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Abstract
Digital twins for industrial process development are quickly gaining popularity in the pharmaceutical
industry as an effective alternative to expensive and time-consuming physical experiments. This work
describes the digital model element of a digital twin of High-Performance Liquid Chromatography
(HPLC). The model is based on a mechanistic model implemented in gPROMS ModelBuilder and
integrated into the MATLAB environment. Unlike other models reported in the literature, our model
comprises a more accurate prediction of the injection profile and can predict the elution behaviour for
a wide range of HPLC conditions given a reduced number of experiments. The model is compared
against experimental data performed to separate a mixture of eight small drug molecules on a C18
column, in gradient elution mode, and under nine different operative conditions (i.e. 3 temperatures ×
3 solvent gradient). We will show that by considering only two isotherm parameters for each molecule,
the digital model can accurately predict the retention behaviour of the eight analytes. Furthermore, it
facilitates HPLC in-silico method development, showcased here via method time minimization through
a dynamic solvent strength gradient. The proposed model is intended to be integrated into a digital twin
architecture for offline decision support and real-time optimization.
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Introduction

High-Performance Liquid Chromatography (HPLC) is
one of the most employed techniques in pharmaceutical and
biopharmaceutical industries for purification of a variety of
particles ranging from small molecules to large molecular
weight compounds such as peptides and proteins. Since the
very early stages of computing, the development of HPLC
methods has usually been achieved in-silico (i.e. by means
of computer simulations), thus reducing the time and costs
required for physical experiments (Chen et al., 2020). How-
ever, even though computational HPLC has been widely ex-
plored, in-silico HPLC methods have not yet reached their
full potential (Besenhard et al., 2021).

The most relevant methods used for predicting reten-
tion times and developing in-silico HPLC methods are the
linear solvation energy relationships (LSER) (Wang et al.,
1999) and the quantitative structure retention relationships
(QSRR) (Héberger, 2007). These methods are based on
semi-empirical models, statistical analysis and/or machine

learning algorithms, and thus are limited to describing the
restricted number of experimental settings and operative con-
ditions considered for their development. Attractive alterna-
tives are mechanistic and hybrid models that allow assessing
a wide range of operative conditions, and thus can be used for
developing digital twins, i.e., virtual representations of real
processes integrated either periodically (offline digital twin)
or in real-time (online digital twin) with the physical system
(Rosen et al., 2015; Kritzinger et al., 2018).

Herein, we present the first step towards a digital model
for an analytical reversed-phase HPLC that mimics an ex-
perimental HPLC facility. The digital model consists of a
transport model, an empirically-based injection profile that
accounts for the residence time distribution of the analytes
in the tubing system upstream of the chromatographic col-
umn, and a linear (in concentration) adsorption isotherm that
accounts for the variation of temperature and gradient time.
The model is fitted against experimental retention times ob-
tained by separating a mixture of 8 active pharmaceutical in-
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gredients in gradient elution mode and under 9 different op-
erative conditions (i.e. 3 temperatures and 3 gradient times).
With the estimated isotherm parameters, the in-silico HPLC
model is able to predict reasonably well the residence times
of the molecules under investigation and thus, it can be used
to gain insight into the separation mechanism and to sup-
port design decisions at production scale. As an example,
this work will show that performing a simple solvent gradi-
ent optimization allows the analysis times to be significantly
shortened.

This work is organized as follows. In the methodology
section, we report the mechanistic model implemented in
gPROMS ModelBuilder and describe the injection profile de-
signed in MATLAB. We further discuss parameter estima-
tion and model optimization. The results and discussion sec-
tion deals with the description of the benchmark experimen-
tal study and reports the outcomes of parameter estimation,
sensitivity analysis, and gradient method optimization. Fi-
nally, we draw some conclusions and discuss possible future
extensions.

Methodology
To replicate the real system, we equipped the model with:

i) a transport model to account for the movement of each
analyte through the column, ii) an adsorption isotherm that
describes the equilibrium between the mobile and stationary
phase for each analyte, taking into account the impact of both
temperature and solvent strength, and iii) a new and more ac-
curate prediction for the injection profile. The model is then
used for in-silico HPLC model development and optimiza-
tion.

Chromatography model
Several transport models have been developed for mod-

eling chromatographic separations such as the ideal model,
the equilibrium dispersive model (EDM), the lumped kinetic
model, and the general rate model. Furthermore, each model
can be solved for different equilibrium adsorption isotherms
(Guiochon et al., 2006). Since this work targets purification
of small APIs at low concentrations under conditions where
the adsorption process and the mass transfer process between
mobile and stationary phases is fast, the EDM with linear
isotherm is employed.

In the EDM, the mobile and stationary phases are as-
sumed to be constantly at equilibrium and all the non-
equilibrium contributions (such as mass transfer resistances)
are lumped into an apparent axial dispersion coefficient, Da,i.
If no reactions take place in the chromatographic column, the
chromatographic process is isothermal and isobaric, and the
physicochemical properties of the packing do not depend on
the radial position within the column, the mass balance equa-
tion of the mobile phase reads:

∂Ci

∂t
+F

∂qi

∂t
+u

∂Ci

∂z
= Da,i

∂2Ci

∂z2 (1)

where Ci and qi are the local concentrations of the analyte in
the mobile and stationary phases, respectively, u is the cross-
sectional average mobile phase velocity, z is the axial coor-
dinate and F is the solid phase ratio defined as F ≡ (1−ε)/ε

being ε the total porosity. At the beginning of a chromato-
graphic run, the chromatographic column contains mobile
and stationary phases in equilibrium but it is empty of feed
components (Guiochon et al., 2006). Thus, the initial condi-
tions correspond to:

Ci(z,0) = 0 (2)

for 0 < z < L. Regarding the inlet and outlet boundary condi-
tions, we assigned the Danckwerts boundary conditions that
are written respectively as (Danckwerts, 1953):

Ci(0, t)−
Da,i

u

(
∂Ci(0, t)

∂z

)
=C0,i(t) (3)

∂Ci(L, t)
∂z

= 0 (4)

where C0,i is the analyte concentration in the feed.

Adsorption isotherm
When the concentration of the analytes is very small, as

it is in analytical HPLC, the transport model can be coupled
with a linear adsorption isotherm, according to which the
concentrations of each analyte in the solid phase is propor-
tional to that in the mobile phase (Guiochon et al., 2006):

qi = aiCi (5)

The slope of the linear isotherm, ai, is the Henry’s constant
of adsorption and, multiplied by the volumetric phase ratio,
gives the retention factor of component i under linear condi-
tions:

ki ≡ aiF (6)

The latter depends, among other things, on solvent
strength/mobile phase composition, temperature, and pH
value.

To account for mobile phase composition, we adopt the
linear solvent strength (LSS) theory introduced by Snyder
et al. (1979). According to the LSS theory, the variation of
the retention factor with the volume fraction of the organic
modifier, ϕ, is described with the following linear relation-
ship:

lnki(ϕ) = lnk0,i −SS,iϕ (7)

where k0,i is the (extrapolated) retention factor at infinite di-
lution, and SS,i is a constant coefficient that is characteristic
of a given analyte-mobile phase system and that accounts for
the organic solvent elution strength.

To take into account the effect of temperature on the re-
tention, we resort to the van’t Hoff theory of Gibbs free en-
ergy ∆G0

i (Melander et al., 1978):

lnki(T ) =−
∆H0

i
RT

+
∆S0

i
R

+ lnF (8)

where ∆H0
i is the standard enthalpy of adsorption, ∆S0

i is the
standard entropy, R is the universal gas constant, and T is the
temperature in Kelvin.

If we assume that the effects of temperature and mobile
phase composition on the retention behaviour of an analyte



are independent of each other, the retention factor can be ap-
proximated as (Jandera et al., 2010):

ki(ϕ,T ) ∝ exp
(

C′
T,i

T

)
exp

(
−S′S,iϕ

)
(9)

The adsorption isotherm parameters C′
T,i and S′S,i appearing in

Eq. 9 have to be determined using additional models or ex-
periments. Our digital model is compared with a real HPLC
facility and the unknown isotherm parameters are determined
via parameter estimation.

Injection profile
The dispersion of the sample related to the part of the

system upstream of the chromatographic column can be ac-
counted for with an accurate prediction of the injection pro-
file. However, developing an accurate injection profile rep-
resents one of the biggest challenges in modelling a chro-
matographic process. For this reason, in the literature, the
injection profile is often incorrectly implemented as a rect-
angular pulse (Samuelsson et al., 2010). In developing our
model, instead we consider an empirically-based injection
profile that accounts for the residence time distribution of
the sample through injection-loop tubing volumes and heat
exchangers. The obtained injection profile has a sharp front
followed by a tailing decay. Giving a detailed description of
the injection profile is out of the aims of this work.

In-silico HPLC model
This work represents the first step towards an accurate

in-silico HPLC model. The model has been developed in
gPROMS ModelBuilder and is called as a single function in-
side the MATLAB workspace. This allows accessing a wide
range of parameter estimation tools and optimization strate-
gies.

To replicate the real system, we use the model for pa-
rameter estimation by fitting the experimental elution times.
The model formulates parameter estimation in Matlab as an
optimization problem. As minimization method, it uses the
routine fmincon(), which is a Newton-like gradient-based
method. The objective function, which aims to minimize
the mean of the percent relative errors done in predicting the
elution times of each component under n different operative
conditions, reads:

Ob j =
1
n

n

∑
i=1

(
|tR,i − t̂R,i|

tR,i
·100

)
(10)

where tR,i and t̂R,i are experimental and simulated retention
times of the ith operative condition, respectively. Note that,
to perform parameter estimation, we have compared only the
retention time, and we have not considered the shape of the
eluted peak.

The HPLC model is also used to perform computer-
assisted optimization. To optimize the HPLC method, sev-
eral system parameters and operational conditions may be
varied. Furthermore, different goals may be achieved with
optimization procedures. Here, we perform a multi-factorial
optimization of gradient time tG, and initial gradient concen-
tration ϕ0. We optimize the separation process with the goal

to separate faster (i.e. shorter time of analysis) the eight APIs
in a single experimental run, without incurring any loss of
product quality and by guaranteeing a sufficient resolution,
Rs:

Rs = 2
t̂R,i+1 − t̂R,i
ŵi + ŵi+1

(11)

where ŵ is the simulated peak width at the base. Resolution
is indeed a prime concern in optimization and to achieve a ad-
equate resolution there must be baseline separation between
two adjacent peaks (i.e. Rs ≥ 1.5).

To execute gradient method optimization, our optimiza-
tion program executes a simple minimization problem and
implements the fminsearchcon() routine (D’Errico, 2022).
Although this is a simple method, this optimization pro-
cedure represents a good alternative to the trial-and-error
method.

Results and discussion

Experimental setup and experimental conditions
The retention behaviour of eight small APIs (i.e. atenolol,

indoprofen, naproxen, pindolol, propanolol, retinoic acid,
terfenadine, warfarin) has been investigated experimen-
tally under Reversed-Phase High-Performance Liquid Chro-
matography (RP-HPLC). The experimental data have been
obtained for a range of experimental conditions and in gra-
dient elution mode. The concentration of organic modi-
fier changed linearly from 5% to 95% for different gradient
times, and the flow rate was 1.2 mL/min. The composition
of the mobile phase consisted of water with +0.1% trifluo-
roacetic acid and acetonitrile +0.1% trifluoroacetic acid, re-
spectively. The mobile phase pH was equal to 1.35. The
variables of the full factorial design of the experiment (DoE)
were gradient time and temperature. The factor levels for the
gradient time were 10, 20 and 30 min, whereas the factor
levels for the temperature were 25, 40 and 55◦C. Thus, a to-
tal of 9 different operative conditions have been investigated,
and 72 retention times have been experimentally acquired.
All HPLC experiments have been performed on an Xbridge
BEH C18 stationary phase column from Agilent Technolo-
gies operated at Eli Lilly. The column has particle diameter
of 2.5 µm and dimensions of 3.0×100 mm. The peak pro-
files were detected at 220 nm via ultraviolet-visible (UV-Vis)
spectroscopy integrated with a mass spectrometer (MS). The
acquired set of experimental data is used to obtain the un-
known adsorption isotherm parameters by fitting the mecha-
nistic model.

Estimation of adsorption isotherm parameters
To estimate the unknown adsorption isotherm parameters,

we compare the results of the chromatographic model with
the available experimental data. Table 1 lists all the estimated
parameters, together with the values of the objective function
corresponding to the evaluated parameter sets. The signifi-
cant error in estimating the retention behaviour of atenolol
(i.e. 26.56%) probably arises because under certain condi-
tions of temperature and gradient steepness atenolol behaves
as an unretained component. Except for atenolol, the mean



relative error done in predicting the retention behaviour of
each molecule is lower than 10%.

Table 1: Estimated adsorption isotherm parameters and ob-
jective function.

Molecule S′s C′
t Obj.(%)

Atenolol 38.35 7.76 26.56
Pindolol 39.04 8.92 9.91
Propanolol 43.46 11.42 8.04
Indoprofen 38.56 11.34 7.90
Naproxen 34.57 11.32 7.73
Warfarin 34.24 11.58 7.63
Terfenadine 27.67 10.90 6.49
Retinoic Acid 23.87 11.99 6.00

Fig. 1 shows the predicted vs. the experimentally ac-
quired retention times for the 8 molecules under the 9 op-
erative conditions, while the boxplot to the right of Fig. 1
represents the distribution of the predictive relative errors (in
%). It can be seen that the median relative error is less than
8%. Although we believe that the predictive performance of
the model can be improved, this is in line with most of the
predictive models reported in the literature. However, unlike
other computational strategies, which allow predicting the re-
tention only in a limited number of HPLC settings (for in-
stance Quantitative-Structure-Retention-Relationships), our
model is based on mechanistic models and, once the isotherm
parameters are known, it may be used to assess a wide range
of operative conditions.

Fig. 2 shows a comparison between the experimental
chromatograms after baseline correction (top) and the sim-
ulated chromatogram (bottom) obtained at T = 40◦C and
tG = 20 min. We can see that the model predicts the reten-
tion times accurately; however, because of numerical diffu-
sion, peak widths are overestimated. To simulate the peak
shape more precisely, one should use a finer mesh, but mesh
refinement leads to high computational requirements.
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Figure 1: Predicted vs. Experimental retention times and
box plot for the distribution of the percentage relative errors.
The boxplot represents the median, (25%-75%) interquartile
range, and mean (dot) but it excludes outliers.
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Figure 2: Experimental chromatogram after baseline correc-
tion (top) and simulated chromatogram (bottom) obtained at
T = 40◦C and tG = 20 min. The initial and final volume
fractions of organic modifier are 0.05 and 0.95, respectively,
while the flow rate is 1.2mL/min.

Sensitivity analysis
The results obtained from parameter estimation constitute

the base for further improvement. Among the other function-
alities, the model can be used to perform parameter sensitiv-
ity analysis, i.e. to evaluate the impact of packing structure
and operative conditions on the retention behaviour of the an-
alytes. As an example, Fig. 3 shows the sensitivity analysis
of naproxen obtained by varying gradient time, temperature,
flow rate and total porosity by ±10%. Clearly, the factor that
most influences the retention behaviour of naproxen is gradi-
ent time, followed by temperature. Since similar results have
been obtained for all the components under investigation, a
good strategy for substantially shortening the time of anal-
ysis would be lowering the gradient time and increasing the
oven temperature.

 -10%
 +10%

tot (-)

q (mL/min)

T (°C)

tg (min)

Figure 3: Percentage variation of retention time of naproxen
for ±10% relative variations in selected process parameters.



Gradient method optimization
With the previously estimated isotherm parameters for

the 8 molecules, the model can also be used to perform
computer-based optimization. Since the gradient strongly in-
fluences chromatographic separation, in this section we re-
port gradient method optimization. Initial gradient composi-
tion and gradient time (i.e. the time required to reach 100%
of pure organic modifier) are chosen as the two variables to
optimize, while temperature, flow rate and final mobile phase
composition are set equal to 40◦C, 1.2 mL/min, and 100% re-
spectively. If the optimization objective is to achieve faster
separation of the mixture into its components with a suffi-
cient resolution, the results reported in Fig. 4 are obtained.
A comparison with Fig. 2 reveals that, by simply changing
the solvent gradient, the analysis time reduces by a factor
of 6. However, a higher fraction of organic modifier would
be required to decrease even more the retention of the last
eluting molecule (i.e. retinoic acid). Thus, we also perform
optimization of a two step-wise gradient profile. Since each
gradient
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Figure 4: Simulated chromatogram generated from the opti-
mized linear gradient considering 40◦C and 1.2 mL/min flow
rate.
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Figure 5: Simulated chromatogram generated from the opti-
mized segmented gradient considering 40◦C and 1.2 mL/min
flow rate.

gradient node (step) of a multi-step gradient profile cor-
responds to two additional variables (Fekete and Molnár,
2018), the optimization becomes a four variables optimiza-
tion. As Fig. 5 shows, the implementation of the optimal
segmented gradient allows the analysis time to be further re-
duced by 0.4 min. The simple optimization strategy reported
here (i.e. it is a simple minimization problem) may represent
a first scouting procedure, cheaper and faster than expensive
and time-consuming trial-and-error experiments. More so-
phisticated techniques such as the Monte Carlo methods and
Genetic Algorithms, which are required to simultaneously
optimize multi-linear gradient separation, temperature, flow
rate, column geometry, etc., will be implemented in a future
version of this work.

Conclusions

In this paper, the first step towards a digital twin of an
HPLC facility has been presented. The digital model, which
has been developed in gPROMS ModelBuilder and coupled
with MATLAB, has been implemented for parameter estima-
tion and gradient method optimization. We have shown that
the HPLC model can predict with reasonable accuracy the re-
tention time of different molecules under different conditions
of gradient time and temperature by analysing a few exper-
imental results designed with DoE. Furthermore, the model
can be used for accelerating HPLC in-silico model develop-
ment. As an example, we presented here gradient method
optimization and found that by optimizing only initial gradi-
ent composition and gradient time, we were able to speed up
the analysis sixfold.

In the future, we aim to integrate this model into a dig-
ital twin architecture to support offline decisions and/or en-
able real-time optimizations. All molecules loaded within
the sample will be detected and recorded continuously up-
stream of the chromatographic system, and the HPLC will
be operated at optimal temperature and optimal gradient, as
suggested by the digital twin. As a result, the time for anal-
ysis will be reduced, the purity of the sample will be im-
proved, and the process sustainability will be increased, in
accordance with the quality-by-design (QbD) paradigm of
pharmaceutical development.

Note that the proposed HPLC digital twin must be
re-calibrated for different stationary phases and different
molecules (i.e., for unknown isotherm parameters). In the fu-
ture, we aim to predict the unknown isotherm parameters of
novel molecules in the same HPLC system through machine
learning techniques by using, as input, their molecular struc-
ture (i.e. molecular descriptors and fingerprints), and then
across new HPLC systems through transfer learning method-
ologies.
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