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Abstract 

Deployment of carbon capture and utilization (CCU) requires strategic decisions, such as the selection of 
emission sources and CCU technologies, and tactical decisions, such as the determination of the extent of 
capture and utilization at each planning period, as they depend on time-varying factors like source 
characteristics, capture targets, and products demands. Previous works have developed portfolio 
optimization models that can assist only some of these decisions. This paper introduces a comprehensive 
multiperiod optimization model, deterministic mixed-integer nonlinear programming (MINLP) model, for 
CCU planning by 1) selecting the emission sources and capture technologies, 2) implementing capture 
facilities for the sources, determining capture extent at each period and allowing capacity expansions for 
these facilities to account for variations in sources and capture requirements over time, and 3) selecting 
the utilization technologies and determining the utilization extent based on product demand at each 
planning period. The nonlinearities in the cost models make the model intractable for large-size problems 
with multiple CCU technologies for longer planning horizons. The developed two-step iterative solution 
approach first relaxes the MINLP using piecewise linear relaxation to a mixed-integer linear programming 
(MILP) model, which is solved to obtain a lower bound. The MILP solution is used to generate binary 
cuts and as an initial guess to solve the MINLP model and obtain an upper bound. The steps are employed 
iteratively with an increasing number of segments to generate tight bounds. The approach solved a 
problem with 10 emission sources for 10 year planning period to 0.015 % gap in 139000 seconds.  
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Introduction

Increasing global energy demand and greenhouse gas 
(GHG) emissions are significant and conflicting challenges. 
These challenges motivated industries to consider carbon 
capture as an emission mitigation option. Carbon capture is 
cost-intensive and depends on factors like emission source 
characteristics, capture technology used, and the decision to 
utilize or sequester carbon (Hasan et al., 2014). 
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Portfolio optimization models have been developed in 
previous studies to minimize the overall cost of carbon 
capture, utilization, and sequestration (CCUS) by selecting 
emission sources, capture technologies, utilization 
technologies, and storage sites (Hasan et al., 2014; Zhang et 
al., 2018; Roh et al., 2019). However, steady-state 
conditions have been assumed over the planning period in 



  
 
these works, i.e., the decision variables were not allowed to 
change over the planning horizon. This assumption can 
result in large penalties due to over- or under-estimating 
capture facility capacities, as the emission rates can vary 
over time. For example, for an emission source with a 
production increase in the later stages of the planning 
horizon, adding an expansion to the capture facility might 
cost less than building a large capture facility a priori. Such 
decisions can also impact the selection of capture 
technologies. Furthermore, the carbon reduction target and 
the demand for utilization products might vary over time.  

Some previous works have developed multiperiod 
models for CCUS planning. Han et al. (2012) developed a 
model to account for the variations in emission rates and 
capture target. Duarte et al. (2022) have extended the work 
to consider selecting capture technologies but considered 
only carbon utilization by enhanced oil recovery and 
studied the time-varying factors associated with it. These 
models do not allow capture facility capacity expansions or 
consider the variation in product demands over time. 

In this paper, a CCU portfolio optimization model that 
accounts for the changes in the emission sources, carbon 
reduction targets, and utilization product demands over the 
planning period is introduced. The MINLP model selects 
the emission sources, capture and utilization technologies, 
and allows expansions to the capture facilities under the 
time-varying environment to minimize carbon capture and 
utilization costs. However, it becomes intractable for 
problems with many capture and utilization technologies 
and longer planning horizons. A two-step approach that 
relaxes the nonlinear terms is developed to solve it.  

Problem Statement  

The main goal is to develop an optimization-based 
framework that assists the deployment of CCU by 
determining strategic and tactical decisions: (i) selection of 
emission sources and capture technologies to capture 
carbon, (ii) determination of the extent of capture based on 
the emission reduction target, (iii) addition of capacity 
expansions to the capture facilities, if necessary, over time, 
(iv) selection of utilization technologies that can utilize the 
captured carbon and generate revenue, and (v) 
consideration of the variations in the emission source 
characteristics, product prices, emission targets, and 
demand over the planning horizon. 

For the given yearly CO2 reduction targets or utilization 
product demands, the objective is to minimize the net cost 
of the CCU network. The net cost is the difference between 
the cost of carbon capture and utilization and the revenue 
from selling the utilization products over the given period. 

Superstructure Representation 

The multiperiod portfolio optimization framework has 
been developed to (i) integrate the emission sources, carbon 
capture technologies, and carbon utilization technologies 
under a single network, (ii) account for the variations in the 

emission characteristics, emission reduction targets, and 
product prices over the planning horizon, and (iii) allow for 
capacity expansions for the capture facilities. 

The superstructure in Figure 1 illustrates the CCU 
network. It consists of a set of carbon emission sources (𝑆௜) 
from which carbon is captured using one of the capture 
technologies (𝐶𝑇௝) in the capture facilities (𝐶௜௝). Necessary 
expansions (𝐸௡௧) are added to the capture facilities over 
time (𝑡). One or more utilization technologies (𝑈𝑇௞) convert 
captured carbon to products and by-products (𝑃௞). 

Figure 1.   Superstructure representation of the 
CCU network 

Multiperiod Optimization Model Formulation 

The objective is to minimize the net cost of the CCU 
network over the planning horizon. The net cost is the 
difference between the total cost of carbon capture and 
utilization and the total revenue from utilization product 
sales (Eq. 1). The cost of carbon capture involves the cost 
of dehydration, capture, and compression. A capture facility 
is assumed to be constructed near every source carbon is 
captured from. The transportation costs are set to zero. 

𝑀𝑖𝑛 (𝑇𝐶 − 𝑇𝑅) 

= ෍ 𝐷𝐶௜,௧
௜,௧

+ ෍ ൫𝐶𝐼𝐶௜,௝,௧,௡ + 𝐶𝑂𝐶௜,௝,௧,௡൯
௜,௝,௧,௡

 

     + ෍ ൫𝑈𝐼𝐶௞,௧ + 𝑈𝑂𝐶௞,௧൯
௞,௧

− ෍ 𝑈𝑅௞,௧
௞,௧

 

                              ∀  𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑛 ∈ 𝑁 (1) 

The sets 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, and 𝑛 ∈ 𝑁 represent 
carbon emission sources, capture technologies, utilization 
technologies, planning period, and capture facilities. For a 
capture facility, 𝑛 = 1 represents the initial capacity, and 
𝑛 > 1 represents the expansions. The variable 𝑇𝐶 is the 



  

total cost of dehydration, capture, compression, and 
utilization, and 𝑇𝑅 is the total revenue from the utilization 
products. The variable 𝐷𝐶௜,௧ is the cost of dehydration of 
saturated flue gas from source 𝑖 at time 𝑡. The variables 
𝐶𝐼𝐶௜,௝,௧,௡ and 𝐶𝑂𝐶௜,௝,௧,௡ correspond to the investment and 
operating costs of capture facility/expansion 𝑛 of source 𝑖 
using capture technology 𝑗 at time 𝑡. These costs include the 
cost of compression. The variables 𝑈𝐼𝐶௞,௧ and 𝑈𝑂𝐶௞,௧ are 
the investment and operating costs of utilization technology 
𝑘 at time 𝑡, and 𝑈𝑅௞,௧ is the revenue from the sales of 
utilization products of technology 𝑘 at time 𝑡. 

Binary Variables 

Two binary variables, 𝑦௜,௝,௧,௡ and 𝑦ᇱ
௞,௧

, are defined in 

Eqs. (2) and (3) to represent the selection of capture 
technology for emission source 𝑖 and utilization technology 
for the captured carbon for time 𝑡.  

𝑦௜,௝,௧,௡ = ൝
1, if COଶ is captured from source 𝑖 in
    facility 𝑛 by tech 𝑗 during time 𝑡    
0, otherwise                                              

 (2) 

𝑦ᇱ
௞,௧

= ൝
1, if captured COଶ is utilized by tech 𝑘   
    during time 𝑡                                              
0, otherwise                                                    

 (3) 

Parameters 

The parameters of the model are for: (1) Emission 
sources (𝑖 ∈ 𝐼): The carbon composition (𝑋௜) and the flue 
gas flow rate (𝐹௜,௧) of the emission sources at the planning 
period 𝑡 are given. (2) Capture technologies (j ∈ 𝐽): The cost 
models (Hasan et al., 2014) estimate the investment and 
operating costs using technology-specific parameters (𝛼௝, 
𝛽௝, 𝛾௝, 𝑚௝, 𝑛௝, 𝛼ᇱ

௝, 𝛽ᇱ
௝
 𝛾ᇱ

௝
, 𝑚ᇱ

௝, and 𝑛ᇱ
௝). Each technology 

has a lower (𝑋𝐿௝) and an upper carbon composition (𝑋𝐻௝) 
bound for CO2 capture with at least 90% recovery and 
purity. (3) Utilization technologies (𝑘 ∈ 𝐾): The parameters 
𝑅௞ and 𝑈௞ denote the amounts of (i) raw materials and 
utilities and (ii) captured carbon required to produce one ton 
of the utilization product by technology 𝑘. The parameters 
𝐶𝑅௞,௧ and 𝐶𝑃௞,௧ are the cost of one ton of raw materials and 
utilities and the selling price of one ton of products at time 
𝑡. The demand for each product at time 𝑡 is 𝐷௞,௧. 

Disjunctive Constraints 

If a capture facility 𝑛 for source 𝑖 that uses capture 
technology 𝑗 is included in the network at time 𝑡, i.e., 
𝑦௜,௝,௧,௡ = 1, flue gas of carbon composition 𝑋௜ and flow rate 
𝐹௜,௧ is treated by the capture facility of capacity 𝑐௜,௝,௧,௡. The 
capacity should be greater than the amount of feed treated 
at the time, 𝑓௜,௝,௧,௡. The investment cost (𝐶𝐼𝐶௜,௝,௧,௡) is a 
function of 𝑋௜ and 𝑐௜,௝,௧,௡ while the operating cost 
(𝐶𝑂𝐶௜,௝,௧,௡) is a function of 𝑋௜ and 𝑓௜,௝,௧,௡. If the capture 
facility is not included in the network, 𝑦௜,௝,௧,௡ = 0, these 

variables take a value of zero. The corresponding 
disjunction is given in Eq. (4) and is reformulated using 
Big-M. The selection of sources and technologies depends 
on the binary variable 𝑦௜,௝,௧,௡, while the extent of capture 
depends on the variables 𝑐௜,௝,௧,௡ and 𝑓௜,௝,௧,௡.  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝒚𝒊,𝒋,𝒕,𝒏 = 𝟏

෍ 𝑓௜,௝,௧,௡
௡∈ே

≤ 𝐹௜,௧

𝑐௜,௝,௧,௡ ≥ 𝑓௜,௝,௧,௡

𝐶𝐼𝐶௜,௝,௧,௡ = 𝑓൫𝑋௜ , 𝑐௜,௝,௧,௡൯

𝐶𝑂𝐶௜,௝,௧,௡ = 𝑓൫𝑋௜ , 𝑓௜,௝,௧,௡൯
 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 𝑉

⎣
⎢
⎢
⎢
⎢
⎡

𝒚𝒊,𝒋,𝒕,𝒏 = 𝟎

𝑓௜,௝,௧,௡ = 0

𝑐௜,௝,௧,௡ = 0

𝐶𝐼𝐶௜,௝,௧,௡ = 0

𝐶𝑂𝐶௜,௝,௧,௡ = 0⎦
⎥
⎥
⎥
⎥
⎤

 

                                               ∀ 𝑖 ∈ 𝐼, j ∈ 𝐽, t ∈ 𝑇, 𝑛 ∈ 𝑁 (4) 

The disjunctive model for the utilization technologies 
follows a similar logic. The variable 𝑧௞,௧ is the amount of 
utilization product produced by technology 𝑘 at time 𝑡. It is 
computed from the amount of carbon utilized by the 
technology 𝑘 (𝑐𝑐ᇱ

௞,௧) at time 𝑡 and the amount required to 
produce one ton of the utilization product (𝑈௞). Its 
investment cost (𝑈𝐼𝐶௞,௧), operating cost (𝑈𝑂𝐶௞,௧) and 
revenue (𝑈𝑅௞,௧) are functions of 𝑧௞,௧. The selection of 
utilization technologies is implemented by binary variable 
𝑦ᇱ

௞,௧
, and the disjunction is given in Eq. (5). 

⎣
⎢
⎢
⎢
⎢
⎡

𝒚′
𝒌,𝒕

= 𝟏

𝑧௞,௧ = 𝑈௞𝑐𝑐 ′
௞,௧

𝑈𝐼𝐶௞,௧ = 𝑓൫𝑧௞,௧൯

𝑈𝑂𝐶௞,௧ = 𝐶𝑅௞,௧𝑅௞𝑧௞,௧

𝑇𝐴𝑅௞,௧ = 𝐶𝑃௞,௧𝑧௞,௧ ⎦
⎥
⎥
⎥
⎥
⎤

𝑉

⎣
⎢
⎢
⎢
⎢
⎡

𝒚′
𝒌,𝒕

= 𝟎

𝑧௞,௧ = 0

𝑈𝐼𝐶௞,௧ = 0

𝑈𝑂𝐶௞,௧ = 0

𝑇𝐴𝑅௞,௧ = 0⎦
⎥
⎥
⎥
⎥
⎤

 ∀ 𝑘 ∈ 𝐾,t ∈ 𝑇 (5) 

Other Constraints 

The model ensures carbon is captured from source 𝑖 by at 
most one technology and by the same technology in the 
subsequent periods using the constraints in Eqs. (6) and (7). 
CO2 recovery and purity of at least 90% is achievable from 
source 𝑖 using capture technology 𝑗 only if the feed CO2 
composition is in the range, 𝑋𝐿௝ ≤ 𝑋௜ ≤ 𝑋𝑈௝ (Eq. (8)). 

෌ 𝑦௜,௝,௧,௡௝∈௃
≤ 1         ∀ i ∈ 𝐼,t ∈ 𝑇, 𝑛 ∈ 𝑁 (6) 

𝑦௜,௝,௧,௡ ≥ 𝑦௜,௝,௧ିଵ,௡      ∀ i ∈ 𝐼, 𝑗 ∈ 𝐽,t ∈ 𝑇, 𝑛 ∈ 𝑁 (7) 

൫𝑋𝐻௝ − 𝑋௜൯൫𝑋௜ − 𝑋𝐿௝൯𝑦௜,௝,௧,௡ ≥ 0  
                                              ∀ i ∈ 𝐼, 𝑗 ∈ 𝐽,t ∈ 𝑇, 𝑛 ∈ 𝑁 (8) 

The capacity of an implemented expansion should not 
change over time, which is enforced using big-M 
constraints in Eqs. (9) and (10). Equation (11) ensures the 
implementation of 𝑛௧௛ expansion only after implementing 
𝑛 − 1௧௛ expansion. It also enforces the implementation of 
at most one expansion per source at a given time. 

−𝑀൫1 − 𝑦௜,௝,௧,௡൯ + 𝑐௜,௝,௧ାଵ,௡ ≤ 𝑐௜,௝,௧,௡ 
                                              ∀ i ∈ 𝐼, 𝑗 ∈ 𝐽,t ∈ 𝑇, 𝑛 ∈ 𝑁 (9) 



  
 
𝑐௜,௝,௧,௡ ≤ 𝑐௜,௝,௧ାଵ,௡ + 𝑀൫1 − 𝑦௜,௝,௧,௡൯ 
                                              ∀ i ∈ 𝐼, 𝑗 ∈ 𝐽,t ∈ 𝑇, 𝑛 ∈ 𝑁 (10) 

෌ 𝑦௜,௝,௧,௡
௧

଴
≤ ෌ 𝑦௜,௝,௧,௡ିଵ

௧ିଵ

଴
 ∀ i ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑛 ∈ 𝑁 (11) 

The amount of carbon captured is a function of the feed 
gas composition and amount treated. The total carbon 
captured (𝑐𝑐௧) by all capture facilities from all sources at 
planning period 𝑡 is computed using Eq. (12), and it should 
meet the CO2 reduction target of that period. A 50% 
reduction target is modeled in Eq. (13) as an example. The 
amount of captured carbon utilized by the utilization 
technologies (𝑐𝑐ᇱ

௞,௧) cannot exceed the total amount 
captured (𝑐𝑐௧), per Eq. (14). Similarly, the amount of 
product produced by utilization technology 𝑘 (𝑧௞,௧) should 
not exceed the annual product demand (𝐷௞,௧) (Eq. (15)).  

𝑐𝑐௧ = ෌ ∑ ∑ 𝑓൫𝑋௜ , 𝑓௜,௝,௧,௡൯௡∈ே           ∀ t௝∈௃i∈ூ
∈ 𝑇  (12) 

𝑐𝑐௧  ≥ 0.5 ෌ 𝑓൫𝑋௜ , 𝐹௜,௧൯
i∈ூ

                            ∀ t ∈ 𝑇 (13) 

෌ 𝑐𝑐 ′
௞,௧௞∈௄

≤  𝑐𝑐௧                                          ∀ t ∈ 𝑇 (14) 

𝑧௞,௧ ≤ 𝐷௞,௧                                            ∀ k ∈ K,  t ∈ 𝑇 (15) 

Implementation of Cost-Model Functions 

The cost of dehydration is $10.22 per ton of CO2 in 
saturated flue gas (Hasan et al., 2014). The investment and 
operating costs depend on the feed composition (𝑋௜) and 
flow rate (𝐹௜,௧) in the models developed by Hasan et al. 
(2014). The variable 𝐹௜,௧ is replaced with capacity (𝑐௜,௝,௧,௡) 
and treated flow rate (𝑓௜,௝,௧,௡) to estimate the investment and 
operating costs in Eqs. (16) and (17) to account for the 
changes in emission rates over time. 

𝐶𝐼𝐶௜,௝,௧,௡ = 𝛼௝ + ൫𝛽௝𝑋௜
௡ೕ + 𝛾௝൯ 𝑐௜,௝,௧,௡

௠ೕ  
                                                ∀ i ∈ 𝐼, 𝑗 ∈ 𝐽,t ∈ 𝑇, 𝑛 ∈ 𝑁 (16) 

𝐶𝑂𝐶௜,௝,௧,௡ = 𝛼 ′
௝ + ቀ𝛽′

௝
𝑋௜

௡′
ೕ + 𝛾 ′

௝
ቁ 𝑓௜,௝,௧,௡

௠′
ೕ  

                                                ∀ i ∈ 𝐼, 𝑗 ∈ 𝐽,t ∈ 𝑇, 𝑛 ∈ 𝑁 (17) 

Solution Approach for the Developed MINLP model 

Equations (1) to (17) yield a multiperiod deterministic 
MINLP model that captures the changes in carbon emission, 
capture targets, and product demands over the planning 
horizon. However, it is computationally expensive to solve 
and becomes intractable quickly as the number of sources, 
technologies, and planning period increase.  

The developed two-step approach (Figure 2) uses 
piecewise linear relaxation to obtain a relaxed MILP model, 
which provides a lower bound for the MINLP. The MILP 
solution is used to generate binary variable cuts for the 
MINLP and initialize local MINLP solvers. The solution of 
the MINLP with the cuts provides an upper bound. The 
optimality gap is tightened by iteratively partitioning the 
nonlinear functions into more segments in the MILP 
relaxation. 

Figure 2.   The two-step solution approach. 
Solid lines represent the approach sequence 

and dashed lines information flow. 

Approach to Generate the MILP Relaxation 

The nonlinear terms in the MINLP model are in Eqs. 
(16) and (17), and they are of the form 𝜓 = 𝑓(𝜙ఠ) where 
𝜔 is a constant such that 0 < 𝜔 < 1. A piecewise linear 
relaxation technique (Polisetty and Gatzke, 2005; Fahmi 
and Cremaschi, 2015) was used to obtain a relaxed MILP 
model. The nonlinear functions are segmented, and each 
segment is relaxed by building two tangent lines at the 
breakpoints of each segment (over-estimators) and a 
straight line connecting the function evaluations at the 
bounds (under-estimator). 

For the MILP relaxation, the nonlinear functions of the 
form 𝜓 = 𝑓(𝜙ఠ) with 𝜙௅ ≤ 𝜙 ≤ 𝜙௎ are divided into 𝑁𝑝 
segments. The length of each segment is 𝑎 by Eq. (18) when 
the segments are partitioned equally. Each segment is 
represented as 𝜈௡௣ = 𝑓൫𝑥௡௣൯, where 𝜙 = ∑ 𝑥௡௣

ே௣
௡௣ୀଵ  and 

𝜓 = ∑ 𝜈௡௣
ே௣
௡௣ୀଵ . A binary variable 𝑏௡௣ is introduced to 

represent the selection of the segment 𝑛𝑝 (Eq. 19). The 
binary variable is also used to enforce selecting only one 
segment (Eq. (20)) and activate the bounds of each segment 
by Eq. (21). Equation (22) uses a disjunctive model to 
implement the under- and over-estimators of each segment. 

Using MILP Relaxation in MINLP to Obtain a Lower 
Bound 

The nonlinear cost functions in Eqs. (16) and (17) are 
relaxed by partitioning them into 𝐿 and 𝐿1 segments. The 
binary decision variable 𝑦௜,௝,௧,௡ for carbon capture in the 
MINLP problem is replaced with two new binary variables 
(Eqs. 23 and 24) that account for selecting the partitioned 
segments for the two relaxed cost functions (investment and 
operating cost models), as given in Eqs. (18) and (19). Two 



  

disjunctive models are developed to define the under and 
upper estimators for the two cost functions based on the 
formulation given in Eq. (22). The resulting MILP model is 
solved to obtain a lower bound for the MINLP model. 

𝑎 =
థೆିథಽ

ே௣
 (18) 

𝑏௡௣  = ൜
1, 𝑖𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑛𝑝 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑    
0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               

 (19) 

෌ 𝑏௡௣
ே௣

௡௣ୀଵ
= 1 (20) 

𝜙௅ + 𝑎(𝑛𝑝 − 1) 𝑏௡௣ ≤ 𝑥௡௣ ≤ 𝜙௅ + 𝑎(𝑛𝑝) 𝑏௡௣ 
                                                                       𝑛𝑝 ∈ 𝑁𝑝  (21) 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝒃𝒏𝒑 = 𝟏

𝜈௡௣ ≤
𝜕𝑓൫𝑥௡௣൯

𝜕𝑥௡௣

ቤ
 థಽା௔(௡௣ିଵ)

ቀ𝑥௡௣ − 𝜙௅ − 𝑎(𝑛𝑝 − 1)ቁ

                                                       +𝑓൫𝜙௅ + 𝑎(𝑛𝑝 − 1)൯

𝜈௡௣ ≤
𝜕𝑓൫𝑥௡௣൯

𝜕𝑥௡௣

ቤ
థಽା௔(௡௣)

൫𝑥௡௣ − 𝜙௅ − 𝑎 𝑛𝑝൯                

                                             +𝑓(𝜙௅ + 𝑎 𝑛𝑝)

𝜈௡௣ ≥
𝑓(𝜙௅ + 𝑎 𝑛𝑝) − 𝑓൫𝜙௅ + 𝑎(𝑛𝑝 − 1)൯

(𝜙௅ + 𝑎 𝑛𝑝) − ൫𝜙௅ + 𝑎(𝑛𝑝 − 1)൯
                 

         ቀ𝑥௡௣ − 𝜙௅ − 𝑎 (𝑛𝑝 − 1)ቁ + 𝑓൫𝜙௅ + 𝑎(𝑛𝑝 − 1)൯
                                 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

                            V ቎

𝒃𝒏𝒑 = 𝟎

−∞ ≤ 𝑥௡௣ ≤ ∞

−∞ ≤ 𝜈௡௣ ≤ ∞
቏    ∀ 𝑛𝑝 ∈ 𝑁𝑝 (22) 

𝑔௜,௝,௧,௡,௟ = ൜
1, if segment 𝑙 is selected

0, if otherwise                       
  (23) 

ℎ௜,௝,௧,௡,௟ଵ = ൜
1, if segment 𝑙1 is selected
0, if otherwise                         

 (24) 

Solving the MINLP Model to Obtain an Upper Bound 

The MILP solution of 𝑔௜,௝,௧,௡,௟ is used to add binary 
decision variable cuts to the decision variable for carbon 
capture of the MINLP problem (𝑦௜,௝,௧,௡) as given in Eq. (25). 
The MILP solution is also used to initialize the capacity 
(𝑐௜,௝,௧,௡) and flow rate (𝑓௜,௝,௧,௡) variables of carbon capture 
and decision variable 𝑦ᇱ

௞,௧
, and product amount variable, 

𝑧௞,௧, of carbon utilization for local solvers. The solution of 
the initialized MINLP problem with binary cuts provides an 
upper bound for the original MINLP problem. 

𝑦௜,௝,௧,௡ ≤ ∑ 𝑔௜,௝,௧,௡,௟௟∈௅          ∀ i ∈ 𝐼,t ∈ 𝑇, 𝑛 ∈ 𝑁 (25) 

Results and Discussion 

The emission sources data from Hasan et al. (2014) and 
the capture technologies and utilization technologies from 
Hasan et al. (2014) and Roh et al. (2019) are used to 
construct model parameters. All costs are converted to 
2019. The optimization models are formulated in Python 
V3.8.6 using PYOMO V6.4.1. The MILP models are solved 

using CPLEX V20.10, and the initialized MINLP models 
are solved using DICOPT V2 through GAMS V24.8.5, all 
on an Intel Xeon Gold 6248R 3 GHz processor with 32 
cores and utilizing a maximum of 100 GB RAM. 

The test problem contains 10 emission sources (CO2 
composition ranging from 4-47%), four capture 
technologies, and four utilization techniques. The planning 
period is 10 years, discretized into 10 equal time periods. 
The impact of changes in annual emissions and biannual 
increase in capture targets by 10% (from 30% to 70%) over 
the planning horizon is studied using the MINLP model. 

The approach solved the problem to a 0.015% 
optimality gap. The solution is summarized in Figure 3. The 
MILP relaxation required ten linear segments to achieve 
this optimality gap. For the capacity variable, the maximum 
value of the incoming feed gas flow rate from each source 
over the planning horizon was used (max (𝐹௜,௧)  ∀ i ∈ 𝐼 ) as 
the Big-M value. For the flow rate variable, the incoming 
flow rate from each source at each period was used (𝐹௜,௧). In 
the MILP relaxation, the maximum value of these variables 
was bounded with these factors to obtain tighter under- and 
over-estimators. 

Figure 3.  (a) Yearly total CO2 emissions by 
sources, (b) Fraction of CO2 captured yearly 
from each source, and (c) Total CO2 emitted 

and CCU cost over the planning horizon 

Sources 1-6 with CO2 composition of over 10% are 
preferred for capture over other sources (Figure 3 (b)). 
Adsorption was preferred for sources with high CO2 
composition and emission. Alternatively, absorption was 
preferred for the 8th source due to its low CO2 composition 
and emission. The first expansion to a capture facility was 
implemented in the 8th planning period owing to the higher 
capture target (60%). One more expansion was added to 
source 3 in the 9th year to meet the 70% annual capture 
target. The total annual CCU costs over the planning 



  
 
periods are plotted in Figure 3(c). The cost trend follows the 
emission trend and increases with the increase in capture 
targets. The trend suggests that the total CCU cost is 
affected by the annual operating costs of carbon capture. 
The total cost was highest during the 9th and 10th years 
owing to the highest capture target (70%), which required 
implementing a capture facility at Source 8 using absorption 
and expanding the facility at Source 3. Four considered 
utilization technologies produce methanol, acetic acid, 
dimethyl ether (DME), and formic acid. Though formic acid 
and DME have a higher unit price, methanol and acetic acid 
production were preferred owing to their higher demand. 

The upper and lower bounds generated by the solution 
approach and the solution time as a function of the number 
of linear segments in MILP relaxation are given in Figure 
4. The relative gap has improved from 4% to 0.015% as the 
number of segments is increased from one to 10. A drastic 
increase in solution time was observed for eight segments 
yielding a relative gap of 0.023% compared to the seven 
segments case, which gives a 0.23% gap. 

The upper and lower bounds generated by the approach 
at different computational times are compared with the ones 
by BARON V22.3.21 in Figure 5. BARON yielded a 
solution with a relative gap of 5% in over 8000 s, while the 
solution approach required 150 s to obtain the same gap 
using one linear segment in the MILP relaxation. Local 
solvers such as DICOPT solved the MINLP problem in over 
250 s, but the optimal solution was 3% larger than the upper 
bound generated by the solution approach in 150 s. 

Figure 4.   Bounds and the solution time for the number of 
linear segments in MILP relaxation. 

Conclusions and Future Directions 

This paper developed a multi-period portfolio 
optimization model to minimize the net cost of CCU in a 
time-varying environment. It also developed an approach to 
solving the MINLP model efficiently. The case study results 
revealed that the solution approach could generate upper 
and lower bounds with less than 5 % relative gap within 150 
s for large instances and yield relative gaps as small as 
0.015%. This work will be extended to include 

transportation costs and CO2 storage options, study the 
effect of uncertain emission source characteristics, annual 
CO2 reduction target, and utilization product prices and 
demands, and analyze the effect of technology readiness 
level (TRL) on the project portfolio. 
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