
  
   

SEAMLESS IMPLEMENTATION OF A NOVEL 
VALVES STICTION DETECTION ALGORITHM 

USING SEEQ DATA LAB 

 Timothy Essinger  Ashwin Venkat1 
 Hamburg University of Applied Sciences  Seeq Corporation 
 Hamburg, Germany Seattle, WA 98104 

Margret Bauer 
Hamburg University of Applied Sciences and Lund University 

Hamburg, Germany and Lund, Sweden 

Abstract 

Data analytic methods to identify process faults developed by researchers are a dime a dozen. 
Shortcomings that many of these methods have is that (1) are not robust, that is, detect faults where there 
are none and (2) that productization takes time. Here, we develop a new method that is tested for false 
positives and show how it can be productized within a very short time period as an open source add on in 
the Seeq Workbench environment. Thus, both shortcomings are addressed.  
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Introduction

During operation of a continuous production process, 
data is generated from the sensors as well as control loops 
that act on the process. This data is stored in the data 
historian and can be analyzed with tools that allow easy 
visual representation and data handling. In the past two 
decades, access to process data has become easier as has 
the handling of the tools that allow the analysis of the data. 
As a result, many new methods to analyze the data in the 
chemical and process industry have been developed. 
Chiang et al. (2017) state that data analytics is the journey 
to turn data into insight for more informed business and 
operational decision.  

Very often, it is necessary to have process knowledge 
in the form of a process schematic, more detailed piping 
and instrumentation diagram and general knowledge of the 
process dynamics as well as of material and energy 
balances. However, there are examples where data can be 
analyzed without any process knowledge. In particular, 
control loop performance monitoring is an area where the 
controller data is inspected for common observations 
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regarding to the quality of operation (Jelali, 2006, 
Thornhill et al., 2007).  

One vital piece of information that we have for process 
data is that we usually have four measurements for each 
control loop: controller output, process variable, setpoint 
and the mode, that is, whether the controller is in automatic 
mode (closed loop control) or manual mode (open loop).  

Fig. 1 shows an example of industrial process data. 
While we expect the setpoint and mode to constant signals, 
the process variable (PV) and the controller output (OP) are 
oscillating. A well performing control loop will have some 
minor random noise. In Fig. 1 the setpoint changes 
repeatedly because the controller is under a multivariate 
scheme, that is, there is a model predictive control 
algorithm that determines the setpoint. In addition, there 
appears to be an oscillation affecting both the PV and the 
OP.  

Many think that the oscillation occurs because of poor 
tuning settings: if you tune your controller too tightly, then 
you will introduce oscillations to a process that is normally 
not of oscillatory behavior. However, in the process  



 

  
   

 

Figure 1. Oscillatory control loop data of a level loop in the Seeq software environment. All data is scaled to zero mean and 
unit variance. 

industries most PID controllers are tuned very 
conservatively, that is, most of the time there is no 
derivative part active and only little proportional and 
integrative control action is applied. The arguably most 
common cause of oscillation is in fact valve stiction. 

After the first excitement in the 1990s and early 2000s, 
control loop performance assessment is not as widely used. 
A survey among industry practitioners (Bauer et al., 2016) 
gave reasons why the methods are not always implemented:   
1. Robustness of the methods: Here, robustness refers 

to false positives and false negatives, that is, a case of 
a process fault could be detected incorrectly by either 
detecting a fault when there is none (false positive) or 
missing a fault when there is one (false negative).  
Unlike process alarms which must never miss a fault 
and should always sound an alarm if a threshold is 
exceeded (no false negatives), control performance 
monitoring method must be robust towards the false 
positives. This means that the method should be very 
certain that a fault is present before alert an operator.  

2. Workflow and ease of use: Data today is much easier 
accessible than before. Conducting an analysis with 
advanced algorithms to detect disturbances, however, 
still requires engineering effort and often consulting a 
specialized department within and outside the 
company. The interaction between the operating 
personnel and the specialists who can apply the 
monitoring methods must be formalized in a workflow 
that is supported by all parties involved.  

A further reason is that computing the financial benefit 
of control loop performance monitoring is not as easy to 
assess.  

In this contribution, we address the two problems by 
proposing a novel method to detect valve stiction that can 
be fully automated. This new method is tested for false 

positives as well as false negatives using confirmed process 
data that is publicly available. An improved workflow and 
ease of use is demonstrated by implementing the novel 
method in the Seeq Data Lab environment. A seamless 
integration of the development to the final product is now 
available as a Seeq Workbench add-on that is free to 
download from a GitHub repository.  

The article is organized as follows. Section 2 describes 
the problem of valve stiction detection and existing 
approaches for detecting it. The novel method is explained 
in Section 4. Section 5 gives the results of applying the 
method to verified cases of valve stiction as well as other 
oscillatory signals that did not have valve stiction as a root 
cause. Section 6 describes the implementation in the Seeq 
Data Lab environment. 

Valve Stiction Detection 

In continuous processing, the dominant method of 
actuation is through control valves. Control valves are 
expected to have a linear relationship, that is, the applied 
controller output is exactly equal to the manipulated 
variable, i.e. resulting flow. This in reality is never the case. 
Valves can be nonlinear, that is, a change in the stem 
position does not impact linearly on the flow. In addition, 
valves can age and the stem may not travel as expected. In 
particular, valve stems get ‘stuck’ at a certain level and will 
not move even when a larger controller output is applied. If 
they overcome a certain inertia, they will start to travel 
again. Fig. 2 (a) shows the dead band relationship between 
the applied controller output and the manipulated variable. 
The phenomena of valve stiction is well described and can 
be simulated (Choudhury et al., 2005). The interchanging 
‘stuck’ movement of the valve stem and the hysteresis or  



  

 

 
 

Figure 2. PV/OP plot of an ideal linear 
behavior of a control valve (a, dotted line) and 

a control valve behavior with dead band (a, 
solid line). The plot on the right (b) shows 
examples of valve stictions PV/OP-plots in 

industrial data. 

dead band shown in Fig. 2 (a) result in an oscillatory time 
trend that can be observed in both the PV and the OP signal 
of a control loop.  

Ideally, one would plot the manipulated variable 
against the controller output as shown in Fig. 2 (a). In flow 
loops, the valve stem position impacts directly on the 
measured flow. In all other control loops, such as pressure, 
temperature, level or others, a dynamic process acts 
between the manipulated variable and the process variable, 
PV. Usually, the manipulated variable is not available 
recorded and available as a measurement. Instead, one can 
use the PV under the assumption that the process is 
comparatively slow compared to the oscillation introduced 
because of the nonlinearity of the control valve.  

Many methods have been developed to detect and 
diagnose valve stiction from industrial process data. An 
overview of existing methods is given in the textbook edited 
by Jelali and Huang (2010). Many methods investigate the 
relationship of the process variable by plotting the 
oscillatory time trends of the process variable against the 
controller output as shown in Fig. 2 (b) (Yamashita, 2006, 
Choudhury et al., 2006, Kano et al., 2004). A comparison 
of the different approaches is provided by di Capaci and 
Scali (2018). However, the overview was conducted on 
false negatives and not on false positives. Recently, 
methods have been proposed that investigate the time 
trends, by analyzing the shape of the oscillation (Hägglund, 
2011) and by applying pattern recognition and neural 
networks (Amiruddin et al., 2019).  

The proposed method combines several of these recent 
approaches by first detecting oscillations, then plotting a 
single oscillation circle as shown in Fig. 2 (b) and finally 
applying pattern recognition to the shapes. The approach is 
described in more detail in the next section. The method is 
applied to confirmed valve stiction data contained a 
repository (Bauer et al., 2019). 

 

A new stiction detection method using shape detection  

The new detection method has at its core a similarity 
index that compares shapes to known examples of valve 
stiction. This is described in the following. Fig. 3 shows the 
shape PV/OP plot of Fig. 2 after travelling through the 
process and therefore inevitable lowpass filtering. In 
addition, care has to be taken to pre-process the data and 
detect the oscillation. The complete procedure is given after 
the description of the similarity index. 

Shape similarity index 

The principle of the stiction detection method is that the 
oscillation with stiction has a nonlinear shape, that is, when 
plotting the process variable against the controller output, 
the resulting ellipsoid shape has sharp edges for stiction 
while an oscillation caused by an outside disturbance, or a 
poorly tuned controller will have round edges, as shown in 
Fig. 3. A shape is detected by using the connected pixels 
approach which is a fundamental approach in the binary 
image analysis (Suzuki and Abe, 1985). Wang et al. (2004) 
build on this approach by developing a structural similarity 
index by distinguishing between luminance, contrast and 
structural values when comparing two images. A simplified 
version of the method by Wang et al. can be implemented 
by only focusing on the structural similarity of two images 
x and y. The structural similarity is defined as   

𝑠𝑠(𝐱𝐱,𝒚𝒚) =
𝜎𝜎𝑥𝑥𝑥𝑥 + 𝐶𝐶3
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦 + 𝐶𝐶3

 

Where 𝜎𝜎𝑥𝑥 and 𝜎𝜎𝑦𝑦  are the standard deviations of x and 
y respectively and 𝜎𝜎𝑥𝑥𝑥𝑥 is the correlation coefficient that can 
be estimated as  

𝜎𝜎𝑥𝑥𝑥𝑥 =
1

𝑁𝑁 − 1
�(𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑦𝑦)
𝑁𝑁

𝑖𝑖=1

 

The constant C3 is a small value that is added to 
instability when σ_x σ_y  is close to zero. The similarity is 
then assessed for a number of images that are known to 
show valve stiction. Images are compared to existing 
images in the data base.  

Valve stiction detection procedure 

In order to fully automate the method, the controller 
output and process variable of a control loop should be 
entered for a long period of time. Several steps need to be  



  
 

 

 

Fig. 4. Valve stiction detection method steps. 
 

Step 1: Enter start and end time and date for the signals 
of a specified control loop (PV, OP). 

Step 2: Pre-process the data by filtering out low 
frequency components in the signal.  

Step 2: Detect start and end of an oscillation present in 
the selected data.  

Step 3: Slice data into oscillation cycles between start 
and end period of oscillation.  

Step 4: Create OP/PV images for each slice. 
Step 5: Conduct similarity analysis to detect shape, 

compute magnitude of similarity.  
The last step is the core of the analysis and can be 

divided into further steps as shown in Fig. 4. The ellipses 
have to be formed and the connection has to be closed. The 
shapes are compared and possibly have to be mirrored 
because the ellipsoid shape can be from bottom right to top 
left corner or from top right to bottom left corner. Edges will 
be cropped and shapes have to be closed again. Note that it 
may be necessary create a mirror image of the ellipsoid. The 
similarity looks for sharp corners or ‘triangles’. The ellipse 
width is then identified to estimate the dead band of valve 
stiction.  

Examples of shapes of existing loops with valve 
stiction are shown in Fig. 5. These figures are the input 
images on which the detection algorithm is based. 

Testing the method 

The method requires both data for training and also for 
testing. Here, we test for both data sets that are confirmed 
cases of valve stiction and cases where there are other 
problems causing the oscillation. This is because we want 
to test both false negatives and false positives. All time 
trends analyzed here can be found in the data repository 
given earlier (Bauer et al., 2019). Unfortunately, data is not 
readily available confirmed cases of valve stiction because 
production companies have no interested and financial 
benefit of putting the data out into the public domain. The 
benefit of slicing the data into sections is that several images 
can be generated for each confirmed case.  

The algorithm was applied to the data and Table 1 
shows the results for time trends with signals that are 
confirmed cases of valve stiction. All but one case was  

 

Figure 5. Examples of PV/OP shapes of time 
series signals with valve stiction as given by 

Bauer et al., 2019. 

correctly detected. The reason for not detecting this data set 
could be that there were not many cycles detected. 

Table 1. Control loops with confirmed cases of 
valve stiction as described in Bauer et al. (2019). 

Stiction 
control loops 

Oscillation 
cycles 

Measurement 
accuracy 

Stiction 

Flow Horch 16 97 Yes 
Level 
Chemicals 

38 81 Yes 

Level Horch 9 - No 
Level Power 169 62 Yes 
Pressure 
Oil&Gas 

24 74 Yes 

Pressure 
Chemicals 

4 85 Yes 

Pressure 
Oil&Gas DB 

12 79 Yes 

 



  

 

Table 2. Control loops with disturbances that 
were not attributed to valve stiction as described 

in Bauer et al. (2019). 

Other control 
loops 

Oscillation 
cycles 

Measurement 
accuracy 

Stiction 

Level Minerals - - No 
Temperature 
Oil & Gas 

16 0 No 

Flow Oil & 
Gas 

53 4.73 Yes 

Flow 
Chemicals 

- - No 

Level Horch - - No 
Quality Horch 32 - No 

 
Arguably the most important test for any method is to 

avoid false positives. The reason is that there should be a 
clear indication of valve stiction before an operator or other 
plant personal is alerted. This is different to process alarms 
that should avoid false negatives at all cost. The detection 
of stiction using process data is not part of the basic process 
operation and generally does not directly impact on the 
safety of the operation. Any plant personnel who 
experiences a number of false alerts regarding the valve 
stiction. 

Architecture, User Interface and Implementation 

In addition to the algorithm development, a key 
requirement for this project is to provide an easy-to-use 
interface to analyze and monitor results. Integration with 
Seeq Workbench allowed for easy access to data and 
trending results. 

The user interface was designed in accordance with the 
guidelines of the Seeq Workbench tool. The interface is 
shown in Fig. 6 and the individual items that can be selected 
are marked with 1. to 8.  

As a first step, the controller error has to be selected. 
The controller error is the setpoint minus the process 
variable in the control loop. If the controller error is not 
available, the process variable can be selected instead. The 
benefit of using the controller error is that this choice 
eliminates any fluctuations that stems from setpoint 
changes. In step 2. the start and end date must be selected 
by the user. The default is the inclusion of the selected 
timeframe in the main visual representation as shown in Fig. 
1. In step 3. the condition to be analyzed is chosen. The 
choice is between detecting an oscillation only and 
detecting valve stiction. In future developments, further 
conditions such as poor controller tuning can be included. 
If steps 1 to 3 are selected it is possible to carry out the 
analysis by clicking the ‘Analyze’ button. The results will 
then be displayed in the top right corner, see 5. To 
incorporate the results into the existing worksheet, both 
oscillation and stiction signals can be sent to the existing 
workbook from where the analysis was started, see 6. It is 

possible to change the name to any name preferred in the 
analysis. The default names are given in Fig. 6. Further 
documentation is available to the user to explain the 
analysis and the problem of valve stiction.  

Open Source as an Add-on 

For this project, we adopted an approach of bringing 
academic research and industry vendor together via an 
open-source model. Open sourcing academic research in the 
form of a GitHub repository promotes reproducible and 
collaborative research. Interested parties can examine the 
details of the algorithm and implementation; the efficacy of 
the approach can be validated on other data sets. Through 
pull requests, the user community can contribute to the 
research and help advance the technology but are also 
within their rights to fork the repository and strike out on 
their own. The collaboration with an industrial vendor, Seeq 
Corporation, has been critical to make this research visible 
and available for industrial practitioners from an early stage. 
A link to the Stiction Analyzer GitHub repository is hosted 
in Seeq’s Add-on Gallery https://seeq12.github.io/gallery/. 
The availability and integration of this research as a ready 
to use, open-source Seeq Add-on allows industry 
practitioners to test, validate, and operationalize on their 
data with minimal overhead.  

Conclusions 

This paper presented a novel method to detect valve 
stiction. The emphasis was to detect valve stiction reliably 
by testing the method for both false positives and false 
negatives. This was done because the technical value is the 
savings because of detected valve stiction minus the cost 
that is incurred because of incorrection action. The method 
was tested on data that is publicly available. In addition, the 
method was implemented in an open source add-on made 
available by the university and used as a package by 
industrial customers. This gives a seamless integration and 
shows how the path from developing a new method to 
productization can be significantly shortened. It also allows 
research institutions to develop their own products.  
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Figure 6. Workflow of the analyzer tool.  
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