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Abstract
With the integration of computation, networking, and physical process components to seamlessly combine hardware and
software resources to improve process efficiency, cybersecurity has become increasingly important for reliable process
control, process operation, and supply chain management in the chemical process industries. This paper provides an
overview of recent works on cybersecurity issues in the area of process control, process operation and supply chain.
We start with an overview of recent cyber-attack detection and mitigation works via machine learning (ML) and model
predictive control (MPC) to detect and handle intelligent cyber-attacks. Several most common intelligent cyber-attacks
in industrial control systems are first presented, followed by machine learning detection methods and resilient control
strategies with encryption-decryption tools to achieve secure communication in the sensor-controller and controller-
actuator links. Novel control architectures with inherent robustness to prevent cyber-attacks are then presented. We
continue with an overview of cybersecurity issues in process operations and supply chains as well as the interface between
information technology and operational technology. Finally, we discuss recent efforts on the interface of cybersecurity
and process safety and conclude with a discussion of open issues in this emerging research field.
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Introduction
Over the last two decades, internet communication and

wireless networks have been starting to replace or comple-
ment existing wired point-to-point communications in tra-
ditionally large-scale process operations (e.g., Christofides
et al. (2007)). As these new developments bring improved
efficiency to the existing system, the heightened concern for
unestablished, industrial cybersecurity at all levels has also
been rising following cyber-attacks that disrupt standard op-
erations. Due to the connectivity and interaction between the
cyber and physical components in chemical processes, op-
erational cybersecurity requires a different strategy from the
traditional information technology (IT) approach. This is a
consequence of key differences between IT and OT (opera-
tional technology): a) OT employs purpose-built technolo-
gies and protocols, b) OT systems are typically kept much
longer than IT systems where most companies cannot eas-
ily perform upgrades or implement changes to the technol-
ogy, c) upgrades or changes in the OT space generally re-

quire plant shutdowns which are costly, and as a result, may
lead to equipment running for years, making it difficult for its
support, and d) OT is very much concerned with reliability
and intellectual property. Despite these differences that raise
challenges in implementing cybersecurity solutions in the OT
space, recent cyber-attacks have driven the need for develop-
ing and implementing novel cybersecurity solutions in the
OT space. Most companies and organizations recognize to-
day the need to deploy a combination of traditional IT cyber-
security products and services with tailored operational tech-
nology (OT)-specific cybersecurity solutions. The failure to
ensure cybersecurity in OT can lead to unsafe and potentially
catastrophic consequences in a chemical process operation,
causing critical asset damage and human injuries. During
the past two decades with the facilitation of technology and
processes, the industry has exposed the vulnerabilities of un-
established cybersecurity systems following the rise of cyber-
attacks. From 2000 to 2019, a reported 77 cybersecurity-
related incidents were uncovered in critical infrastructure in-
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cluding the process industry with a vast majority of attacks
on energy and oil production industries (Iaiani et al., 2021).
The lack of adequate prevention of cyber-attacks endangers
the balance of the economy, environment, and society. For
instance, in 2021, the oil pipeline system in the United States,
Colonial Pipeline, endured a cyber-attack, which stalled the
transportation of oil to much of the eastern United States,
causing skyrocketing gas prices (Tsvetanov and Slaria, 2021)
and volatile supplies of fuel. In 2015, Ukraine encountered
the BlackEnergy malware attack that forced over 200,000
people without power and electricity (Böröcz et al., 2021).
The aforementioned examples of cyber-attacks are stark re-
minders of the repercussions of cyber-attacks and their im-
pact on societal welfare, which are reasons for a greater need
for well-established cybersecurity systems. Therefore, the
design and implementation of cyber-defense in OT domain
that involves industrial control, operation, and supply chain
management systems remain an ongoing systems and control
engineering research issue of great practical importance.

Chemical and manufacturing industries have adopted
firewall isolation, multi-factor authentication, and developed
cyber protection protocols over the past decade to improve
cybersecurity, particularly in the context of IT tasks. How-
ever, with the integration of IT and OT in the framework
of Industry 4.0 and the development of intelligent, targeted
cyber-attacks that have access to the technical details of the
control system and production processes in the plant that aim
to modify the operator and control system actions applied to
a chemical process, the need for OT task cybersecurity has
grown significantly. Earlier efforts to enhance the cybersecu-
rity of the OT space started around 2010 but gained momen-
tum around 2017 by taking advantage of industrial process
operation and automation groups. Today, OT cybersecurity is
viewed as a key concern across the entire chemical sector and
aims to establish cybersecurity standards and raise the level
of protection across chemical plants. In particular, to enhance
cybersecurity and physical security of process operations, the
fundamental cybersecurity research roadmap (a framework,
whose key components are summarized in Fig. 1) proposed
originally by National Institute of Standards and Technology
(2018) (NIST) that has influenced the efforts of many com-
panies including Dow, has proposed a five-step plan to detect
and mitigate the impact of cyber-attacks with recovery plans:
identify, detect, protect, respond, and recover. However,
within this five-step framework, there are many key research
questions that need to be considered. Specifically, despite a
series of recent efforts over the past five years, designing effi-
cient detection methods and suitably optimal, yet secure, op-
eration control and supply chain strategies for chemical pro-
cesses in the presence of intelligent cyber-attacks remains an
important, fundamental research issue. Furthermore, while
the development of most of the existing cyber-attack detec-
tion methods still depends partly on human analysis, the in-
creased use of data and the design of stealthy cyber-attacks
pose challenges to the development of timely detection meth-
ods with high detection accuracy. In the following paragraph,
we provide an overview of results on the development of ma-
chine learning-based cyber-attack detection schemes as this

is a topic central to cybersecurity approaches in the OT space,
and it is covered in greater detail later on in the manuscript
(please see ”Machine Learning-Based Cyber-Attack Detec-
tion” section).

Machine learning, a method of data analysis that can help
engineers learn from data, identify patterns, and make de-
cisions with minimal human intervention, has attracted in-
creasing attention and has shown promising potential for use
in the detection of cyber-attacks. Over the last decade, ma-
chine learning has been widely used in solving classifica-
tion, regression, and clustering problems due to the rapid
development of machine learning algorithms, computing re-
sources/platforms, and many free and open-source software
libraries. To detect cyber-attacks, machine learning meth-
ods can be utilized to solve classification problems to deter-
mine the existence of cyber-attacks in the chemical plant and
its control systems using an abundance of industrial process
data that is generated by machines and devices under normal
operations and under cyber-attacks. Machine-learning meth-
ods deployed for cyber-attack detection were presented in a
number of works (Tsai et al., 2009; Buczak and Guven, 2015;
Ozay et al., 2015). Using various machine-learning classifi-
cation methods, cyber-attacks on power systems were dis-
tinguished from process disturbances in Hink et al. (2014),
and a behavior-based intrusion detection algorithm was de-
veloped to identify the type of attack (Junejo and Goh, 2016).
Similarly, the detection of cyber-attacks in a chemical pro-
cess was realized via the development of feedforward arti-
ficial neural networks in Wu et al. (2018), where compro-
mised signals were rerouted to a secure sensor upon detec-
tion. In Shon and Moon (2007), a hybrid approach using
support vector machines and genetic algorithms was imple-
mented and compared to existing network intrusion detec-
tion systems in industry. An overview of recent research di-
rections for applying supervised and unsupervised machine
learning techniques to address the problem of anomaly de-
tection was presented in Omar et al. (2013). Among many
machine learning methods, neural network and many of its
variances have demonstrated remarkable performance. For
instance, a Long Short-Term Memory (LSTM) recurrent neu-
ral network (RNN) was used to build a classifier model for
the intrusion detection system in Kim et al. (2016). The
anomaly detection algorithm outlined in Goh et al. (2017)
also used a LSTM network as a predictor to model normal
behavior of a water treatment testbed and used the Cumula-
tive Sum (CUSUM) method to identify anomalies. A multi-
layer data-driven cyber-attack detection system was proposed
in Zhang et al. (2019) where four classification methods in-
cluding k-nearest-neighbor, decision tree, bootstrap aggre-
gating, and random forest, were used to detect cyber-attacks
including man-in-the-middle, denial-of-service, data exfiltra-
tion, data tampering, and false data injection attacks based
on network and host system data. Many variants of convolu-
tional neural networks with different topologies, parameters,
and structures were analyzed for the task of intrusion detec-
tion in cybersecurity of network traffic in Vinayakumar et al.
(2017), which have shown significant improvement over con-
ventional classifiers. These recent literature contributions



have demonstrated the feasibility of machine-learning algo-
rithms in anomaly detection including anomalies caused by
cyber-attacks. At any large-scale chemical production plant,
a tremendous amount of data is being collected and archived
daily in the historian. Using neural-network algorithms, the
data can be utilized to train effective detection devices for
monitoring and guarding the plant against malicious cyber-
attacks.

Besides the detection of cyber-attacks, efforts are made
to improve cyber and physical security through a variety of
fundamental operation and control methods that address the
following aspects: security by design, advanced recovery, ad-
vanced threat detection, secure remote access, and combined
safety (Fig. 1). This work will discuss recent works within
the elements of Fig. 1 in context of cybersecurity of process
control and operation systems and supply chains. Specif-
ically, to guarantee the process performance and to miti-
gate the impact of cyber-attacks, process control systems,
e.g., model predictive control (MPC) and economic MPC
(EMPC), utilizing encrypted signals may be employed to op-
erate the process with secure remote access in the presence
of cyber-attacks. With regard to security by design and ad-
vanced recovery, a cyber-secure two-tier control architecture
can be developed and integrated with ML-based detectors to
enhance process cybersecurity by reconfiguring the control
system to stabilize the process at the original steady state
upon the detection of a cyber-attack. Additionally, to ac-
count for the interactions among control, cybersecurity, and
safety systems, the integration of attack detection and con-
trol policies as well as combined control and safety systems
have been pursued and will be discussed. Finally, directions
for future research in the context of cybersecurity of process
control, process operation systems, and supply chains will be
discussed.

Figure 1: The focus areas of operational technology cyberse-
curity.

Class of Nonlinear Process Systems
To describe mathematically the various types of cyber-
attacks as well as detection and mitigation control methods,
we need to introduce a suitable notation, a class of process
systems, and specific stabilizability assumptions. Specifi-
cally, we consider the class of continuous-time nonlinear sys-
tems represented by the following state-space model:

ẋ = F(x,u,w) := f (x)+g(x)u+h(x)w, x(t0) = x0 (1)

where the n-dimensional state vector is denoted by x ∈ Rn

and u∈Rk denotes the k-dimensional manipulated input vec-
tor bounded by u ∈ U . The set U defines the maximum
value umax and the minimum value umin for input vectors,
i.e., U := {umin ≤ u ≤ umax} ⊂ Rk. w ∈W is the disturbance
vector, where W := {w∈Rq | |w| ≤ θ, θ≥ 0}. f (·), g(·), and
h(·) are sufficiently smooth vector and matrix functions of di-
mensions n×1, n×k, and n×q, respectively. We assume that
f (0) = 0 without loss of generality, and therefore, the origin
is a steady-state of Eq. 1. Additionally, we assume there ex-
ists a feedback controller that can stabilize the system at the
origin. Specifically, we assume there exists a continuously
differentiable Lyapunov function V (x) and a Lyapunov-based
controller u = Φ(x) ∈ U such that the origin of the nominal
system (w(t) ≡ 0) is rendered asymptotically stable for the
states in an open neighborhood D around the origin. The sta-
bility region Ωρ := {x∈D |V (x)≤ ρ}, ρ> 0 is characterized
as a level set of V within D. Throughout this manuscript, |·|
is used to denote the Euclidean norm of a vector. Set subtrac-
tion is denoted by “\”, i.e., A\B := {x ∈ Rn | x ∈ A,x /∈ B}.

Background and Description of Cyber-Attacks
From the perspective of process control systems as well as
process operation and supply chains, cyber-attacks are mali-
cious signals that can compromise actuators, sensors, com-
munication channels between devices, and the operation and
control system algorithms. With respect to control system cy-
bersecurity, cyber-attacks modify the control implementation
using process and control system information in an attempt
to disrupt closed-loop performances. A comprehensive re-
view in Ashibani and Mahmoud (2017) includes an analy-
sis on security issues, requirements, and possible solutions at
various layers of the OT architecture. A review of possible
weaknesses in corporate networks and in production envi-
ronments is presented in Asghar et al. (2019). In Amin et al.
(2012), a hierarchical attack on automated canal systems was
described with various deception attacks in different cyber
layers and a field-operational test attack was reported on the
Gignac canal system located in Southern France.
Sensor attacks strategically modify the feedback measure-
ments of the attacked states, from which the controller re-
ceives and subsequently computes a control action that is
different or contrary to its actual optimal value based on the
true plant state. Actuator attacks also have access to the plant
model and controller design details, which aim to diverge the
system away from its ideal operating point. However, instead
of altering the sensor measurements, actuator attacks modify
the direction and magnitude of the control actions without be-
ing detected by sensor monitoring tools. Common detection
strategies include designing excitation signals that are super-
imposed on the control commands to increase the detectabil-
ity of the attack and developing an input observer to detect
attacks as well as estimate the magnitude of the attack (Muni-
raj and Farhood, 2019). In addition to the detection of actua-
tor attacks, an isolator was developed to identify the affected
actuator(s) in the network. As intelligent cyber-attacks are
adaptive to the process and control system behavior, we may
assume that they are as powerful as having access to the mea-
surement feedback signals (sensor attack), control command
signals (actuator attack), or auxiliary information such as the



threshold and bias parameters in detection methods such as
cumulative sum (CUSUM) (Mohanty et al., 2007; Cárdenas
et al., 2011). Being aware of the process and controller be-
havior, the attacks will therefore have information on the sta-
bility region of the process, as well as the existing alarm trig-
gers imposed on the input and output variables. Among sen-
sor cyber-attacks, some common attack types are denial-of-
service attacks, replay attacks, and deception attacks – such
as min-max, geometric, and surge attacks (Cárdenas et al.,
2011). The formulations of the aforementioned three decep-
tion and replay attacks are presented below.

1) Min-Max Cyber-attack
Min-max attacks are designed to induce the maximum desta-
bilizing impact within the shortest time without being de-
tected. In order to stay undetectable by classical detection
methods such as CUSUM, which detects cyber-attacks by
calculating the cumulative sum of the deviation between the
expected and measured states based on the process model
of Eq. 1, min-max attacks are introduced using the falsified
state values furthest from the equilibrium point (minimum or
maximum) such that the system does not exit the closed-loop
stability region Ωρ. In this way, the min-max attacks ensure
that the attacked state measurements fed to the control sys-
tem do not exit the stability region and do not trigger any
conventional detection alarms. The min-max attack can be
formulated as follows:

x̄(ti) = min
x∈Rn

/max
x∈Rn

{x | V (x(ti)) = ρ}, ∀ i ∈ [i0, i0 +La] (2)

where ρ defines the level set of the Lyapunov function V (x)
that characterizes the stability region Ωρ for the system of
Eq. 1. x̄ is the compromised sensor measurement at each
sampling step, i0 marks the time instant that attack is added,
and La denotes the time duration of the attack in terms of
sampling periods.

2) Replay Cyber-attack
In a replay attack, the attacker first records segments of the
system output corresponding to a nominal operating condi-
tion where large oscillations occur. The attacker then inter-
cepts and resets the current process state measurements to
these pre-recorded values. Replay attacks can be represented
by the following equations:

x̄(ti) = x(tk), ∀ k ∈ [k0,k0 +La], ∀ i ∈ [i0, i0 +La] (3)

where x(tk) is the true plant measurement, La represents the
length of the attack in terms of sampling periods, and x̄ is
the series of replay attacks introduced at time ti0 duplicating
previous plant measurements that are recorded starting from
time tk0 . As previous plant outputs are obtained from legiti-
mate closed-loop measurements and given by secure sensors,
these state values are supposedly inside the stability region
and the operating envelope. Therefore, by replicating these
values and feeding them back to the controller, classical de-
tectors will not be able to recognize the abnormality caused
by replay cyber-attacks.

3) Geometric Cyber-attack
Geometric cyber-attacks aim to deteriorate the closed-loop

system stability slowly at the beginning, then geometrically
increase their impact as time progresses, with their maximum
damage achieved at the end of the attack duration. Initially,
the attacker adds a small constant β to the true measured out-
put where β is well below the maximum allowable value as
defined in a min-max attack. At each subsequent time step,
this offset is multiplied by (1+α), where α ∈ (0,1), until
it reaches the maximum allowable attack value. Geometric
attacks can be written in the following form:

x̄(ti) = x(ti)+β× (1+α)i−i0 , ∀ i ∈ [i0, i0 +La] (4)

where x̄ is the compromised sensor measurement, β and α

are parameters that define the magnitude and speed of the
geometric attack.

4) Surge Cyber-attack
Surge attacks act similarly as min-max attacks initially to
maximize the disruptive impact for a short period of time;
then they are reduced to a lower value by introducing a
bounded noise ηl ≤ η(tu) ≤ ηu (ηu and ηl are the upper
and lower bounds of the noise, respectively) such that the cu-
mulative error between state measurements and their steady-
state values will not exceed the threshold defined by some
statistic-based detection methods such as CUSUM. The for-
mulation of a surge attack is presented below:

x̄(ti) = min
x∈Rn

/max
x∈Rn

{x | V (x(ti)) = ρ}, if i0 ≤ i ≤ i0 +Ls

x̄(ti) = x(ti)+η(ti), if i0 +Ls < i ≤ i0 +La

(5)

where i0 is the start time of the attack, Ls is the duration of
the initial surge, and La is the total duration of the attack in
terms of sampling periods. To illustrate the pattern and effect
of the four cyber-attack types discussed above, Fig. 2 shows
the true concentration values and the cyber-attack-modified
sensor values of the concentration when min-max, replay, ge-
ometric, and surge attacks target this sensor.
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Figure 2: True and measured values of concentration in de-
viation variable form when (a) min-max, (b) replay, (c) geo-
metric, and (d) surge cyber-attacks are introduced at the sen-
sor.



Machine Learning-Based Cyber-Attack Detection
The first step in the cybersecurity roadmap is to detect and
identify cyber-attacks by developing advanced threat detec-
tion and protection methods. Cyber-attack detection car-
ried out using data-based approaches, and more specifically,
machine-learning methods, have been studied (Huang et al.,
2007; Omar et al., 2013; Agrawal and Agrawal, 2015). Ma-
chine learning can be utilized to develop detection algorithms
based on the time-series data from the dynamic operation of
the system of Eq. 1 (Wu et al., 2018). Depending on the
training data, the neural networks can be used to distinguish
between “attack” and “no attack” (two classes), or to identify
the type of attack (multiple classes). While under attack, data
collected from individual sensors can also be used to locate
the corruption where the neural network model distinguishes
between multiple classes with each class representing one
problematic sensor. In our study, a feedforward artificial neu-
ral network is used for supervised classification. Through a
series of nonlinear transformations, each layer in the neu-
ral network consists of a series of nonlinear functions of the
weighted sum of inputs or neurons (i.e., activation functions),
yielding values for the neurons in the subsequent layer from
the previous layer.

Figure 3: A two-hidden-layer feedforward neural network
structure with inputs p(x) being a nonlinear function of state
measurements within the detection window NT , and output
being the probability of each class label that indicates the
status and/or type of cyber-attack.

The structure of a neural network model with two hidden lay-
ers is shown in Fig. 3, with each input unit representing a
nonlinear function p(·) of the full state measurements at each
sampling time and an output vector representing the proba-
bility of each class label. The two-hidden-layer feedforward
neural network is mathematically formulated as follows:

θ
(1)
j = g1(

NT

∑
i=1

w(1)
i j p(x̄(ti))+b(1)j ) (6a)

θ
(2)
j = g2(

h1

∑
i=1

w(2)
i j θ

(1)
i +b(2)j ) (6b)

θ
(3)
j = g3(

h2

∑
i=1

w(3)
i j θ

(2)
i +b(3)j ), ypred = [θ

(3)
1 ,θ

(3)
2 , ...,θ

(3)
H ]T

(6c)

where θ
(l)
j , j = 1, ...,hl , l = 1,2 are the neurons in the first

(l = 1) and second (l = 2) hidden layers, respectively. The

output node is represented by θ
(3)
j , j = 1, ...,H, where H is

the number of class labels. In general, the number of lay-
ers is determined through trial-and-error to achieve the best
classification accuracy and computational efficiency. The in-
put node p(x(ti)) receives the state measurement at time ti,
where i = 1, ...,NT is the length of the time-varying trajec-
tory. w(l)

i j and b(l)j represent the weights connecting neurons i
and j in consecutive layers (from l−1 to l), and the bias term
on the jth neuron in the lth layer, respectively. Based on the
information received from the previous layer as well as the
optimized biases, weights, and the nonlinear activation func-
tion gl , each layer calculates an output and sends it to the next
layer. Examples of the activation functions include the soft-
max function g(z j) =

ez j

∑
H
i=1 ezi

, the hyperbolic tangent sigmoid

transfer function g(z) = 2
1+e−2z −1, and some other common

functions such as the sigmoid, radial basis functions, and
Rectified Linear Unit (ReLu). The output node ypred com-
putes the probabilities of each class label, from which the
class with the highest probability will indicate the status (i.e.,
no attack or under attack) or the type of cyber-attack that will
depend on the requirement of the machine-learning detector.
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Figure 4: The sliding alarm verification window with detec-
tion activated every Na sampling steps where triangles repre-
sent Di and the window length is Ns.

The classification accuracy of the test dataset is utilized to
demonstrate the performance of the neural network since the
test dataset is independent of the training dataset and is not
used in training the NN model. The classification accuracy
(i.e., the test accuracy) of the trained NN model is calcu-
lated by the ratio of the number of data samples with cor-
rect predicted classes to the total number of data samples
in the testing dataset. Additionally, to reduce false alarm
rates, a sliding alarm verification window in Fig. 4 is im-
plemented, where the number of positive attack detections
Di = 1 within this window needs to surpass a threshold be-
fore a cyber-attack alarm is confirmed. The size of this verifi-
cation window and the threshold value are determined based
on the closed-loop evolution of the process as these two pa-
rameters have a direct impact on the detection time and alarm
rate.

Attack-Resilient MPC Approaches Exploiting Sensor Re-
dundancy
Tracking MPC. Upon the detection of an attack on the sen-
sors providing real-time state measurements to the control
system, advanced recovery strategies have been developed to
mitigate the impact of attacks. Specifically, one of the most



common approaches adopted in industry is to switch to an
accurate measurement from redundant, secure sensors. We
present the resilient control strategies in the framework of
Lyapunov-based MPC that can be represented by the follow-
ing optimization problem:

J = min
u∈S(∆)

∫ tk+N

tk
Lt(x̃(t),u(t))dt (7a)

s.t. ˙̃x(t) = F(x̃(t),u(t),0) (7b)
x̃(tk) = x(tk) (7c)
u(t) ∈U, ∀ t ∈ [tk, tk+N) (7d)
V̇ (x(tk),u(tk))≤ V̇ (x(tk),Φ(x(tk))),

if V (x(tk))> ρmin (7e)
V (x̃(t))≤ ρmin, ∀ t ∈ [tk, tk+N), if V (x(tk))≤ ρmin (7f)

where x̃(t) is the predicted state trajectory, S(∆) is the set
of piecewise constant functions with period ∆, and N is
the number of sampling periods in the prediction horizon.
V̇ (x(tk),u(tk)) represents the time derivative of V (x), i.e.,
∂V
∂x F(x(tk),u(tk),0). Φ(x) is the stabilizing control law as-
sumed for the nonlinear system of Eq. 1. The cost func-
tion Lt(x̃(t),u(t)) satisfies Lt(0,0) = 0 and Lt(x̃(t),u(t))> 0,
∀(x̃(t),u(t)) ̸= (0,0) such that the minimum value of the cost
function will be attained at the equilibrium of the system of
Eq. 1. We assume that the states of the closed-loop system
are measured at each sampling time instance and will be used
as the initial condition in the MPC optimization problem of
Eq. 7 in the next sampling step. Specifically, based on the
measured state x(tk) at t = tk, the above optimization problem
is solved to obtain the optimal solution u∗(t) over the predic-
tion horizon t ∈ [tk, tk+N). The first control action of u∗(t),
i.e., u∗(tk), is sent to the control actuator to be applied over
the next sampling period. Then, at the next sampling time
tk+1 := tk +∆, the optimization problem is solved again, and
the horizon will be rolled one sampling time. Specifically,
the MPC optimization problem minimizes the objective func-
tion of Eq. 7a over the prediction horizon t ∈ [tk, tk+N) sub-
ject to the constraints of Eqs. 7b-7f that represent the process
model, the state measurement used as the initial condition for
MPC at t = tk, the input constraints, and the two Lyapunaov-
based constraints for ensuring closed-loop stability, respec-
tively. Once the attack is verified through the sliding alarm
window, the MPC of Eq. 7 switches to the state measure-
ment from redundant, secure sensors as the initial condition
x(tk) for Eq. 7c for the remaining time of process operation
such that the closed-loop stability is maintained by bound-
ing the state trajectory within Ωρ and ultimately driving the
state into the terminal set Ωρmin around the origin. Note that
the back-up sensors are not connected to the online system
to ensure they remain secured to any sensor cyber-attacks
that have access to sensor measurement through network. In
addition to physically isolating the problematic sensors, the
impact of sensor attacks can be mitigated by reconstructing
tampered state measurements and restoring system stability
via machine-learning-based state observers (Wu et al., 2020).
An exemplar trajectory under attack-resilient MPC is shown
in Fig. 5.

Figure 5: A schematic representing the stability region Ωρ

and the target set Ωρmin around the steady-state x∗s . The tra-
jectory first moves away from the origin due to cyber-attack
and finally reconverges to Ωρmin under the MPC of Eq. 7 after
the detection of the cyber-attack.

Economic MPC. In addition to utilizing sensor redundancy in
the context of tracking MPC, one can develop a similar ap-
proach for Economic MPC (EMPC), which is another form
of MPC that directly integrates process economic considera-
tions with process control to dynamically optimize process
economics through time-varying operation. A number of
past works have been developed to address stability, safety,
and computational efficiency issues in EMPC (Heidarinejad
et al., 2012; Angeli et al., 2011; Müller et al., 2013; Ellis
et al., 2014; Wu et al., 2018a). To handle the cyber-attacks
that compromise both closed-loop stability and process eco-
nomic benefits under EMPC, the attack-resilient Lyapunov-
based EMPC design, which combines open-loop and closed-
loop control, is developed and represented by the following
optimization problem:

J = max
u′∈S(∆)

∫ tN0+Np

tN0

le(x̃(t),u′(t))dt (8a)

s.t. ˙̃x(t) = F(x̃(t),u(t),0) (8b)
u′(t) ∈U, ∀ t ∈ [tN0 , tN0+Np) (8c)

x̃(tN0) = x̄(tN0) (8d)
V (x̃(t))≤ ρsecure, ∀ t ∈ [tN0 , tN0+Np),

if x̄(tN0) ∈ Ωρsecure (8e)
V̇ (x̄(tN0),u)≤ V̇ (x̄(tN0),Φ(x̄(tN0)),

if x̄(tN0) ∈ Ωρ\Ωρsecure (8f)

where Ωρsecure is the set that the process will be operated
within such that the system will not immediately lose sta-
bility when under malicious cyber-attacks. Np is the num-
ber of sampling periods in one material constraint period,
which is the prediction horizon for open-loop control. Since
it is common that chemical processes are subject to periodic
feed stock constraints, which are specified as part of the in-
put constraint set U , we also require, for example, the quan-
tity of feed materials to be limited within a fixed period of
time tNp . During this period of time (termed material con-
straint period), the total feed material is constrained to a con-



stant value C, i.e., 1
tNp

∫ tNp
t0 um(τ)dτ =C, where um represents

feed material used at every sampling period. Therefore, the
material consumption constraint renews every tNp . If the to-
tal operation time is longer than one material constraint pe-
riod, this material consumption constraint results in cyclic
operation of the plant, and consequently, the cyclic behavior
of the state-space trajectory. At the start of a new material
constraint period, the total consumption limit is renewed, as
new feed materials become available to be used again for the
next constraint period. In the presence of cyber-attacks, the
attack-resilient EMPC is implemented as follows. At time tk,
the EMPC in the open-loop control mode receives the state
measurement x(tk) and computes the optimal trajectory of Np
control action that will be applied in a sample-and-hold man-
ner until the end of this material constraint period. In the
case that there are no cyber-attacks or process disturbances,
this optimal trajectory of control actions would yield max-
imum economic benefits while meeting all input and state
constraints. While at the closed-loop operation, if the feed-
back measurement is no longer reliable and cannot be used
for closed-loop control, the open-loop control actions that
were calculated at the beginning of the material constraint
period will be used as a substitute until the end of the mate-
rial constraint period.

Figure 6: Demonstration of closed-loop operation under
EMPC around a secure operating region showing the nom-
inal state trajectory under no attacks and state measurements
and true state evolution under a cyber-attack.

At the end of the material constraint period, a cyber-attack
detector is activated to determine any occurrence of an at-
tack and the reliability of the control system is reassessed.
The detector will provide information on the security status
of the feedback measurements over the latest material con-
straint period. Upon mitigating the impact of a confirmed
attack and/or confirming the security of the control system,
closed-loop control with secure feedback measurement can
be reactivated as a new material constraint when the period
starts. The operation of EMPC around a secure operating re-
gion is illustrated in Fig. 6 and the attack-resilient strategy of
switching from closed-loop to open-loop control is illustrated
in Fig. 7.

Figure 7: Demonstration of attack-resilient EMPC control
strategy by switching from closed-loop control actions to
pre-calculated open-loop control actions when the state mea-
surements reach the boundary of the secure operating region.

Integrated Attack Detection and Control Policies: Addi-
tional Recent Results
A key issue for cyber-attacks in chemical process industries
is that they can impact process safety by directly adjusting
process states or potentially the equipment condition (Nie-
man et al., 2020). This motivates a fundamental understand-
ing of the nature of the interactions between the control de-
sign and cyber-attacks on various components of the control
loop. For example, Durand (2018) elucidated a challenge
with attempting to thwart the falsification of sensor mea-
surements using a randomized control law selection. This
challenge prevents attacks from causing an issue that may
require certain control laws to be used in different regions
of state-space, which an attacker can use to provide attacks
that are destabilizing. Randomness was further explored in
the context of taking advantage of noise in quantum com-
putation for adding randomness to control action selection
in Rangan et al. (2022) and for similar reasons, was not able
to thwart cyber-attacks on the sensor measurements. How-
ever, designing cyberattack detection policies in tandem with
control laws can aid in forcing attacks to reveal themselves
by setting expectations for what a non-attacked process state
trajectory should appear as using the control theory and then
by detecting whether the control-theoretic requirements are
achieved using the detection policy (in the spirit of other
active attack detection policies such as dynamic watermark-
ing (Satchidanandan and Kumar, 2016)).
Integrated attack detection and control policies have been ex-
plored in the context of Lyapunov-based economic model
predictive control (LEMPC) (Heidarinejad et al., 2012) of
nonlinear systems when sensors (Durand and Wegener, 2020;
Oyama and Durand, 2020), actuators (Rangan et al., 2022),
or sensors and actuators at the same time (Oyama et al.,
2022) can be attacked. These policies have considered in-
dicators of attacks such as whether the Lyapunov function
is decreasing along the state measurement trajectory, is com-



paring state predictions with state measurements, or is adding
redundancy in state estimates that can be used to provide
cross-checking of whether state measurements are correct.
These provide different safety guarantees (in the sense that
the closed-loop state is maintained within an expected re-
gion of state-space at least for some time after an attack)
when the sensors are attacked, when the actuators are at-
tacked, or when different detection policies are combined and
both sensors and actuators are attacked. The case that sen-
sor measurements are attacked has also been considered for
the case that the process dynamics could change at the same
time (Oyama et al., 2021; Rangan et al., 2021). Through an
extension of the LEMPC-based integrated detection and con-
trol policies to this case through a two-tier attack detection
policy, safety for at least some time period after an attack on
the sensors, process dynamics change, or both can be guaran-
teed under sufficient conditions. An example of further prac-
tical consideration for the cybersecurity of control systems is
enabling the evaluation of attacks on sensors, which might be
considered in a next-generation manufacturing process, such
as in image-based control systems, for which simulations of
how replacing or falsifying images used in a level control
loop might impact the tank level was explored using the 3D
graphics software toolset Blender (Oyama et al., 2022).
Additionally, as discussed in the previous section, achieving
process control resiliency to cyber-attacks requires the ability
to detect the presence of a cyberattack targeting the process
control system. For some classes of cyber-attacks, the ability
to detect attacks is impacted by the process control system
design (Narasimhan et al., 2022b). To this end, a controller
parameter screening methodology was developed to select
control parameters that do not mask the impact of cyber-
attacks on detection schemes, rendering cyber-attacks de-
tectable by the detection schemes (Narasimhan et al., 2022b).
The analysis in Narasimhan et al. (2022b) revealed that the
control system design impacted the ability to detect multi-
plicative attacks with residual-based detection schemes. Ad-
ditionally, the control system design may also impact cyber-
attack identification and mitigation, albeit more work in this
direction is needed. While the selection of such controller
parameters can enhance the ability to detect attacks, it can
also degrade the performance of the attack-free closed-loop
system relative to the performance under control parame-
ters selected based on conventional design criteria. To bal-
ance this trade-off, an active attack detection methodology
that employs the controller parameter switching was devel-
oped (Narasimhan et al., 2022a). The detection methodol-
ogy involves switching between two sets of control param-
eters. The first parameter set is chosen based on the con-
ventional design criteria and the other based on the abil-
ity to detect a range of cyber-attacks. Since switching may
excite the process dynamics resulting from the potential of
false alarms, a switching condition was presented to mini-
mize false alarms (Narasimhan et al., 2022c).

Encrypted Control
In addition to detection and recovery, another way to enhance
the cybersecurity of control systems is to establish secure re-
mote access. Encryption-based control using the encryption

of the communication signals (e.g., semi-homomorphic en-
cryption methods) can be developed to ensure secure com-
munication in the sensor-controller and controller-actuator
links in the presence of cyber-attacks. Homomorphic En-
cryption (HE) allows the performing of arithmetic opera-
tions such as addition and multiplication in the ciphertext
(encrypted message) space such that no decryption on mes-
sages is needed in order to perform these operations. Un-
like conventional control schemes, encrypted control systems
compute encrypted inputs based on encrypted states and en-
crypted controller parameters without intermediate decryp-
tions by the controller to ensure the confidentiality of safety-
critical system states, control actions, and controller parame-
ters in the closed-loop system. Specifically, encryption-based
control systems will first encrypt state measurements at the
sensor and transmit the ciphertexts to the cloud where the
encrypted control actions are computed. Once the actuator
receives the encrypted control actions, it decrypts the cipher-
texts and applies the control actions in the form of plain-
text to the nonlinear system of Eq. 1. Since data remains
encrypted during transmission and optimization of control
actions, cyber-attacks targeting the communication in the
sensor-controller and controller-actuator links are effectively
prevented. Paillier encryption, one of the additive homo-
morphic cryptosystems, has been widely used whose secu-
rity guarantees rely on a standard cryptographic assumption
called Decisional Composity Residuocity (DCR) (Paillier,
1999; Kogiso and Fujita, 2015; Darup et al., 2017, 2021).
In Darup et al. (2017), an encrypted explicit MPC scheme
was designed using the Paillier cryptosystem for a linear con-
strained system, where the authors developed the quantized
control law as a linear piecewise affine function. The prop-
erty of homomorphism allows the computing of the encryp-
tion of the sum of two signals (i.e., m1 +m2) given only the
encryption of m1 and m2 and the public key. It is important
to note that Pallier Cryptosystem or any other Partially Ho-
momorphic Encryption (PHE) scheme allows the encrypted
evaluation of the control input (using encrypted states and
controller parameters) only for a linear control law of the
form u = Kx+b. Hence, the design of encrypted controllers
for nonlinear systems is not straightforward. Specifically, the
key of Paillier cryptosystem is generated as follows.

1. Select two random large prime numbers p and q such
that gcd(pq,(p−1)(q−1)) = 1 where gcd(i, j) refers
to the greatest common divisor of i, j ∈ N;

2. Calculate M = pq and λ = lcm(p − 1,q − 1) where
lcm(·, ·) denotes least common multiple;

3. Select g as a random integer where g ∈ ZM2 := {g ∈
Z | 1 < g < M2};

4. Ensure that n divides the order of g i.e., g > M;

5. Calculate u =
(
L
(
gλ mod M2

))−1
mod M where

L(x) = x−1
M and the inverse refers to modular inverse;

6. If the inverse does not exist, go back to step 3 and
change the value of g; if the inverse does exist, the pub-
lic key (M,g) and the private key (λ,u) are obtained;



Using the keys generated, the data m ∈ ZM (e.g., state mea-
surements x of the nonlinear system of Eq. 1) is encrypted by
first selecting a random integer r ∈ ZM and then calculating
the ciphertext as EM(m,r) = c = gm × rM mod M2. The de-
crpytion of a message c ∈ ZM2 is calculated by DM(c) = m =
L(cλ mod M2)× u mod M. Since the Paillier Encryption al-
lows the addition operations in encrypted form, the sum of
plaintext messages m1,m2 ∈ ZM such that m1+m2 ∈ ZM can
be calculated by the following equation for all r1,r2 ∈ ZM .

EM(m1 +m2,r1r2) = EM(m1,r1)EM(m2,r2) mod M2

= c1c2 mod M2 (9)

It is demonstrated in Eq. 9 that the addition operation can be
carried out with the encrypted numbers directly, and there-
fore, no decryption is needed at this stage. Following the
additive homomorphism property, a semi-encrypted product
can be computed as follows. Given m1,m2 ∈ ZM such that
m1m2 ∈ ZM , the multiplication of m1 and m2 can be written
as addition of m1 with itself for m2 times. Therefore, using
the additive homomorphism property of Eq. 9, the following
equation is obtained for all r ∈ ZM .

EM(m1m2,rm2) = EM(m1,r)m2 mod M2 = cm2
1 mod M2 (10)

Note that the product calculated in Eq. 10 is semi-encrypted
since only c1 is encrypted and m2 is not. This also ex-
plains why Paillier cryptosystem is not a fully homomorphic
scheme.
Since the messages/numbers to be encrypted in Paillier cryp-
tosystem are required to be a set of integers, quantization
of the signals is needed to map real numbers to integers
to encrypt-decrypt the communication signals in the closed-
loop system of Eq. 1 (Darup et al., 2017). Specifically, we
first map the set of real numbers to the set Ql1,d as follows.

gl1,d : R → Ql1,d

gl1,d(a) := arg min
q∈Ql1 ,d

|a−q| (11)

where Ql1,d is a set of rational numbers between −2l1−d−1

and 2l1−d−1 − 2−d separated from each other with a reso-
lution of 2−d , i.e., ∀q ∈ Q, ∃β ∈ {0,1}l1 , such that q =

−2l1−d−1βl +∑
l1−1
i=1 2i−d−1βi. Subsequently, we map the set

of rational numbers to the set of integers Z2l2 as follows:

fl2,d : Ql1,d → Z2l2

fl2(q) := 2dq mod 2l2
(12)

While the sensor data is encrypted and utilized by the con-
troller to compute control actions without decryption, the
control actions need to be decrypted before sending to the
actuator to be applied to the system of Eq. 1. Therefore, the
inverse operation f−1

l2,d
: Z2l2 → Ql1,d is defined as follows:

f−1
l2,d

(m) :=
1
2d

{
t −2l2 if t ≥ 2l2−1

t otherwise
(13)

While Eq. 13 maps the decrypted inputs back to the ratio-
nal number space, it can be observed that there will be some

error in the input due to the difference between the actual
control input and the one mapped to its closest rational num-
ber within the set Ql1,d . Therefore, to address this issue, the
control system should be designed to ensure a certain de-
gree of robustness with respect to potential encryption pro-
cess errors. For example, the quantizations of the state mea-
surements and controller matrices can be modeled as arti-
ficial disturbances to the system of Eq. 1 (i.e., h(x)w) and
accounted for in the design of a robust control scheme.

Figure 8: Encrypted control scheme for nonlinear processes.

Darup et al. (2017) describes the encrypted control law eval-
uation only for a linear system having the control law of the
form u = Kx+b. This limitation is imposed by the nature of
the Partially Homomorphic Cryptosystems which only allow
the addition and multiplication operations in the encrypted
message space. Thus, in the case of nonlinear systems or
nonlinear control laws, it is important to modify our ap-
proach. A nonlinear control law can be defined as u = Φ(x).
The sensor measures the states, encrypts them using the Pub-
lic Key and sends them to the controller establishing a se-
cure communication of the signals. The controller then de-
crypts the states and performs the nonlinear control law cal-
culations. Once the control action has been computed, the
controller then encrypts it (using the Public Key) and sends
it to the actuator. At the actuator, the control input is de-
crypted and the control action is applied to the nonlinear sys-
tem. We use quantization functions to convert the states and
controller parameters to the integer message space in order to
prepare them for encryption. This quantization of real num-
bers induces some loss of data or quantization errors. Thus,
in the case of nonlinear systems, it is important to model
these quantization errors as disturbances to the system and
the controller should be able to handle these disturbances.
A schematic of this encrypted control scheme for nonlinear
systems is shown in Fig. 8. More work needs to be done in
this direction to address the stability, robustness, and perfor-
mance issues for explicit nonlinear control as well as model
predictive control.

Control Architecture Design for Handling Cyber-attacks:
Decoupling Stability and Performance Objectives
To enhance the robustness of MPC to cyber-attacks, a two-
tier control architecture was designed by Chen et al. (2020b)
to allow convenient reconfiguration of the control system to
stabilize the process to its operating steady state upon suc-
cessful detection of cyber-attacks. Specifically, we consider



the following class of continuous-time nonlinear systems:

ẋ(t) = f (x(t),uc(t),ua(t)) (14a)
yc(t) = hc(x(t)), ya(t) = ha(x(t)) (14b)

where x ∈ Rnx is the state vector, yc(t) ∈ Rnyc represents the
vector of state measurements that are sampled continuously
(e.g., reactor temperature), and ya(t) ∈ Rnya represents the
vector of networked state measurements that may be sampled
asynchronously at t = tk (e.g., reactor product concentration);
uc and ua are the manipulated input vectors, which are con-
strained by [uc ∈ Rmuc ,ua ∈ Rmua ] ∈ U . Through yc and ya,
we assume measurement of the full state vector x can be ob-
tained at tk. The cyber-secure control architecture integrates a
lower-tier control system that uses the dedicated sensor mea-
surements, yc(t), to ensure stability of the steady-state of the
closed-loop system and an upper-tier, high-performance con-
trol system (e.g., MPC) that uses both dedicated (yc(t)) and
networked (ya(t)) sensor measurements to improve closed-
loop performance significantly above what could be achieved
with the lower-tier control system.

Figure 9: Two-tier control-detector architecture showing
lower-tier controllers using continuous secure sensor mea-
surements and an upper-tier MPC using both continuous
(secure) and networked (vulnerable to cyber-attacks) sensor
measurements, where secure back-up sensors, if available,
can be used to replace the compromised networked sensor
for upper-tier MPC (Chen et al. (2020b)).

Specifically, we assume that for the lower-tier con-
troller, there exists an explicit feedback controller uc(t) =
φc(yc(x)) ∈ U that can stabilize the closed-loop system of
Eq. 14 using only the continuous measurements yc(t). The
Lyapunov-based MPC (LMPC) of Eq. 7 can be used as the
upper-tier controller to fully utilize the networked (poten-
tially asynchronous) state measurements ya(t) and to com-
pute ua(t) that improves the overall closed-loop performance
over what can be achieved with φc(yc) while not jeopardizing
the stability properties achieved by ua(t). Upon detection of
an attack on the sensors providing networked asynchronous
state measurements to the two-tier control system, the con-
trol system reconfiguration logic allows for two mitigation
plans. First, the control system can deactivate the upper-
tier controller completely and operate the system under the
stabilizing lower-tier control system only, which uses cyber-
secure, dedicated sensor measurements. Since the lower-tier

controllers are capable of driving the process to its operat-
ing steady state with secure continuous measurements, the
effect of the cyber-attacks is fully eliminated in the closed-
loop system in this case and the process is stabilized to the
operating steady-state. Second, if a sensor isolation detector
is also implemented, it will be activated once a sensor attack
is verified. Subsequently, the upper-tier controller can choose
to switch the compromised sensor to its redundant back-up
sensor with secure readings. By abandoning the corrupted
sensor and using its back-up sensor using a secure sensor-
controller communication, the upper-tier controller remains
functional and is able to drive the process to its steady state
with better closed-loop performance. In the extreme case
that both continuous and asynchronous sensor measurements
are attacked, the upper-tier controller will be shut off and the
lower-tier controllers will reroute their continuous measure-
ment signals from the corrupted sensors to their respective
secure back-up sensors. The two-tier control design, where
the networked sensor measurements, ya(t), used only by the
upper-tier controller may be under potential cyber-attack, is
illustrated in Fig. 9. In addition to shutting off the upper-tier
control system, the use of encryption of the signals of the
upper-tier control system may be employed at the expense
of reduced closed-loop performance in order to improve its
robustness to signal quantization errors.

Application to a Chemical Process Example
We use a chemical process example as a benchmark to
demonstrate the application of integrated data-based attack
detectors and cyber-secure MPC schemes that minimize the
impact of cyber-attacks on process operation. Specifically,
machine learning detectors via feedforward neural network
are developed using sensor measurements under nominal and
noisy operating conditions in Chen et al. (2020b), and ap-
plied online to a simulated reactor-reactor-separator process.
Two reactions take place in series (A → B → C) in both
CSTRs and the overhead vapor from the flash tank is recycled
to the first CSTR. The performance-improvement LMPC re-
ceives asynchronous measurements on the mass fractions of
A and B in each of the three vessels (xA1, xB1, xA2, xB2, xA3,
xB3, all of which can be subject to cyber-attacks), and ma-
nipulates the fresh feed flowrate into the second CSTR, F20.
Three safety critical PI controllers receive continuous mea-
surements on the temperatures of the three vessels (T1,T2,T3)
and manipulate the heat inputs into each vessel Q1, Q2, and
Q3, respectively.
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Figure 10: State-space plot showing the evolution of true
process states (blue trajectories) and attacked state measure-
ments (red trajectories) over two material constraint periods
under the resilient LEMPC when (a) min-max, (b) geomet-



ric, and (c) surge attacks, targeting the temperature sensor
are successfully detected by a NN detector at the end of the
first material constraint period, t = 0.06 hr, where the dash-
dotted ellipse is the stability region Ωρ and the dashed ellipse
is Ωρsecure (Chen et al. (2020a)).

The process description and parameter values are given in
Chen et al. (2020b), and are omitted here. An upper-tier
Lyapunov-based MPC, which uses networked sensor mea-
surements to improve closed-loop performance, is coupled
with lower-tier cyber-secure explicit feedback controllers to
drive a nonlinear multivariable process to its steady state. Al-
though the networked sensor measurements may be vulnera-
ble to cyber-attacks, the two-tier control architecture ensures
that the process will stay immune to destabilizing malicious
cyber-attacks. Simulation results demonstrate the effective-
ness of these detection algorithms in detecting and distin-
guishing between multiple classes of intelligent cyber-attacks
that may occur at different locations of the sensor network.
Upon the detection of cyber-attacks, the two-tier control ar-
chitecture allows convenient reconfiguration of the control
system to stabilize the process to its operating steady state.
The training and testing accuracy for detecting the presence
of an attack, the attack type, or the location of the attack are
given in Table 1. Furthermore, a modified Lyapunov-based
EMPC using combined closed-loop and open-loop control
action implementation schemes was proposed in Chen et al.
(2020a) to optimize economic benefits in a time-varying
manner while maintaining closed-loop process stability and
resiliency against various types of cyber-attacks. Data-based
cyber-attack detectors are developed using sensor data via
machine-learning methods and these detectors are periodi-
cally activated and applied online in the context of process
operation. With FNN detectors trained and applied online,
the closed-loop state evolution under the resilient EMPC is
shown in Fig. 10 where the process is exposed to three types
of sensor cyber-attacks (Chen et al., 2020a).

Table 1: Detection accuracies of NN detectors trained under
different scenarios of noise level, attack types, and detection
purposes (Chen et al. (2020b)).

Scenario Training (%) Testing (%)
Nominal, One Attack 99.6 92.2
With Noise, One Attack 99.9 100
With Noise, Two Attacks 98.2 91.4
With Noise, Sensor Isolator 99.6 99.0

Control Architecture Design for Handling Cyber-attacks:
Decentralized and distributed control
In addition to constructing control architectures where con-
trol systems are structured according to closed-loop sta-
bility and performance objectives, decentralized and dis-
tributed control systems provide an efficient solution to
many challenges of controlling large-scale industrial pro-
cesses (Christofides et al. (2013)) and may provide certain
advantages with respect to robustness to cyber-attacks in
comparison with centralized control systems. We will dis-
cuss decentralized and distributed control systems in the con-
text of model predictive control. In a decentralized MPC sys-
tem, no communication is established between the different

local controllers, therefore each controller does not have any
knowledge on the control actions calculated by the other con-
trollers. While this may lead to reduced closed-loop perfor-
mance, it may be beneficial in the context of cyber-attacks as
the control systems can operate independently. Specifically,
for each subsystem, a separate MPC is designed to regulate
the states x j of the subsystem j, j = 1, ...,Nsys, and optimize
the respective control actions. Each decentralized MPC j,
j = 1, ...,Nsys can be represented by the following optimiza-
tion problem:

J j = min
ud j∈S(∆)

∫ tk+N

tk
L(x̃ j(t),ud j (t))dt (15a)

s.t. ˙̃x j(t) = Fj(x̂(t),ud j (t),0) (15b)

x̂(t) = [x̄1(tk) · · · x̄ j−1(tk) x̃ j(t) x̄ j+1(tk) · · · x̄Nsys(tk)] (15c)

ud j (t) ∈U j, ∀ t ∈ [tk, tk+N) (15d)

x̃ j(tk) = x̄ j(tk) (15e)

∂V (x̄(tk))
∂x j

(Fj(x̄(tk),ud j (tk)))

≤ ∂V (x̄(tk))
∂x j

(Fj(x̄(tk),Φ j(x̄(tk)))), if x̄(tk) ∈ Ωρ\Ωρs (15f)

V (x̃(t))≤ ρs, ∀ t ∈ [tk, tk+N), if x̄(tk) ∈ Ωρs (15g)

The control actions optimized by MPC j, denoted by ud j ,
will be applied to the corresponding control actuators in sub-
system j. Note that while full-state feedback measurements
could be available to all MPCs, each MPC in the decentral-
ized MPC only has the information of the process dynamics
of its respective subsystem.
To achieve better closed-loop control performance compared
to decentralized MPC, distributed MPC systems may be
developed to take advantage of some level of communi-
cation that may be established between the different con-
trollers. Specifically, iterative distributed MPC systems (one
of several DMPC architectures discussed in Christofides
et al. (2013)) allow signal exchanges between all controllers,
thereby allowing each controller to have full knowledge of
the predicted state evolution along the prediction horizon and
yielding better closed-loop performance via multiple itera-
tions at the cost of more computational time. For example,
both controllers communicate with each other in a two-MPC
system to cooperatively optimize the control actions. The
two controllers solve their respective optimization problems
independently in a parallel structure and at the end of each
iteration they will exchange solutions with each other. The
optimization problem of MPC 1 in an iterative distributed
LMPC at iteration c = 1 is presented as follows:

J = min
ud j∈S(∆)

∫ tk+N

tk
L(x̃(t),ud j (t),Φi(x̃(t)))dt (16a)

s.t. ˙̃x(t) = F(x̃(t),ud j (t),Φi(x̃(t)),0) (16b)

ud j (t) ∈U j, ∀ t ∈ [tk, tk+N) (16c)

x̃(tk) = x̄(tk) (16d)

∂V (x̄(tk))
∂x

(F(x̄(tk),ud j (tk),Φi(x̄(tk))))

≤ ∂V (x̄(tk))
∂x

(F(x̄(tk),Φ(x̄(tk)))), if x̄(tk) ∈ Ωρ\Ωρs (16e)

V (x̃(t))≤ ρs, ∀ t ∈ [tk, tk+N), if x̄(tk) ∈ Ωρs (16f)

where the variables and constraints are defined following
those in the decentralized MPC design. For each control



action j corresponding to subsystem j, i = 1, ...,Nsys, i ̸= j,
which refers to the control actions of all other subsystems
except for j. At iteration c > 1, after the exchange of the
optimized input trajectories u∗d j

(t),∀t ∈ [tk, tk+N) between all
MPCs j = 1, ...,Nsys, the optimization problem of MPC j is
as follows:

J = min
ud j∈S(∆)

∫ tk+N

tk
L(x̃(t),ud j (t),u

∗
di
(t))dt (17a)

s.t. ˙̃x(t) = F(x̃(t),ud j (t),u
∗
di
(t),0) (17b)

ud j (t) ∈U j, ∀ t ∈ [tk, tk+N) (17c)

x̃(tk) = x̄(tk) (17d)

∂V (x̄(tk))
∂x

(F(x̄(tk),ud j (tk),u
∗
di
(tk))

≤ ∂V (x̄(tk))
∂x

(F(x̄(tk),Φ(x̄(tk)))), if x̄(tk) ∈ Ωρ\Ωρs (17e)

V (x̃(t))≤ ρs, ∀ t ∈ [tk, tk+N), if x̄(tk) ∈ Ωρs (17f)

While both distributed and decentralized MPC systems are
designed to alleviate the computational complexity for solv-
ing large-scale optimization problems for multiple subsys-
tems as opposed to centralized MPC, the vulnerability to cy-
ber intrusions also increases with the expansion of commu-
nication networks. The work in Chen et al. (2021) investi-
gates the effect of different types of standard cyber-attacks
on the operation of nonlinear processes under centralized,
decentralized, and distributed model predictive control sys-
tems. The robustness of the decentralized control architec-
ture over distributed and centralized control architectures was
analyzed. Considering the inherent structure and operating
requirement of both systems, the decentralized control sys-
tem was found to exhibit greater robustness against potential
cyber-attacks at the expense of a small performance loss ver-
sus centralized and distributed MPC.

While isolation and handling of actuator faults in nonlin-
ear processes under continuous, synchronous measurements
have been studied in Gani et al. (2007); Mhaskar et al.
(2008); Ohran et al. (2008); McFall et al. (2008); Ohran et al.
(2008), detection and handling of cyber-attacks in coopera-
tive, distributed control architectures for nonlinear processes
is a challenging task due to cyber-attack intelligence. Addi-
tionally, it cannot be addressed with the aforementioned pro-
cess monitoring and control methods dealing with the cen-
tralized control systems because cyber-attacks may not only
affect the sensor measurements going to the controllers but
also the inter-controller communication. Therefore, as shown
in Fig. 11 (Chen et al. (2021)), a machine-learning-based de-
tector can be developed to detect and isolate cyber-attacks
in the context of sequential DMPC. Subsequently, a resilient
control strategy can be employed that orchestrates the recon-
figuration of the control system. This strategy determines if
the MPC algorithms should be reconfigurated or new backup
control loops (e.g., switching from distributed MPC to de-
centralized MPC where there is no communication between
the controllers) should be activated in the presence of cyber-
attacks in order to preserve closed-loop system stability.
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Figure 11: Sequential distributed MPC with machine-
learning-based detector.

Application to a Chemical Process Example
A chemical process example of two CSTRs in series with the
reaction A → B taking place in both reactors is simulated in
Chen et al. (2021) to demonstrate the robustness of decentral-
ized control architectures and the effectiveness of the neural-
network detection scheme in maintaining the closed-loop sta-
bility of the system. The process description and parameters
can be found in Chen et al. (2021) and are omitted here. The
following Figs. 12-13 from Chen et al. (2021) show the true
closed-loop state trajectories under the decentralized control-
detector system. The proposed control-detector architecture
and detection methodology can be extended to other appli-
cations of model predictive control or other methods of ad-
vanced control systems, in general.
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Figure 12: Closed-loop trajectories of true states. The two-
CSTR process is operated under the decentralized MPC sys-
tem when surge attacks are added to the temperature sensor
T1 of the first CSTR at t = 0.30 hr and detected by the 2-
class FNN detector at t = 0.32 hr, after which all sensors are
switched to their secured back-up sensors and the true pro-
cess states are driven back to the ultimate bounded region
Ωρs around the operating steady state (Chen et al. (2021)).

Cybersecurity in Operations and Supply Chains
As new technologies such as wireless networks and inter-
net communication bring efficiency to the existing chemi-
cal plants, the integration of digitalization in process oper-
ations and supply chains is exposing chemical plants to un-
known cybersecurity risks. These issues go, of course, be-
yond chemical plants and influence the operation of all indus-
trial sectors of the economy (e.g., (Sun et al., 2018; Smetana



et al., 2021; Perez et al., 2021)). Cyber-attacks targeting op-
erations and supply chains can lead to loss of production,
unplanned downtime, quality degradation, and disturbances
to cash-to-order processes and the supply chain.
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Figure 13: Closed-loop trajectories of true states. The two-
CSTR process is operated under the decentralized MPC sys-
tem when geometric attacks are added to the temperature sen-
sor T1 of the first CSTR at t = 0.30 hr and detected by the 2-
class FNN detector at t = 0.35 hr, after which all sensors are
switched to their secure back-up sensors and the true process
states are maintained within the ultimate bounded region Ωρs

around the operating steady-state (Chen et al. (2021)).

To enhance the security of plant operations in the OT cy-
ber space, a plant engagement model is typically developed
to: 1) assess the current state of cybersecurity, 2) identify
and catalog all networked computing devices, and 3) create a
plan of improvements. Additionally, conventional IT meth-
ods such as anti-virus software, operating system patches,
network firewalls and the use of multi-factor authentication
for remote access are also utilized to provide another layer
of security in process operations. When developing OT se-
curity methods for critical plants and manufacturing opera-
tions, it should be kept in mind that many chemical plants
were designed decades ago with OT networks that are not
able to handle cyber-attacks. To ensure secure, safe, and re-
silient operations, operators should develop a recovery plan
to restore plant operations when a cyber-attack occurs and
impacts plant operations. Some common practices for op-
erators to proactively integrate cybersecurity into operations
include alerts design, operation monitoring, attack identifi-
cation and investigation, event reporting, log review, event
analysis, and incident handling and response.
Similarly, cybersecurity in supply chain cannot be viewed as
an IT problem only. A diagram of a supply chain network
with common cyber-secure IT and OT approaches is shown
in Fig. 14. Since a supply chain includes a large number
of sectors such as product design, manufacturing, and distri-
bution via the combination of hardware and software, cloud
or local storage, and distribution mechanisms, a cyber-attack
on a single supplier may remain undetected for a long time
until it leads to chain reaction and eventually compromises
the entire network. The cybersecurity risks in supply chain
may involve a number of aspects such as sourcing, vendor
management, supply chain continuity and quality, transporta-
tion security and many other functions across the enterprise.
To improve the cybersecurity of supply chain management,
companies have adopted a variety of practices such as in-

cluding security requirements in every contract, automation
of manufacturing, testing regimes to reduce the risk of human
intervention, validating third-party code and software before
using, and limited software access to vendors (Ghadge et al.,
2019; Cheung et al., 2021; Sobb et al., 2020).

Figure 14: Cyber-secure supply chain with IT and OT inte-
gration.

The recent survey article by Enayaty-Ahangar et al. (2020)
provides a survey of optimization models and methods
for cyberinfrastructure security in the past two decades in
which it is demonstrated that various optimization methods
such as game theory, mixed integer programming, and lin-
ear/nonlinear programming have been widely used to im-
prove cyberinfrastructure security in many ways involving
prevention/protection, detection, mitigation, response and re-
covery from a cyber-threat. In Sun et al. (2018), recent
research results on the cybersecurity of a smart grid were
discussed and a cyber-power system test-bed was used to
demonstrate the impact of attacks and the effectiveness of
cybersecurity solutions. More recently, Smetana et al. (2021)
introduced the integration of food system technologies with
cyber-physical system technologies and pointed out the need
for the development of efficient defence mechanisms to ad-
dress potential cyber-food-safety risks and hazards.
In another recent work, Cheung et al. (2021) provided an
overview of research works on cybersecurity in supply chain
management. It was pointed out that the measures for en-
hancing cybersecurity can be classified into three broad cat-
egories: precautionary measures, real-time recovery mea-
sures, and aftermath measures, which are very similar to
the practices introduced for process control systems (i.e., ad-
vanced threat detection, security by design, secure remote
access, and advanced recovery) and reviewed in the earlier
part of this manuscript. Specifically, some common precau-
tionary measures for supply chains are the identification of
vulnerabilities in cyberspace, secure access, authentication,
data protection, firewall, and gateway development. Ma-
chine learning, game theory, Bayesian analysis, and attack
path generation and analysis methods have been applied to
identify and locate vulnerabilities while blockchain technol-
ogy has been widely used for data protection and authen-
tication (Kshetri, 2017; Taylor et al., 2020). For example,
game theory has been widely used in the supply chain to op-
timize a defender’s strategy by modeling each player’s (i.e.,
attack and defender) behavior and strategies and to capture
the interaction between two opposing players. To provide a



high-level description of this approach, consider an attacker
with a set of Na potential attacking strategies {sa,i} ∈ Sa
and a defender with a set of Nd potential defense strategies
{sd,i} ∈ Sd , where Sa,Sd are the space of all possible strate-
gies for attacker and defender, respectively, and i represents
the strategy index (Colbert et al., 2020). Given an attack
strategy i and a defense strategy j, the attacker suffers a cost
Ca,i j to penetrate the security layer and accomplish its goal
and the defender spends a cost Cd,i j to apply its strategy. Ad-
ditionally, given a strategy tuple {i, j}, it is assumed that the
attacker succeeds in attacking the lth system with probability
pl(sa,i,sd, j), l = 1, ...,N. Assuming the attacker gains a ben-
efit b by successfully attacking a network of N subsystems
and both the attacker and defender have complete knowledge
of the system, the utility ua for the attacker can be calculated
as follows:

us(sa,i,sd, j) = b ·Πl=N
l=1 pl(sa,i,sd, j)−Ca,i j (18)

Similarly, the utility ud for the defender is as follows:

ud(sa,i,sd, j) = b · [1−Π
l=N
l=1 pl(sa,i,sd, j)]−Cd,i j (19)

Therefore, for both the attacker and defender, the objective
is to select the optimal strategy that maximizes their utili-
ties, for which a number of strategy selection methods have
been developed in literature. Interested readers may refer
to Zhu et al. (2010); Do et al. (2017); Attiah et al. (2018);
Cheung and Bell (2021) for the applications of game the-
ory in cybersecurity. In addition to the optimization-based
approaches discussed above, laws, policies, regulations, and
standards (e.g., National Institute for Standards and Technol-
ogy (NIST)) are another important precautionary measure to
provide guidelines for companies. With regards to real-time
recovery, component isolation and recovery, real-time mon-
itoring as well as communication and interaction between
supply chain partners are some common measures to mitigate
the impact of cyber-attacks on the supply chain networks.
Finally, aftermath measures such as data backup, resilient
infrastructure design, and system restoration are needed to
ensure full recovery of the network and to refine the precau-
tionary and real-time recovery plans.

Industrial Cybersecurity with IT and OT Integration
Operational technology (OT) cybersecurity has gained in-
creasing attention since 2010. To handle recent cyber events
that have driven the need for more regulations and measures
to combat cyber-threats in chemical industries, major chem-
ical companies, such as Dow, have developed very signifi-
cant cybersecurity programs. For example, Dow established
its first generation cybersecurity program in 2017 and has
greatly improved the program in the following years to keep
pace with the evolving threats. While this article has mainly
addressed cybersecurity concerns in OT space, it is noted
that both IT and OT are utilized in industry to develop cy-
bersecurity solutions to protect software, hardware, infras-
tructure, people, and data. It is important for process en-
gineers to understand both IT and OT cybersecurity land-
scapes to be able to develop frameworks for detection and
control/learning system design that integrate the best policies

from both domains to create workable solutions. On the one
hand, the connection to IT network enables constant mon-
itoring of the performance and condition of equipment and
systems, and allows the industrial systems to obtain a more
detailed view of individual equipment and conduct a more
comprehensive analysis of the entire plant through big data.
On the other hand, traditional OT systems do not have cyber-
security features such as encryption and authentication sys-
tems for secure data access and the equipment with long life
cycles in OT systems cannot be regularly updated with patch
systems due to stability concerns. Therefore, to allow for
digital modernization of chemical industries, advanced cy-
bersecurity solutions with IT and OT integration need to be
developed and broadly implemented.
Compared to traditional IT cybersecurity, OT solutions are
unique purpose-built technologies and protocols for systems
that have been operated much longer than IT systems. Since
upgrades or changes in the OT space generally require plant
shutdowns which are not easily done, cyber-assessment and
cyber-protection packages with minimum disruption to op-
erations should be developed and deployed at high priority
plants. Additionally, the International Society of Automation
(ISA) has provided a guidance (i.e., IEC 62443) for compa-
nies to evaluate the cost of any potential attacks from four
aspects: consequences, threats, recovery, and investment in
the development of OT cybersecurity solutions.

Cybersecurity and Safety
Since the primary objective of cybersecurity in OT space is
to ensure the safe operation of physical assets at all times,
we also need to combine safety with control systems to han-
dle cyber-attacks on safety-critical systems that have the po-
tential to cause real harm in the physical world. In addition
to the cyber-secure control systems, process safety systems
such as alarms systems, emergency shutdown systems, and
safety relief devices can provide the last line of defense in the
event of an abnormal situation due to cyber-attacks. To pre-
vent the system states from leaving their safety limits prior
to the successful detection of cyber-attacks, safety systems
can be integrated with control systems to reduce the phys-
ical risks of cyber-attacks ranging from simple unplanned
downtime in operations to a plant explosion or release of haz-
ardous materials (Wu and Christofides, 2021). Specifically,
Safeness Index functions S(x), a function of the (closed-loop)
process states that characterizes the “safeness” of a process
operation, can be adopted as a safety metric for the activa-
tion/deactivation of safety systems (Albalawi et al., 2017; Wu
et al., 2018b; Zhang et al., 2019). Safe and unsafe operations
can then be evaluated by comparing the value of S(x) with
the threshold value that is pre-determined using process first-
principles knowledge or past plant data. Additionally, be-
cause the Safeness Index function can provide information on
both measured and estimated states, its use in the alarm sys-
tem can help manage the trade-off between measuring fewer
states (which may lead to missed alarms) and more states
(which leads to instrumentation expenses and possibly more
occurrences of alarm overloading).
In addition to integrating process safety metrics into the deci-
sion making models of safety systems, integrating the actions



of safety systems and control systems may be beneficial as
well as pointed out in Wu and Christofides (2021). Specifi-
cally, in the traditional process safety paradigm, process vari-
ables are stabilized at their set-points by basic process con-
trol systems under normal operation; when the control sys-
tem fails to operate the process in a safe operating region
in the presence of disturbances or cyber-attacks, the safety
systems (e.g., alarm systems, emergency shutdown systems
(ESS), and safety relief devices) are activated to prevent fur-
ther unsafe operation. However, since the process dynamics
is changed after the activation of safety systems (e.g., the
opening of a pressure relief valve to prevent high pressure in
a chemical reactor), the actions taken by the safety systems
should be taken into account in the reconfiguration of control
systems. For example, the cyber-secure control system pro-
posed in the previous section can be integrated with safety
systems that take actions based on whether S(x) crosses the
threshold. We assume secure, redundant sensors or reliable
state estimations are available to the control, alarm, emer-
gency shutdown, and relief systems with standard industrial
practice. Additionally, the actions taken by the alarm, ESS,
and relief systems are assumed to be on-off type actions to
simplify the discussion. In the case that safety systems are
triggered due to cyber-attacks, the safety-based (lower-tier)
control system continues to regulate the process state, while
the upper-tier MPC needs to switch to secure, redundant sen-
sors or encrypted secure channels to obtain the the true state,
and update the prediction model to account for the change in
system dynamics. The safety system will be taken off-line
after process states enter the safe operating region, and sub-
sequently, the two-tier control system switches to the initial
process model.

Future Research Directions

Actuator cyber-attack detection and handling
Similar to sensor cyber-attacks, actuator cyber-attacks also
have access to the plant model and controller design details,
aiming to diverge the system away from its ideal operating
point. However, instead of altering the sensor measurements,
actuator attacks modify the direction and magnitude of the
control actions without being detected by sensor monitoring
tools. Common detection strategies include active detection
methods that design excitation signals to be superimposed
on the control commands to increase the detectability of the
attack and developing an input observer to detect attacks as
well as estimating the magnitude of the attack (Muniraj and
Farhood, 2019). Unlike the passive detection methods that
use regular operation data to determine if the operation is be-
ing affected by a cyberattack, active detection methods that
apply some perturbation to the closed-loop process system
through the control system can actively probe systems for
cyberattacks. Conceivably, active detection methods may
ensure that a process is free of a wider range of possible
cyberattacks than passive detection methods. Future work
developing novel active detection methods and, potentially,
extending these methods to aid identification and mitigation
may prove fruitful. Furthermore, it is noted that certain actu-
ator attacks are undetectable by an observer-based controller

(Ayas and Djouadi, 2016); thus, a machine-learning-based
detection method may provide new insights. In addition to
the detection of actuator attacks, an isolator may need to be
developed to identify the affected actuator(s) in the network.
Subsequently, to mitigate the effect of actuator attacks, ma-
chine learning methods may be utilized to identify cyber-
attack patterns and predict future attack actions. Based on
that, a resilient control system may be developed to com-
pensate the effect of attacks without having to shut down the
entire plant. Additionally, in the case that a safety-critical ac-
tuator is under attack, a controller that can operate the system
in the presence of actuator attacks needs to be developed to
account for the unavailability of the affected actuators due to
a physical intervention of maintenance personnel.

Encrypted control
Since implementing encryption to encrypt-decrypt the com-
munication signals involves the quantization of the signals
and calculations using large integers, which may result in sig-
nificant delays in order to ensure error-free signal encryption-
decryption, the encryption-decryption scheme should be
tuned to ensure that the calculations can be done with the
available computational resources for a specific operating re-
gion in the state-space. Once the region of operation size
is increased, the computational burden of the encryption-
decryption scheme increases as larger deviations from the
steady state correspond to larger numbers that need to en-
crypt using fixed-point operations that are more computation-
ally expensive. This trade-off needs to be carefully studied,
and quantitative computational formulas need to be devel-
oped to determine how the size of the allowable operating re-
gion should be influenced by the presence of potential cyber-
attacks such that encryption can be used with allowable com-
putational resources, need to be developed.

Incorporation of domain knowledge in the design of
machine-learning-based cyber-attack detectors
Process dynamics and control strategies can be used to deter-
mine the most cost-effective and flexible frameworks for pro-
viding security to process networks and computing devices.
This is important because an overly conservative cyberse-
curity policy can impede progress toward an efficient next-
generation manufacturing framework; better understanding
how the physics of the process help to dictate what types
of security measures are required is important for preventing
the negative impacts of attacks without getting in the way of
process adaptability. For example, the machine-learning de-
tector presented above is built using all the input variables
available with an attempt to capture all possible relationships
between inputs and outputs. However, in the case of large-
scale chemical process networks, several issues may arise if
taking all inputs into the training of the detector, especially
when the outputs are not sensitive (or are fully decoupled) to
some of the inputs or process states. In the example of two
CSTRs in series, the states of the first CSTR influence the
states (and thus, the dynamic behavior) of the second CSTR,
but the states of the second CSTR do not influence the states
of the first CSTR. This is important information that can be
used as specific constraints on the structure of the machine



learning detector for the entire two-CSTR system to improve
its sensitivity to noise. Second, the detector structure may
become complicated in terms of more layers and neurons in
order to find a good approximation between all inputs and
outputs, which increases the computational burden required
for training the detector both off-line and on-line. Motivated
by the above, one method for optimizing the detector struc-
ture is to perform an input selection (also termed as feature
selection in machine learning) to select a subset of relevant
features for use in detector construction using direct informa-
tion of process structural relationships from process-directed
graphs. By carrying out an input selection, the detector struc-
ture is simplified, which reduces the training times and avoids
the burden of dimensionality. Additionally, another approach
to improve the performance of the detector in terms of better
prediction accuracy and less computation time is to incorpo-
rate chemical process structural knowledge in constructing
it. Specifically, constraints will be imposed using process-
directed graph information on some of the weight parameters
in the detector such that the connected inputs, which have no
impact on the output variables, exhibit no correlation to the
outputs in the training process of the detector.

Decentralized learning for data security and privacy
Improving process data security is another important direc-
tion, particularly when this data is being operated upon us-
ing control laws or machine learning algorithms, to provide
flexibility in manufacturing without concerns for data pri-
vacy. Therefore, further advances in techniques and frame-
works for promoting privacy are needed to provide tractable
solutions for industry. For example, developing a machine-
learning-based detector for large-scale distributed systems
requires a tremendous volume of data to be collected from
all subsystems through various mediums of communication
such as Internet and wireless networks, and then processed
in a central server or cloud for training. However, as the
communication mediums are vulnerable to attackers, the
machine-learning-based detector developed in a local server
or cloud could be misguided and unable to detect the target
cyber-attacks in the presence of data tampering or data ma-
nipulation. In addition, as machine learning approaches have
been widely used to develop data-driven models for chemical
processes that can be incorporated in advanced process con-
trol schemes (e.g., MPC), data security and privacy is also of
great importance and is gaining increasing attention. While
centralized learning can process data and develop machine
learning models in a centralized manner for large-scale dis-
tributed systems by taking advantage of a high performance
computing cluster/cloud, data security and privacy becomes
a big issue due to insecure communication links. To alleviate
the security concerns, decentralized learning and federated
learning methods that distribute a pretrained model to all sub-
systems, and allow each subsystem to develop and update its
own model locally without sharing the raw data with the cen-
tral server/cloud (AbdulRahman et al., 2020; Li et al., 2020;
Ghimire and Rawat, 2022; Khan et al., 2021). The updated
model parameters will be sent to the server for model ag-
gregation, and finally, the updated model will be distributed
to all subsystems. The idea of decentralized learning has

shown its great potential in developing privacy-aware ma-
chine learning models, and needs to be further explored in
the development of machine-learning-based detectors.

Cybersecurity, safety, operation and control: Engaging ven-
dors
The interface of cybersecurity, safety, operation and con-
trol will certainly be explored further in the years to come.
Despite the recent efforts to detect and mitigate the impact
of cyber-attacks on process control systems, the impact of
cyber-attacks on process safety has received very limited at-
tention. How plant operators and control systems should
work together to safely handle a cyber-attack with minimal
performance loss and without costly plant shut-downs is an
important question that needs to be studied. Engaging ven-
dors that design, build, and implement safety and control sys-
tems to account directly in their architecture and implemen-
tation for cybersecurity concerns as well as monitor and an-
alyze evolving cybersecurity threats should be an important
consideration and a potential avenue to bring academic ad-
vances on the industrial floor. In this context, it is important
that the cybersecurity solutions that are implemented in the
OT space can work and cooperate effectively with multiple
control system platforms developed by different vendors.

Industrial cases studies
In addition to the simulation studies of chemical reactors dis-
cussed in this manuscript, it is also important to investigate
the implementation of the machine-learning-based detector
and MPC to handle potential cyber-attacks in a variety of
chemical process networks and energy systems (for exam-
ple, gas pipeline networks). Novel detector-controller archi-
tectures need to be developed to improve the robustness of
the entire pipeline network to cyber-attacks which is a criti-
cal need for the existing US pipeline networks. It is partic-
ularly important to build case studies using large-scale pro-
cess simulators and incorporate as many as possible practi-
cal concerns based on direct industrial feedback to test the
effectiveness and applicability of the methods developed by
academics.

Cybersecurity awareness education and training
Cybersecurity concerns and cybersecurity mitigation meth-
ods are absent from today’s chemical engineering curriculum
at both undergraduate and graduate levels. Process control
and process design courses as well as chemical engineering
labs could be good starting points to introduce cybersecurity
issues to raise awareness of cybersecurity concerns among
our students who, in their vast majority, go to work in indus-
try. In addition, the organization of short courses and work-
shops to communicate recent academic advances of cyberse-
curity approaches to engineers in industry and inform aca-
demics of industrial cybersecurity issues should be pursued.
It is important to point out that while the present manuscript
addresses OT cybersecurity concerns within a chemical pro-
cess context, cybersecurity issues are present in all industries
employing chemical engineers from chemical to pharmaceu-
tical to food and materials industries.



Conclusion
This work presents an overview of recent research results on
cybersecurity in process control, process operations, and sup-
ply chains. The design and implementation of cyber-defense
OT methods including machine-learning-based cyber-attack
detection, resilient control strategies, and their integration
with MPC, encryption-decryption algorithms, and cyber-
secure control architectures were discussed. Chemical pro-
cess examples were used to demonstrate the efficiency and
effectiveness of machine-learning-based detection schemes,
and the robustness of attack-resilient MPCs and decentral-
ized MPCs against several most common intelligent cyber-
attacks discussed in the open literature. Additionally, an
overview of cybersecurity issues in process operations and
supply chains was presented, followed by the integration of
IT and OT into industrial practices, as well as integrated
safety and cybersecurity solutions for safety-critical sys-
tems. The paper concluded with a discussion of future direc-
tions for academic research, vendor engagement, academia-
industry dialogue, and educational needs.
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