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Abstract— When oil is produced from a reservoir, a pressure
gradient is introduced throughout the formation. Such pressure
gradient can induce upward and downward movement of water
and gas, respectively, near producing wells. These phenomena,
known as coning, can significantly impact well productivity
and overall reservoir efficiency. To mitigate coning during oil
production, wells can be shut-in for periods of time to raise
the gas-oil contact. This paper proposes an optimization model
for oil production under gas-coning conditions to maximize
cumulative oil subject to gas processing capacity constraints.
The model combines nonlinear equations that predict the gas-
oil ratio (GOR) with binary decisions on when to shut-in or
bring back online a given well.The resulting model is a mixed-
integer nonlinear program (MINLP) that is too challenging to
solve for commercial solvers. In order to solve the problem
we present a mixed-integer linear formulation obtained by
piece-wise linearizing the nonlinear functions, thereby allowing
the use of integer-programming algorithms and state-of-the-art
mixed-integer linear programming (MILP) solvers.

I. INTRODUCTION

Well-cycling is an operational strategy to increase oil
production in wells that cone gas or water [13]. Coning
is an undesirable and unavoidable condition where gas cap
gas or bottom water infiltrates the well and reduces oil
production [6]. During gas coning, the gas-oil contact near
a production well is drawn downwards as pressure near the
well decreases. When sufficient oil has been produced for
the gas-oil contact to reach the top of the producing interval,
higher gas-oil ratios (GORs) are observed. Shutting-in the
well allows pressure near the well to increase, the gas-oil
contact to flatten, and results in increased oil rates for a
period of time after the well is brought back into operation
[11]. Similar behavior is observed for water and the water-oil
contact.

There are potentially many wells in a field. The well
cycling problem answers the question of how to schedule
the shut-in periods for every well in an effective manner. An
optimal schedule maximizes oil production while satisfying
operational constraints. In general, it is undesirable to shut-in
a well for long periods of time and not all wells need to be
shut-in. Also, subsets of wells may not be shut-in together at
the same time. Moreover, every well behaves differently, with
different recovery rates and different operating conditions.
Hence, to determine an optimal cycling schedule it is impor-
tant to develop an optimization strategy that: predicts well
rate behavior under coning effects, considers binary (yes/no)

decisions for when, and decides for how long to shut in a
well given all combinations of wells in the field.

An extensive amount of research has been focused on
developing models for predicting oil flow rates through wells
[10], [8], [14], [22], [12], [1], [20]. Muskat [15] pioneered a
model for predicting gas coning and GOR. His concepts were
later extended to include gas and oil production variations
[14]. Thereafter in 1954, Gilbert et. al. [8] developed one
of the most popular correlations for estimating liquid flow
rates through a choke. The correlation was also extended
in subsequent studies and adaptations have been proposed
in [17], [2], [16], [19]. More recently, a different line
of research has applied artificial intelligence and machine
learning techniques to predict oil rate for high GOR wells
[12]. Also recently, the work of Togudu-Hosseini et. al.
proposed using genetic algorithms for the estimation of gas-
oil ratios [7].

While there has been significant effort to develop models
for the prediction of flow rates in oil wells and a great
variety of strategies have been proposed, the development
of optimization models in this space remains considerably
challenging [11], [21], [13], [4]. One of the main challenges
for incorporating such predicting models within an optimiza-
tion framework arises from the fact that most, if not all,
are nonlinear, non-convex models [6] . Compared to related
literature for prediction/forcasting, very few publications are
available for well cycle optimization. This can be attributed
to the fact that solving the well cycling problem requires
global optimization algorithms, capable of handling binary
(yes/no) decisions together with nonlinear expressions that
describe coning phenomena.

In this paper, we present a mixed-integer, piecewise-linear
model for solving the well cycling problem. The model
considers Gilbert-like expressions for the prediction of oil
rates together with correlations for well GOR. Since those
correlations are nonlinear, we introduce additional binary
variables to discretize time and avoid nonlinearity. We also
use a standard piecewise linearization technique to discretize
GOR and approximate bilinear terms that arise in the calcu-
lation of gas rates.

The main contribution of this work is the inclusion of
Gilbert-like GOR expressions within a mixed integer frame-
work. Doing so allows the use of powerful, commercial
MILP solvers such as CPLEX [5] and Gurobi [9] for solving



the well cycling problem. A second contribution of this
work is the demonstration of the numerical tractability of
the approach that, despite combinatorial complexity with
thousands of binary variables, solves in a matter of minutes.

The paper is structured as follows: Section II presents
the mathematical symbols used throughout the document.
In Section III we present two mixed-integer optimization
formulations for the well cycling problem. This is followed
by a case study and numerical results in Section IV. Finally,
Section V closes the paper with concluding remarks and
directions of future work.

II. NOMENCLATURE

The following are the key mathematical symbols used
throughout the paper.

Sets

W is the set of wells (index w)
T is the set of time periods (index t)
Mw is the set of operating modes for well w (index m)
Hw ⊆Mw is the set of GOR healing modes for well w
Gw ⊆Mw is the set of GOR growth modes for well w
Aw,m ⊆ Mw is the set of modes which mode m can
switch to for well w
Qw,m is the set of potential active times for mode m
for well w (index q)
Pw is the set of discretization points for GOR piece-
wise linearization for well w (index p)

Parameters

yw,m is a binary parameter that indicates if mode m
for well w is active at the beginning of the planning
horizon
aw is the is the number of time periods that well w has
been active at the start of planning
Dw is a slope growth constant for well w
Cw is an intercept growth constant for well w
Bw is the healing rate constant for well w
Rw is a healing constant for well w
νw is a oil constant for well w
Pw is the head pressure for well w
CHKw is the choke level for well w
αw is a constant for oil rate calculation for well w
WCTw is the water cut for well w
γw is a constant for oil rate calculation for well w
THmax
w is the maximum number of consecutive time

periods well w can be active on healing
TGmax
w is the maximum number of consecutive time

periods well w can be active on growth
THmin
w is the minimum number of consecutive time

periods well w must be active on healing
TGmin
w is the minimum number of consecutive time

periods well w must be active on growth
x̂OIL
w,m,p ∈ R+ is the oil discretization value at discrete

point p for well w in mode m
x̂GAS
w,m,p ∈ R+ is the gas discretization value at discrete

point p for well w in mode m

x̂GOR
w,m,p ∈ R+ is the gas-oil ratio discretization value at

time t for well w in mode m

Variables

yw,m,t ∈ {0, 1} indicates if well w is active on mode
m at time t
zw,m,t ∈ {0, 1} indicates if well w switched to mode
m at time t
vw,m,t,q ∈ {0, 1} indicates if well w at time t has been
active in mode m for q consecutive time periods
zw,t ∈ [0, 1] indicates if there is a mode switch on well
w at time t
aw,t ∈ Z+ is the total active time of well w at time t
since last mode switch
xGOR0
w,t ∈ R+ is the initial gas-oil ratio at time t for well
w
xGOR
w,t ∈ R+ is the gas-oil ratio at time t for well w
xOIL
w,t ∈ R+ is the oil produced at time t for well w
xGAS
w,t ∈ R+ is the gas produced at time t for well w
x̃OIL
w,t ∈ R+ is the piece-wise linear approximation of oil

at time t for well w
x̃GAS
w,t ∈ R+ is the piece-wise linear approximation of

gas at time t for well w
uw,t,p ∈ [0, 1] is the piece-wise linear weight at time t
for well w at point p
sw,t,p ∈ {0, 1} is the piece-wise linear selector at time
t for well w at point p

III. PROBLEM FORMULATION

A. Well Cycling Models

We begin this work by presenting three models for es-
timating GOR, oil, and gas rates in vertical wells. The
GOR models are exponential and logarithmic correlations
that predict GOR values when wells are online or offline. For
wells that cone gas, GOR increases monotonically with time
on production. We call this operating mode GOR growth
mode. Figure 1 illustrates an example of a GOR growth
curve.

The shape of the curve is a function of a number of
operational parameters directly related to intrinsic well char-
acteristics including water cut, well head pressure, bottom
hole pressure, and choke level among many others. The shape
is also a function of operational variables such as online time
and initial GOR. Equation (1) describes the GOR growth
mode. There, the coefficient Dw and Cw are constants that
can be calibrated from field operational data. xGOR0

w is the
GOR at the time the well is brought online and τ is the the
time since the well was brought online.

rGOR
w (τ, xGOR0

w ) = (Dwx
GOR0
w +Cw) ln(τ + 1) + xGOR0

w (1)

Alternatively, when a gas coning well is taken offline,
GOR decreases monotonically with shut-in time. We call this
operating mode GOR healing mode. Equation (2) models
the GOR values in GOR healing mode. Note that, similar to
Equation (1), the GOR in GOR healing mode from Equation
(2) is a function of the operational variables xGOR0

w and τ ,
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Fig. 1: Typical GOR behavior after opening a well that cones
gas

and operational parameters (constant) Bw and Rw. Similarly,
in Equation (2), xGOR0

w represents the GOR at the time the
well was shut-down, and τ the time since last shut-down.
Figure 2 illustrates an example of a healing GOR curve.

rGOR
w (τ, xGOR0

w ) = xGOR0
w e(−Bwτ) +Rw(1− e(−Bwτ)) (2)
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Fig. 2: Typical GOR behavior after shutting-in a well that
cones gas

Focusing now on oil production, we propose using a
Gilbert-like surrogate model to determine the oil flow rate
when a well is online (i.e. growth). Based on Gilbert’s
formula [8], the oil flow rate is as a function of wellhead
pressure, choke size, water cut, and GOR.

rOIL
w (xGOR

w ) = νw
PwCHK

αw
w (1−WCTw)

(xGOR
w )γw

(3)

Similar to the GOR models, the constants νw, αw, and
γw are calibrated using field data. Finally, gas rate can be

computed as the product between GOR and oil rate.

rGAS
w (xGOR

w ) =
[
rOIL
w (xGOR

w )
]
xGOR
w (4)

It is important to note that, under the assumption of
constant water cut, oil and gas rates can be calculated
using the GOR of a well. Hence, when determining an
optimal well-cycling schedule, monitoring GOR values is
very important. The decisions on when to shut-in a well
and how long to keep it offline are driven by GOR values.
Intuitively, one may shut-in a well when it exhibits high
GOR values. However, when dealing with multiple wells,
each with its own scheduling constraints, and for a planning
horizon of several days, the decision of which wells to shut-in
becomes nontrivial and numerical optimization is required to
optimize production. In the next section we describe a mixed-
integer-nonlinear optimization model for optimal well-cycle
scheduling.

Note that a well can have multiple operating modes. That
is, a well can be modeled with a discrete number of curves
(1)-(3)with different values for Dw, Cw, Bw, Rw, νw, γw, αw
depending on operating conditions. For example, a well can
have three different growth curves for low, medium, and high
choke levels. Each curve can be calibrated separately based
on field data. In the next section, we refer to these different
operating curves as modes and we let the optimization model
determine which operating mode for a given shut-in cycle is
optimal for the well-cycling schedule.

B. Mixed-Integer Nonlinear Formulation

The primary decisions in the optimization problem are
when to shut-in and bring back online each well over the
planning horizon T. These decisions are modeled mainly by
the binary variables yw,m,t and zw,m,t. When well w is active
on a given mode m at time period t, yw,m,t takes a value of 1.
Similarly, when well w switches to a given mode m at time
period t, the variable zw,m,t takes a value of 1. Equations
(5)-(7) enforce that only one mode can be active at a given
time for each well and that each well can only switch to one
mode at a time.

∑
m∈Mw

yw,m,t = 1 (5)∑
m∈Mw

zw,m,t = zw,t (6)

zw,t ≤ 1 (7)
∀w ∈W, t ∈ T

When a well is active in a given mode, it must stay active
until there is a switch to an allowed mode. Switches of mode
can only happen when a mode goes from inactive to active.
This logic is enforced by Equations (8)-(10).



∑
m′∈Aw,m

zw,m′,t + yw,m,t ≥ yw,m,t−1 (8)

zw,m,t ≤ 2− yw,m,t−1 − yw,m,t (9)
zw,m,t ≤ yw,m,t (10)

∀w ∈W, t ∈ T,m ∈Mw

Minimum and maximum shut-in and online times can be
imposed with standard periodicity constraints presented in
Equations (11)-(14).

∑
m∈Gw

zw,m,t ≤
∑
m∈Gw

yw,m,t′ (11)

∀w ∈W, t ∈ T, t′ ≥ t+ TGmin
w∑

m∈Hw

zw,m,t ≤
∑
m∈Hw

yw,m,t′ (12)

∀w ∈W, t ∈ T, t′ ≥ t+ THmin
w∑

m∈Hw

t′≤t+TGmax
w∑

t′=t

yw,m,t′ ≥ 1 (13)

∑
m∈Gw

t′≤t+THmax
w∑

t′=t

yw,m,t′ ≥ 1 (14)

∀w ∈W, t ∈ T \ {0}

Every time a switch of mode occurs at a given well, the
appropriate surrogate model from Section III-A must be used
for calculating the GOR, oil rate and gas rate. Variables
zw,m,t and yw,m,t can be used to select the mode equations
within the optimization model. First, the zw,t variables are
used to update xGOR0

w,t which represents the initial GOR at
the time of the switch, note that this artificially introduced
variable xGOR0

w,t remains constant while a given mode is
active.

[
zw,t = 1

xGOR0
w,t = xGOR

w,t−1

]
∨
[

zw,t = 0

xGOR0
w,t = xGOR0

w,t−1

]
∀w ∈W, t ∈ T (15)

Note also that zw,t indicates if there was a switch in mode
which is enforced with Equation (16)

zw,t ≥ zw,m,t ∀w ∈W, t ∈ T,m ∈Mw (16)

Second, the zw,t variables can also be used to update the
mode activation time variable.

[
zw,t = 1
aw,t = 0

]
∨
[

zw,t = 0
aw,t = aw,t−1 + 1

]
∀w ∈W, t ∈ T (17)

Third, the yw,m,t variables indicate the appropriate surrogate
model to use to calculate GOR, oil, and gas values at a each
point in time for every well.

∨m∈Mw


yw,m,t = 1

xGOR
w,t = rGOR

w,m(aw,t, x
GOR0
w,t )

xOIL
w,t = rOil

w,m(xGOR
w,t )

xGAS
w,t = rGas

w,m(xGOR
w,t )


∀w ∈W, t ∈ T (18)

Equation (19) imposes a limit to the total gas production
below a given capacity threshold. Equation (20) determines
the total oil produced in the system.

∑
w∈W

xGAS
w,t ≤ Ft ∀t ∈ T (19)∑

t∈T

∑
w∈W

xOIL
w,t = xTOTAL OIL (20)

The last set of equations in the formulation are the initial
conditions imposed at the first time period of the planning
horizon.

aw,0 = aw (21)

xGOR0
w,0 = xGOR0

w ∀w ∈W (22)

yw,m,0 = yw,m ∀w ∈W,m ∈Mw (23)

To conclude this section, we summarize the optimization
formulation in Problem P-MINLP.

min xTOTAL OIL

s.t. Equation(5)− Equation(23)
(P-MINLP)

C. Mixed-Integer Piece-wise Linear Formulation

It is important to note that because of nonlinear GOR
expressions and the oil and gas rate calculations in (18),
the model can be significantly challenging to solve. Hence,
we propose a linear version of the model. Although the
GOR expressions in (1) and (2) are nonlinear, they can be
linearized with the help of time indicator variables vw,m,t,q .
Instead of keeping track of active time with variable aw,t
in Equation (17), index q can be used to determine the
active time for a given mode. By introducing binary variables
vw,m,t,q , we discretize time and model the rate expressions
for GOR as linear functions of GOR0.

∨q∈Qw,m


vw,m,t,q = 1

xGOR
w,t = rGOR

w,m(q, xGOR0
w,t )

xOIL
w,t = rOil

w,m(xGOR
w,t )

xGAS
w,t = rGas

w,m(xGOR
w,t )


∀w ∈W, t ∈ T,m ∈M (24)

The discretization of time is achievable by imposing
Equations (25)-(28).



∑
q∈Qw,m

vw,m,t,q = yw,m,t (25)

vw,m,t,0 = zw,m,t (26)
∀w ∈W,m ∈M, t ∈ T \ {0}

vw,m,t,q ≤ vw,m,t−1,q−1 + (1− yw,m,t) (27)
vw,m,t,q ≥ vw,m,t−1,q−1 − (1− yw,m,t) (28)

∀w ∈W, t ∈ T \ {0},Qw,m \ {0}

Unfortunately, nonlinearlity in the oil and gas rates can-
not be eliminated by simply discretizing time. For those
expressions, we propose using a piecewise linearization of
GOR. Note that once GOR is discretized with the piece-
wise linearization (29)-(35), both oil and gas rates can be
expressed in a linear fashion as function of the piecewise
linear GOR (with the oil discrete points can be computed
as x̂OIL

w,m,t = νw
PwCHK

αw
w (1−WCTw)

(x̂GOR
w,p)

γw
, and the gas discrete

points as x̂GAS
w,m,t = x̂OIL

w,m,tx̂
GOR
w,p ).

∑
p∈P

uw,t,px̂
GOR
w,p = xGOR

w,t ∀w ∈W,∀t ∈ T

(29)∑
p∈P

uw,t,p = 1 ∀w ∈W, t ∈ T

(30)∑
p∈P

sw,t,p = 1 ∀w ∈W, t ∈ T

(31)
uw,t,p ≥ 0 ∀w ∈W, t ∈ T, p ∈ P

(32)
uw,t,0 ≥ sw,t,1 ∀w ∈W, t ∈ T

(33)
uw,t,p ≥ sw,t,p + sw,t,p+1 ∀w ∈W, t ∈ T, p ∈ P \N

(34)
uw,t,N ≥ sw,t,N ∀w ∈W, t ∈ T

(35)

The selection of the appropriate piece-wise segment is
ensured with constraints (36) and (37).

x̃OIL
w,m,t =

{∑
p∈P uw,t,px̂

OIL
w,m,p m ∈ Gw

0 otherwise
(36)

x̃GAS
w,m,t =

{∑
p∈P uw,t,px̂

GAS
w,m,p m ∈ Gw

0 otherwise
(37)

∀w ∈W,m ∈M, t ∈ T

After piecewise linearization, Equation (18) is replaced by
Equation (38).

∨q∈Qw,m


vw,m,t,q = 1

xGOR
w,t = rGOR

w,m(q, xGOR0
w,t )

xOIL
w,t = x̃OIL

w,m,t

xGAS
w,t = x̃GAS

w,m,t


∀w ∈W, t ∈ T,m ∈M (38)

The linear formulation is summarized in Problem P-MILP.

min xTOTAL OIL

s.t. Equation(5)− Equation(15)
s.t. Equation(19)− Equation(38)

(P-MILP)

IV. NUMERICAL RESULTS

This section documents numerical results for a case study
with synthetic data. The system consists of four wells.
Associated with the wells are three operational modes:
one GOR healing mode, and two GOR growth modes.
The healing mode follows the surrogate model presented
in Equation (2). The first GOR growth mode follows the
surrogate in Equation (1)∗ and the second follows a constant
rate rGOR

w (t, xGOR0
w,t ) = xGOR0

w,t applicable when xGOR0
w,t ≥

−Cw/Dw.
The optimization horizon was set to 30 days and time

was discretized on a daily basis. For all wells the maximum
healing and growth times was set to 15 days (i.e. THmax

w ,
TGmax
w ). Note that the 15 days in growth may include

switching between GOR growth mode in (1) to constant
mode. The 15 days in healing do not allow switches since
only one healing mode was considered. Note, however, that
the MILP formulation is flexible to enabling multiple healing
modes (e.g. see Equations (13) and (14)).

In order to avoid symmetry and improve performance
within branch and bound iterations, a non-uniform GOR
discretization was implemented following (39) and (40). This
approach is particularly relevant given the implicit symmetry
of piecewise segments at the end of the logarithmic and
exponential curves.

∆x̂GOR
w,p =

(Max GORw −Min GORw)

2|Pw| − 1

(
2p−1

)
(39)

x̂GOR
w,p = x̂GOR

w,p−1 + ∆x̂GOR
w,p (40)

(P-MINLP) and (P-MILP) were implemented in AIMMS
[3] and BARON [18] and CPLEX [5] were used to solve
the MINLP and MILP, respectively. BARON failed to find a
feasible solution in a two hour time limit for the MINLP. For
the MILP formulation, however, CPLEX found an optimal
solution in 59.41 seconds. The optimality gap was 0.09%
and the size of the problem was 7278 variables (5603 integer
variables), and 25444 constraints.

Figures 3 and 4 present the oil rates and GORs of the
four different wells for a planning horizon of 30 days with

∗The equation was modified slightly to input time in days such that
rGOR
w (t, xGOR0

w,t ) = (DwxGOR0
w,t + Cw) ln(24t+ 1) + xGOR0

w,t
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Fig. 3: Oil Rates for the Set of Four Cycled Wells.

all wells starting in healing mode. For the solution of this
numerical example we observe the optimizer chooses to
cycle well 4 with a higher frequency since it can produce
significantly more oil than the other three wells.
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V. SUMMARY AND CONCLUSIONS

This paper investigated mathematical optimization of a
well-cycling schedule for wells with a high GOR. Surrogate
models for GOR, oil, and gas rates were introduced and dis-
cretized using the piecewise linearization strategy in Section
III. The resulting optimization model was a mixed integer
linear programming problem. The performance of the model
was evaluated on a system with four wells and a scheduling
horizon of 30 days. The primary contributions of this work
are:
• The introduction of exponential and logarithmic surro-

gate models for predicting GOR, oi,l and gas rates.
• The inclusion of growth and healing models within a

mixed-integer programming framework.

• The demonstration of numerical tractability of a MILP
formulation discretization of time and the piecewise
linearization of bilinear terms

Key areas of future work are the inclusion of uncertainty
in the surrogate models as well as the dependencies across
multiple wells. Here, we modeled the GOR of each well
independently from the operating conditions of surround-
ing wells. Incorporating dependency across wells introduces
coupling in the model and results in a more challenging
optimization. In both aspects of future work, the challenge is
to define more representative surrogate models while main-
taining optimization tractability. For validation, the solution
variables yw,m,t and zw,m,t obtained with CPLEX were fixed
in the MINLP and the problem was solved using BARON.
The solution in both cases was the same ensuring piecewise
linearization was an adequate approximation.
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VI. APPENDIX



A. MINLP Formulation

min
∑
t∈T

∑
w∈W

xOIL
w,t

s.t.
∑
m∈Mw

yw,m,t = 1 ∀w ∈W, t ∈ T∑
m∈Mw

zw,m,t = zw,t ∀w ∈W, t ∈ T∑
m′∈Aw,m

zw,m′,t + yw,m,t ≥ yw,m,t−1 ∀w ∈W, t ∈ T,m ∈Mw∑
m∈Gw

zw,m,t ≤
∑
m∈Gw

yw,m,t′ ∀w ∈W, t ∈ T, t′ ≥ t+ TGmin
w∑

m∈Hw

zw,m,t ≤
∑
m∈Hw

yw,m,t′ ∀w ∈W, t ∈ T, t′ ≥ t+ THmin
w

∑
h∈Hw

t′≤t+TGmax
w∑

t′=t

yw,h,t′ ≥ 1 ∀w ∈W, t ∈ T \ {0}

∑
g∈Gw

t′≤t+THmax
w∑

t′=t

yw,g,t′ ≥ 1 ∀w ∈W, t ∈ T \ {0}∑
w∈W

xGAS
w,t ≤ Ft ∀t ∈ T

zw,m,t ≤ yw,m,t ∀w ∈W, t ∈ T,m ∈Mw

zw,m,t ≤ 2− yw,m,t−1 − yw,m,t ∀w ∈W, t ∈ T,m ∈Mw zw,t = 1

xGOR0
w,t = xGOR

w,t−1
aw,t = 0

 ∨
 zw,t = 0

xGOR0
w,t = xGOR0

w,t−1
aw,t = aw,t−1 + 1

 ∀w ∈W, t ∈ T

∨m∈Mw


yw,m,t = 1

xGOR
w,t = rGOR

w,m(aw,t, x
GOR0
w,t )

xOIL
w,t = rOil

w,m(xGOR
w,t )

xGAS
w,t = rGas

w,m(xGOR
w,t )

 ∀w ∈W, t ∈ T

yw,m,0 = yw,m ∀w ∈W,m ∈Mw

aw,0 = aw ∀w ∈W
xGOR0
w,0 = xGOR0

w ∀w ∈W
yw,m,t, zw,m,t ∈ {0, 1} ∀w ∈W, t ∈ T,m ∈Mw

zw,t ∈ [0, 1] ∀w ∈W, t ∈ T
xGOR0
w,t , xGOR

w,t , x
OIL
w,t, x

GAS
w,t , aw,t ∈ R+ ∀w ∈W, t ∈ T

(41)



B. MILP Formulation

min
∑
t∈T

∑
w∈W

xOIL
w,t

s.t.
∑
m∈Mw

yw,m,t = 1 ∀w ∈W, t ∈ T∑
m∈Mw

zw,m,t = zw,t ∀w ∈W, t ∈ T∑
m′∈Aw,m

zw,m′,t + yw,m,t ≥ yw,m,t−1 ∀w ∈W, t ∈ T,m ∈Mw∑
m∈Gw

zw,m,t ≤
∑
m∈Gw

yw,m,t′ ∀w ∈W, t ∈ T, t′ ≥ t+ TGmin
w∑

m∈Hw

zw,m,t ≤
∑
m∈Hw

yw,m,t′ ∀w ∈W, t ∈ T, t′ ≥ t+ THmin
w

∑
h∈Hw

t′≤t+TGmax
w∑

t′=t

yw,h,t′ ≥ 1 ∀w ∈W, t ∈ T \ {0}

∑
g∈Gw

t′≤t+THmax
w∑

t′=t

yw,g,t′ ≥ 1 ∀w ∈W, t ∈ T \ {0}∑
w∈W

xGAS
w,t ≤ Ft ∀t ∈ T

zw,m,t ≤ yw,m,t ∀w ∈W, t ∈ T,m ∈Mw

zw,m,t ≤ 2− yw,m,t−1 − yw,m,t ∀w ∈W, t ∈ T,m ∈Mw

vw,m,t,0 = zw,m,t ∀w ∈W,m ∈M, t ∈ T \ {0}
vw,m,t,q ≤ vw,m,t−1,q−1 + (1− yw,m,t) ∀w ∈W, t ∈ T \ {0},Qw,m \ {0}
vw,m,t,q ≥ vw,m,t−1,q−1 − (1− yw,m,t) ∀w ∈W, t ∈ T \ {0},Qw,m \ {0}∑
q∈Qw,m

vw,m,t,q = yw,m,t ∀w ∈W,m ∈M, t ∈ T \ {0}

∑
p∈P

uw,t,px̂
GOR
w,p = xGOR

w,t ∀w ∈W,∀t ∈ T∑
p∈P

uw,t,px̂
OIL
w,m,t = x̃OIL

w,m,t ∀w ∈W,m ∈M, t ∈ T∑
p∈P

uw,t,px̂
OIL
w,m,tx̂

GOR
w,p = x̃GAS

w,m,t ∀w ∈W,m ∈M, t ∈ T∑
p∈P

uw,t,p = 1 ∀w ∈W, t ∈ T∑
p∈P

sw,t,p = 1 ∀w ∈W, t ∈ T

uw,t,p ≥ 0 ∀w ∈W, t ∈ T, p ∈ P
uw,t,0 ≥ sw,t,1 ∀w ∈W, t ∈ T
uw,t,p ≥ sw,t,p + sw,t,p+1 ∀w ∈W, t ∈ T, p ∈ P \N
uw,t,N ≥ sw,t,N ∀w ∈W, t ∈ T[

zw,t = 1

xGOR0
w,t = xGOR

w,t−1

]
∨
[

zw,t = 0

xGOR0
w,t = xGOR0

w,t−1

]
∀w ∈W, t ∈ T

∨q∈Qw,m


vw,m,t,q = 1

xGOR
w,t = rGOR

w,m(q, xGOR0
w,t )

xOIL
w,t = x̃OIL

w,m,t

xGAS
w,t = x̃GAS

w,m,t

 ∀w ∈W, t ∈ T,m ∈M

yw,m,0 = yw,m ∀w ∈W,m ∈Mw

xGOR0
w,0 = xGOR0

w ∀w ∈W
yw,m,t, zw,m,t ∈ {0, 1} ∀w ∈W, t ∈ T,m ∈Mw

zw,t ∈ [0, 1] ∀w ∈W, t ∈ T
xGOR0
w,t , xGOR

w,t , x
OIL
w,t, x

GAS
w,t ∈ R+ ∀w ∈W, t ∈ T

(42)


