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Abstract
Global dynamic optimization problems emerge in several engineering applications, such as global optimal con-
trol, parameter estimation, and safety verification. Such problems are often represented as nonlinear optimization
problems with embedded parametric ordinary differential equations (ODEs). Typically, deterministic methods for
global optimization employ subgradients of convex relaxations, to construct lower bounds that provide crucial global
intuition. New results show that convex relaxation subgradients for dynamic optimization problems may be obtained by
adapting standard forward or adjoint sensitivity approaches for smooth problems, and combining these with generalized
McCormick relaxations. This adjoint approach aims to compute subgradients of an optimization problem’s objective
function directly, and ought to be computationally favorable except for small problems. However, established adjoint
implementations are incompatible with established software libraries for evaluating subgradient information of an
ODE’s right-hand side function, such as EAGO.jl and MC++. Thus, this article describes a new fully-automated
proof-of-concept implementation of our adjoint subgradient evaluation approach in C++, by combining the convex
relaxation package MC++, the ODE solver CVODES, and our own differentiation and code generation tools. In this
implementation, the adjoint sensitivity system can be constructed with either the forward mode or the reverse mode of
automatic differentiation, adapting recent subgradient propagation approaches. Numerical examples are presented for
illustration.
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I. Introduction

This article considers sensitivity analysis methods for a
nonlinear dynamic optimization problem with an embedded
system of parametric ordinary differential equations (ODEs),
expressed as:

min
pL≤p≤pU

J(p) := g(t f ,p,x(t f ,p))

s.t. ẋ(t,p) = f(t,p,x), ∀t ∈ (t0, t f ],

x(t0,p) = x0(p).

(1)

In this formulation, p ∈ Rnp denotes system parameters and
x(t,p) ∈ Rnx denotes state variables, solving an ODE over
the time horizon I := [t0, t f ]. J : Rnp → R is an objective
function based on a cost function g : I×P×Rnx → R. We
consider applications in which the optimization problem (1)
must be solved to global optimality. Such global dynamic
optimization problems arise in a wide variety of engineering
applications, including global optimal control (Houska and
Chachuat, 2014), parameter estimation (Esposito and Floudas,
2000), and safety verification (Huang et al., 2002).
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For global optimization problems, deterministic methods
require lower bounds of the globally optimal objective func-
tion value. To construct a lower bound of J in (1) this way,
we seek to minimize a convex relaxation of J, which is typ-
ically built from convex relaxations of the ODE solution x
with respect to p, known as state relaxations. Scott and
Barton (2013) developed a general ODE relaxation frame-
work that describes nonsmooth state relaxations for ODE so-
lutions as the solutions of auxiliary ODE systems. There
are currently two established state relaxation methods (Scott
and Barton, 2013; Song and Khan, 2021) in this framework,
which construct different right-hand side (RHS) functions in
the auxiliary ODE system. The RHS functions constructed
by Scott and Barton (2013) employ generalized McCormick
relaxations (Scott et al., 2011), and we call the resulting state
relaxations the Scott-Barton state relaxations. As an alter-
native, our previous work (Song and Khan, 2021) constructs
auxiliary RHS functions as optimal-value functions with em-
bedded convex optimization problems whose objective func-
tions employ convex and concave relaxations of f.

Subgradients provide global sensitivity information for
convex relaxations, and are used in typical convex minimiza-
tion methods. However, established methods for subgradient
propagation are somewhat limited for ODE state relaxations.



Some established propagation methods (Khan and Barton,
2014, 2017; Hannemann-Tamas et al., 2015) require solv-
ing auxiliary discontinuous ODE systems, and thus require
either tailored solvers that are not yet implemented, or assur-
ance that nonsmoothness in RHS functions will generally be
avoided. Another approach (Khan, 2018) requires either dif-
ferentiability or convexity of the RHS itself, and applies to
earlier state relaxation formulations, but not the later supe-
rior formulations of Scott and Barton (2013); Song and Khan
(2021).

Our new subgradient evaluation framework (Song, 2021;
Song and Khan, 2022) describes valid subgradients for the
two established state relaxations (Scott and Barton, 2013;
Song and Khan, 2021). These subgradients are described as
solving a forward auxiliary parametric ODE system, analo-
gously to classical forward sensitivity analysis (summarized
by Hartman, 2002, Theorem 3.1) for smooth dynamic sys-
tems. For Scott-Barton relaxations, Song and Khan (2022)
also developed an adjoint ODE subgradient evaluation sys-
tem, which essentially extends the adjoint sensitivity analy-
sis methods (Cao et al., 2003) for smooth dynamic systems
to nonsmooth convex relaxations, without the differentiabil-
ity or transversality requirements of Hannemann-Tamas et al.
(2015). In principle, such an adjoint ODE system permits
evaluation of subgradients of the objective function J in (1)
without constructing full generalized derivatives of state re-
laxations.

Thus, this article is concerned with the implementation
of our new adjoint ODE subgradient evaluation system, to
obtain subgradients of convex relaxations of the objective
function J of (1). In this implementation, the adjoint ODE
system’s RHS can be constructed by either the forward-mode
automatic differentiation (AD) procedure for subgradient com-
putation described by (Mitsos et al., 2009), or the correspond-
ing reverse AD mode described by (Beckers et al., 2012). We
expect that this implementation would reduce computational
effort for exploring sensitivity information that is required by
nonsmooth optimizers, and ultimately speed up an overarch-
ing global dynamic optimization method.

This article is structured as follows. Section II establishes
the notational conventions we employ. Section III formal-
izes the goal of this article, and Section IV summarizes rel-
evant mathematical preliminaries. Section V describes our
new proof-of-concept adjoint sensitivity implementation in
C++, and Section VI presents two numerical examples for
illustration.

II. Notation

Throughout this article, scalars will be denoted as lower-
case letters (e.g. ξ ∈ R), vectors will be denoted as boldface
lowercase letters (e.g. ξ ∈ Rn), and the ith row of any vector
is denoted as ξi. Matrices are denoted as boldface uppercase
letters (e.g. M∈Rm×n), and the ith row of a matrix is denoted
as m(i) ∈ Rm. Given any quantity, an over-dot (e.g. ẋ) indi-
cates the partial derivative with respect to t (e.g. ∂x

∂t ). Sets are
denoted as uppercase letters (e.g. X ⊂ Rn). Intervals in Rn

are denoted either as uppercase letters or explicitly in terms

of their bounds (e.g. X := [xL,xU]). The standard Euclidean
norm ‖·‖ and inner product 〈·, ·〉 are employed.

The following definitions of subgradients and subdiffer-
entials are standard in convex analysis.
Definition 2.1. Consider a convex set X ∈ Rn and a convex
function hcv : X → R. A vector scv ∈ Rn is a subgradient of
hcv at y ∈ X if

hcv(x)≥ hcv(y)+ 〈scv,x−y〉 , ∀x ∈ X .

The affine mapping x 7→ hcv(y)+ 〈scv,x−y〉 is called a sub-
tangent of hcv at y. The collection of all subgradients of hcv

at y is the subdifferential ∂hcv(y)⊂ Rn.
Analogously, given a concave function hcc : X → R, a

vector scc ∈ Rn is a subgradient of hcc at y ∈ X if

hcc(x)≤ hcc(y)+ 〈scc,x−y〉 , ∀x ∈ X ,

the affine mapping x 7→ hcc(y)+ 〈scc,x−y〉 is called a sub-
tangent of hcc at y, and the subdifferential ∂hcc(y) is the col-
lection of all subgradients of hcc at y.

III. Problem formulation

To formalize the considered global dynamic optimization
problem (1), we first suppose that the following assumption
holds.
Assumption 3.1. Given an open convex set D⊂Rnx , and an
interval P := [pL,pU]⊂Rnp , suppose that a function x0 : P→
D is Lipschitz continuous. Given an interval I := [t0, t f ] ⊂
R, suppose that a continuous function f : I×P×D→ Rnx

satisfies the following conditions:

• the mapping f(·,p,η) is (Lebesgue) measurable on I, uni-
formly over (p,η) ∈ P×D,

• for each p ∈ P, there exists a solution x(·,p) in D on I of
the following ODE system:

ẋ(t,p) = f(t,p,x), ∀t ∈ (t0, t f ],

x(t0,p) = x0(p),
(2)

• there exists l ≥ 0, so that the following Lipschitz condition
holds for each t ∈ I, p ∈ P, and xA,xB ∈ D:

‖f(t,p,xA)− f(t,p,xB)‖ ≤ l‖xA−xB‖.

Under this assumption, the ODE solution x is unique.
Furthermore, if we replace f with an appropriate Lipschitz
extension on the domain I×P×Rnx , then the global exis-
tence of x is guaranteed.
Definition 3.2. Continuous functions xL,xU : I → Rnx are
called state bounds for (2) on I×P if, xL(t)≤ x(t,p)≤ xU(t)
for all (t,p) ∈ I×P.
Definition 3.3. Given a convex set Y ⊂ Rn and a function
h : Y → Rm, a function hcv : Y → Rm is a convex relaxation
of h on Y if, for all i ∈ {1, · · · ,m}, hi

cv(y) is convex on Y and
hi

cv(y)≤ hi(y), for each y ∈ Y .
Similarly, a function hcc :Y →Rm is a concave relaxation

of h on Y if, for all i ∈ {1, · · · ,m}, hi
cc(y) is concave on Y

and hi
cc(y)≥ hi(y), ∀y ∈ Y .



Definition 3.4 (Scott and Barton (2013)). Continuous func-
tions xcv,xcc : I×P→Rnx are called state relaxations for (2)
on I×P if, for each t ∈ I, xcv(t, ·) is a convex relaxation of
x(t, ·) on P and xcc(t, ·) is a concave relaxation of x(t, ·) on
P.
Definition 3.5 (Song (2021); Song and Khan (2022)). De-
note the interior of P as P̃. For any state relaxations (xcv,xcc)
for (2), functions Scv,Scc : I× P̃→ Rnx×np are state relax-
ation subgradients if, for each i∈ {1, . . . ,nx}, p∈ P̃ and t ∈ I,
scv
(i)(t,p) (resp. scc

(i)(t,p)) is the transpose of a subgradient of
xcv

i (t, ·) (resp. xcc
i (t, ·)) at p.

Given any state relaxations (xcv,xcc) for (2), we consider
the following convex relaxation of (1):

min
p∈Rnp

Jcv(p) := gcv(t f ,p,xcv(t f ,p),xcc(t f ,p))

s.t. pL ≤ p≤ pU,
(3)

where Jcv : Rnp → R is a convex relaxation of J, constructed
by composing a generalized McCormick relaxation (Scott
et al., 2011) gcv : I×P×Rnx ×Rnx → R of g with state re-
laxations for (2).

With state relaxation subgradients (Scv,Scc), the subgra-
dients of Jcv may be computed using established subgradi-
ent propagation approaches, which we summarize in the next
section. However, we expect that computing (Scv,Scc) via a
classical forward sensitivity approach (summarized in (Song,
2021; Song and Khan, 2022)) would be computationally ex-
pensive for problem when nx and np are large. With this in
mind, this article focuses on implementing a newer adjoint
subgradient evaluation system (Song, 2021; Song and Khan,
2022), to evaluate subgradients of Jcv without actually con-
structing (Scv,Scc).

IV. Preliminaries

This section summarizes relevant prior theoretical results
concerning subgradient evaluation for the ODE state relax-
ations of Scott and Barton (2013), when applied to (3). These
summaries are necessarily brief; for rigorous statements and
discussion, the reader is directed to the cited references.

A. Scott-Barton state relaxations

The ODE state relaxations of Scott and Barton (2013)
require access to state bounds xL,xU : I→ Rnx for (2); these
are functions for which

xL(t)≤ x(t,p)≤ xU(t), ∀t ∈ I, p ∈ P,

and can be furnished via Harrison’s bounding method (Har-
rison et al., 1977).

In the Scott-Barton relaxation framework, the strict in-
equality xcv(t,p) < xcc(t,p) can be guaranteed by adding
an arbitrarily small perturbation ε > 0 to the defining ODE
system. Moreover, xL(t) < xcv(t,p) and xcc(t,p) < xU(t)
are guaranteed to be satisfied for sufficiently small P, and
very often in practice. Hence we assume that (Scott and
Barton, 2013) satisfies xL(t) < xcv(t,p) < xcc(t,p) < xU(t).

Under this assumption, the Scott-Barton-McCormick relax-
ations for (2) are as follows:

ẋcv(t,p) = fcv(t,p,xcv(t,p),xcc(t,p)), xcv(t0,p) = xcv
0 (p),

ẋcc(t,p) = fcc(t,p,xcv(t,p),xcc(t,p)), xcc(t0,p) = xcc
0 (p),

(4)

where continuous functions xcv
0 ,xcc

0 : P → Rnx are respec-
tively convex and concave relaxations for x0 on P, and con-
tinuous functions fcv, fcc : I×P×Rnx ×Rnx → Rnx are con-
structed by combining generalized McCormick relaxations
(Scott et al., 2011) of f in (2) with interval flattening opera-
tions, within the interval bounds [xL(t),xU(t)]. This auxiliary
ODE (4) is guaranteed to have valid state relaxations xcv,xcc

as its unique solution.

B. Established subgradient evaluation framework

As shown in (Song, 2021; Song and Khan, 2022), state
relaxation subgradients (Scv,Scc) uniquely solve an auxiliary
parametric ODE system that may be integrated simultane-
ously with (4), constructed as follows.

Considering the interior P̃ of P, functions V,W : I× P̃×
Rnx×np ×Rnx×np → Rnx×np are called subgradient propaga-
tion functions for (fcv, fcc) if, regarding fcv, fcc as flattened
generalized McCormick relaxations of f, V and W are the
corresponding operations that would be evaluated as cvsub
and ccsub in MC++ (Chachuat, 2001) or as cv_grad and
cc_grad in McCormick.jl (Wilhelm and Stuber, 2020). These
are computed in MC++ and McCormick.jl according to a tai-
lored forward mode of automatic differentiation (AD) (Mit-
sos et al., 2009), although in principle they could be com-
puted by a corresponding reverse AD mode (Beckers et al.,
2012).

Suppose we have subgradient propagation functions V,W
available. Consider functions Scv

0 ,Scc
0 : P̃→ Rnx×np , so that

for each i ∈ {1, . . . ,nx} and p ∈ P̃, scv
(i),0(p) is the transpose

of a subgradient of xcv
i,0 at p, and scc

(i),0(p) is the transpose of a
subgradient of xcc

i,0 at p. Consider the following ODE system:

Ṡcv(t,p) = V(t,p,Scv(t,p),Scc(t,p)), Scv(t0,p) = Scv
0 (p),

Ṡcc(t,p) = W(t,p,Scv(t,p),Scc(t,p)), Scc(t0,p) = Scc
0 (p).

(5)

For each p∈ P̃, the uniqueness and local existence of Scv(·,p)
and Scc(·,p) on I are guaranteed (Song and Khan, 2022), and
Scv,Scc are state relaxation subgradients for (2).

C. Adjoint subgradient evaluation system

State relaxation subgradients (Scv,Scc) can be computed
numerically by solving (5) in the “forward mode” of increas-
ing t, analogously to the classical forward sensitivity analy-
sis approach (Hartman, 2002, Theorem 3.1) for smooth sys-
tems. However, (Scv,Scc) may be computationally expensive
to evaluate when nx and np are large. Here we note that,
in smooth dynamic optimization, adjoint sensitivity analysis
(Cao et al. (2003)) provides an alternative way to evaluate
derivatives of an objective function without computing the



partial derivatives of state variables with respect to system
parameters.

Given an ODE system as described in (2), let λ ∈ Rnx

be an adjoint variable, and denote the partial derivatives of
a function by its subscript. The sensitivity of a function
g(t f ,p,x) with respect to p at t f is computed through the fol-
lowing adjoint ODE system directly:{
λ̇(t) =−fT

xλ(t),
λ(t f ) = gT

x ,
(6)

and thus dg
dp (t f ) = λT(t0)xp(t0) + gp(t f ) +

∫ t f
t0 λTfp dt. The

term
∫ t f

t0 λTfp dt can be computed simultaneously during nu-
merical integration of (6).

Song (2021); Song and Khan (2022) extended this ad-
joint sensitivity analysis approach to nonsmooth subgradient
evaluation for the problem (3) with (2) embedded, as sum-
marized in the following proposition. Through this approach,
reformulating the ODE system (5) into an adjoint ODE for-
mulation allows evaluating subgradients of Jcv with respect
to p without computing (Scv,Scc).

Here we suppose that subgradient propagation functions
(V,W) are available, and that these are affine with the form:[

V(t,p,M,N)
W(t,p,M,N)

]
≡ΘA(t,p)

[
M
N

]
+ΘB(t,p).

As shown by Song and Khan (2022), this is actually the case
for the generalized McCormick relaxations.
Proposition 4.1 (Song (2021); Song and Khan (2022)). Con-
sider a lower-bounding problem (3), where state relaxations
(xcv,xcc) are constructed by solving (4). Given a fixed point
p̃ ∈ P̃, and a transposed subgradient ρ of gcv(t f , ·, ·, ·) at
(p̃,xcv(t f , p̃),xcc(t f , p̃)), the transpose s̃ of some subgradient
of Jcv at p̃ is described as follows. Let λ : I → R2nx be a
Carathéodory solution (Filippov, 1988) on I of the following
adjoint ODE system:

λ̇(t) =−Θ
T
A(t, p̃)λ(t), λ(t f ) = ρT. (7)

Then, s̃ is represented as:

s̃≡ (λ(t0))
TSC

0 +ρ+
∫ t f

t0
(λ(t))T

ΘB(t, p̃)dt. (8)

The term
∫ t f

t0 (λ(t))T
ΘB(t, p̃)dt can be integrated simultane-

ously with (7).

V. Implementation

A proof-of-concept C++17 implementation was devel-
oped to evaluate subgradients of the objective function re-
laxation Jcv in (3) with respect to p, with the ultimate goal of
aiding deterministic algorithms for global dynamic optimiza-
tion. In this implementation, Harrison’s bounding method
(Harrison et al., 1977) is applied with MC++ v1.0 (Chachuat,
2001) to compute state bounds (xL,xU) automatically, and
the right-hand sides fcv, fcc in the Scott-Barton relaxations
framework (4) are also constructed automatically via MC++.

The corresponding adjoint ODE subgradient evaluation sys-
tem is established according to (7), by using Julia’s oper-
ator overloading capabilities to generate the corresponding
adjoint right-hand sides as C++ code. The Scott-Barton re-
laxations and this adjoint system are integrated together by
CVODES v5.8.0 (Hindmarsh et al., 2005), which is an ODE
solver capable of performing adjoint sensitivity analysis. Our
overall approach is depicted in Figure 1.

In our Julia code generation step, we can employ either
the forward-mode AD of (Mitsos et al., 2009) or the reverse-
mode AD of (Beckers et al., 2012) methods to construct the
required right-hand sides. The forward mode subgradient
AD for computing (V,W) was implemented via MC++, and
we have developed a ReverseADforVW module in Julia v1.0.5
(Bezanson et al., 2017) to aid the implementation of reverse
mode subgradient AD (Beckers et al., 2012) in C++. For
any user-defined factorable function, ReverseADforVW auto-
matically constructs its computational graph and generates
C++ code for computing subgradient propagation functions
(V,W) in reverse mode. Furthermore, a C++ class called
RevMcCormick was developed to store subgradient values for
each intermediate quantity of a factorable function during the
reverse AD sweep.

For comparison, we also evaluate the subgradients of Jcv

in (3) with respect to p using finite difference approximation
in MATLAB. However, we note that it is possible for a finite
difference approximation of subgradients of Jcv to be poor
even in the absence of numerical error (Song et al., 2021),
and the numerical ODE solution contributes additional error,
so these are unreliable in global dynamic optimization.

All computation in this section was conducted in a Lenovo
Laptop with 1.8 GHz AMD Ryzen 7 4800U CPUs and 16.0GB
of RAM.

VI. Examples

This section presents two numerical examples using our
new implementation. First, the following example shows that
the new adjoint ODE subgradient evaluation system (7) ap-
pears to yield valid subgradients of an optimization prob-
lem’s objective function, when the adjoint system is con-
structed using forward-mode AD.
Example 6.1. Consider the following nonlinear ODE sys-
tem from (Song and Khan, 2021, Example 2) with one state
variable x on a time interval I := [0.0,0.15] and one parame-
ter p ∈ P := [−2,2]:

ẋ(t) = p(x2−1), t ∈ I

x(0) =−2,
(9)

Suppose we seek to minimize x(0.15, p) in (1). A corre-
sponding lower-bounding problem with (9) embedded is then:

min
p∈P

Jcv(p) := xcv(t f , p)

s.t. −2≤ p≤ 2,
(10)

where the function Jcv : P→ R is a convex relaxation of J ≡
x(t f , ·) on P based on a convex relaxation xcv : I×P→ R of
x in (9) on P.



Figure 1: An overview of the new implementation

Scott-Barton relaxations (xcv,xcc) for (9) on I×P were
generated numerically by applying our C++ implementation,
with a subgradient s̃ of Jcv at p̃ :=−1 generated numerically
by applying our C++ implementation of the new adjoint ODE
system (7). This adjoint ODE system’s RHS was automati-
cally constructed with forward-mode subgradient AD (Mit-
sos et al., 2009) for constructing (V,W).

In this example, s̃ is numerically equal to the subgradi-
ent of xcv(t f , p̃) with respect to p̃. Similarly, the subgradient
of xcc(t f , p̃) with respect to p̃ can be computed by construct-
ing a concave relaxed problem of (1). For comparison, we
also applied finite difference approximation in MATlAB for
which the established state relaxation is differentiable.

Figure 2 illustrates the objective function J, along with
convex/concave relaxations and subtangent lines derived from
s̃ and finite difference approximations. Observe that the gen-
erated subtangents do indeed appear to be correct.

Figure 2: The objective function J in Example 1 (dot-
ted black), along with corresponding Scott-Barton relax-
ations (solid red), subtangent lines obtained by a new adjoint
ODE system (solid blue) and finite difference approxima-
tions (dashed yellow), plotted against p and t f = 0.15 fixed.

In the following example, we show that the adjoint ODE
subgradient evaluation system (7) can employ the reverse-
mode subgradient AD (Beckers et al., 2012) for computing
(V,W) to generate valid subgradients for an objective func-
tion in lower-bounding problems.
Example 6.2 (adapted from Scott and Barton (2013)). Con-
sider parameters p∈ P := [−6.5,6.5]× [0.01,0.5], and a time

interval I := [0.0,2.0]. Consider the following instance of (2):

ẋ1 =−(2+ sin(p1/3))x2
1 + p2x1x2, x1(0,p) = 1,

ẋ2 = sin(p1/3)x2
1− p2x1x2, x2(0,p) = 0.5.

(11)

Suppose we seek to minimize x(2.0, p) in (1). A correspond-
ing lower-bounding problem with (11) embedded is then:

min
p∈P

Jcv(p) := xcv
2 (t f ,p)

s.t. pL ≤ p≤ pU,
(12)

where the function Jcv : P→ R is a convex relaxation of J ≡
x(t f , ·) on P based on a convex relaxation xcv : I×P→ R of
x in (11) on P.

Scott-Barton relaxations (xcv,xcc) for (9) on I×P were
generated numerically by applying our C++ implementation.
Then, a subgradient s̃ of Jcv at p̃ := (1,0.5) was generated
numerically by applying our C++ implementation of the new
adjoint ODE system (7), this time using reverse-mode AD to
construct this system automatically.

Figure 3: The objective function J in Example 2 (dot-
ted black), along with corresponding Scott-Barton relax-
ations (solid red), subtangent lines obtained by a new ad-
joint ODE system (solid blue) and finite difference approx-
imations (dashed yellow), plotted against p1 with p2 = 0.5
and t f = 2 fixed.

Figure 3 depicts the solution of (11), state relaxations
(xcv,xcc), subtangents derived from s̃ and corresponding fi-
nite difference approximations. Noting the visual agreement



between these subtangents and their approximations, our im-
plementation of the new adjoint ODE subgradient propaga-
tion system (7) constructed using reverse-mode AD appears
to generate valid subgradients of Jcv in this case.

VII. Conclusion

For parametric ODE relaxations established by Scott and
Barton (2013), we have developed a proof-of-concept im-
plementation of our new adjoint ODE subgradient evalua-
tion approach (Song, 2021; Song and Khan, 2022) in C++17.
This implementation constructs the adjoint ODE system (7)
using either forward-mode (Mitsos et al., 2009) or reverse-
mode (Beckers et al., 2012) subgradient AD for computing
the crucial subgradient propagation functions (V,W). Nu-
merical examples based on our implementation show that the
new adjoint ODE system (7) do indeed appear to compute
subgradients for a convex relaxation of the objective function
of a dynamic optimization.

Future work will involve embedding this adjoint ODE
subgradient evaluation implementation within methods for
deterministic global dynamic optimization, and to assess their
ability to enhance computational performance.
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