2 ,τλ1 and τλ2 are the desired
time constants (tuning parameters). Table 2 provides the val-
ues we use in this case study.

Table 2: Controllers Parameters

Parameters CCC 1 CCC 2 GC 1 GC 2
Kλ1 Kλ2 Ku1 Ku2

Gains −189.9965 0.0002 −0.1411 −0.1437
τλ1 τλ2 τu1 τu2

Time constant 40 40 1 1


