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Abstract 

This paper provides a perspective on the major challenges and directions on academic process control 

research over the next 5-10 years, and its industrial implementation. Large scale systems control and 

identification, nonlinear model-based and model-free control, and controller performance monitoring and 

diagnosis are discussed as major directions for future research, along with control technology and industry 

workforce challenges and opportunities. 
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Introduction 

This perspective will focus on assessment of the current 

state-of-the-art and promising future research and 

development directions on the control of process systems 

(chemical and petrochemical plants, oil refineries, 

biorefineries, pharmaceutical manufacturing plants, etc.). 

As we look back, the following major themes of academic 

process control research emerged over the last three 

decades:   

 

• Nonlinear Control 

• Model Predictive Control (MPC)  

• Integration of operations and control  

  

The advances have been impressive. Model-based 

nonlinear controller synthesis and estimation have reached 

a level of technical maturity that was hard to imagine 30 

years ago. Optimization is firmly embedded in advanced 

process control (APC) methods.  Process and controller 

performance monitoring methods have proliferated. 

 

* To whom all correspondence should be addressed 

On the other hand, linear MPC technology continues to 

be the backbone of industrial control technology for more 

than three decades. There has been progress towards 

incorporating nonlinear components in plant-wide dynamic 

models, incorporating more efficient solvers for 

optimization problems at the advanced control layer, and 

implementing improved identification/estimation and 

controller performance monitoring methods. However, 

nonlinear modeling at a plant-wide scale remains a far-

reaching goal, and so does the implementation of 

centralized nonlinear MPC technology. The quest for new 

technologies that will lead the next wave of innovation and 

enable step changes rather than incremental improvements 

is wide open. 

Evidently, the gap between academic research and 

industrial needs persists and may even be growing. 

Academic research aims to push the technical boundaries 

towards improving performance and providing robustness 

and safety guarantees; it does so by employing increasingly 

sophisticated mathematical methods and formulations. 

Industry may be less interested in getting that next couple 

of percent of optimality and instead focused on how to 



  

 

implement and sustain these solutions in an automated 

fashion and reduced reliance on available experts.  

Moving forward, major business and industry trends 

include: 

 

• Increased emphasis on environmental 

sustainability, which puts greater demands on 

process control systems to enforce environmental 

regulations, with minimum overhead cost. 

• Supply chain uncertainty putting a greater 

emphasis on automation to maintain optimality 

under dynamic conditions in raw material quality 

and availability.  

• The (re-)emergence of artificial intelligence and 

machine learning which holds renewed promise 

for improved data utilization across industrial 

applications. 

 

These trends further reinforce what have been the key 

drivers for process control research and development over 

the last few decades: 

 

• Scale  

• Nonlinearity 

• Data    

 

Large scale and complexity continue to be key features 

of industrial scale process control problems, due to material 

and energy integration within a plant, increased integration 

of operations (planning, scheduling, real-time optimization) 

with control, and integration at the business/enterprise level 

(systems-of-systems). Dealing with them requires the 

solution of large-scale optimization problems, often with 

discrete and continuous variables. The solution of such 

problems at scale remains a challenge.  

Nonlinearity becomes especially important when the 

plant operates over a wide range of conditions, for example 

due to transitions between different operating conditions 

dictated by supply chain decisions.  Such transitions will 

become more prevalent as the timescales between 

planning/scheduling and real-time control continue to 

converge. This should increase in the future as supply chain 

challenges are likely to remain.  

Finally, the big data revolution we are currently 

witnessing across science, technology, and society at-large 

is bound to challenge our thinking on the role of data in 

automatic control and motivate intense research in this 

direction. More data may become available through 

improved sensing capabilities but the quality and 

information carried by the data may not justify the 

additional cost of obtaining it. Several additional questions 

arise: What will be the role of data in process modeling? 

How can data fuse with fundamental models for control and 

optimization? How can we quantify stability, performance, 

and robustness (the cornerstones of control) within a data-

driven (or data-assisted) modeling and control framework? 

How are we taking advantage of the strides being made in 

Artificial Intelligence to improve the robustness and 

sustainability of control systems? These questions will 

undoubtedly frame future research in the next 5-10 years.   

This paper will provide a perspective on future 

developments that have the potential to address these 

challenges. As exemplified by the merging of the 

FOCAPO/CPC series over the last 10 years, the continued 

fusion of optimization and control will be a key enabler to 

this end. Examples where such a fusion is essential from a 

control perspective include the solution of plant-wide 

control problems and the explicit handling of uncertainties 

in robust or stochastic MPC formulations. Another major 

enabler in our view will be the adoption of modular, 

distributed modeling, optimization, and control 

architectures and platforms, which can help mitigate the 

challenges of large scale, provide flexibility, agility, and 

robustness, and ultimately enable a transition from process 

automation to process autonomy.  

In the backdrop of this discussion is the need to have 

the proper workforce that will be able to adopt and 

implement state-of-the-art control solutions in industry. 

Specifically: 

 

• Expertise to develop and, equally importantly, 

maintain APC systems remains at a premium. To 

do so effectively requires both intimate process 

knowledge and an increasing mathematical 

expertise. 

• An increasingly transient workforce makes it more 

difficult to cultivate and sustain this expertise in 

house. In addition, we will likely continue to see a 

hybrid workforce, which will create new 

challenges in recruiting and training the workforce 

that will lead the next wave of innovation.  

 

The next sections further expand on these challenges 

and present our view towards future developments. We first 

focus on specific academic research directions that we view 

as particularly promising and then discuss industrial control 

technology and workforce training considerations and 

challenges for the next 5-10 years. 

Large-Scale Systems Control and Identification 

Due to the integration of mass, energy, and 

information, optimal decision making over large-scale 

systems are of increasing importance in modern process 

systems engineering practice. The pursuit for scalability is 

also a distinctive feature of process control research and an 

indispensable criterion for the effectiveness of process 

control methods.  

Large-scale processes, or process networks, can be 

viewed as a collection of topologically interconnected 

process units from a physical perspective, or interrelated 

variables and constraints from a computational perspective. 

To control process networks, it is necessary to decompose 

the physical process (as represented by its dynamical 

model) or the mathematical problem of interest into 



  

(interacting) subsystems. Such a decomposition approach 

dates to the classical interaction analysis for pairing inputs 

and outputs into multiple control loops (McAvoy, 1983) 

developed since 1960s, and D-stability analysis in the 

context of robust control (Yu & Fan, 1990). It is also 

embodied in the research on the control of multi-time-scale 

systems (Baldea & Daoutidis, 2007), where fast dynamics 

are separable from the slow ones on an approximate inertial 

manifold, and dissipative systems (Hioe et al., 2013), where 

the dissipativity of any interconnected system can be 

inferred from the subsystems’ dissipativity.   

Distributed optimization and coordination 

Distributed control (Christofides et al., 2013) offers a 

structured and flexible architecture for large-scale process 

control. On one hand, control is performed based on 

subsystems, invoking subsystem solvers for the decision 

making. On the other hand, communication is allowed 

among the subsystems, so that the optimal decision can be 

reached with less or no compromise. 

In general, one can consider the problem of distributed 

control in the form of nonconvex constrained optimization 

(e.g., Tang & Daoutidis (2022a)). The formulation involves 

n blocks of decision variables x1, x2, ..., xn (corresponding to 

the subsystems) and a small block of auxiliary variables z 

(arising from the interactions among the subsystems):  
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In formulation (1), the set constraints X1, X2, ..., Xn are 

generally nonconvex, comprising of nonlinear equality and 

inequality constraints in algebraic expressions, and the 

objective terms f1, f2, ..., fn can also be nonconvex. The 

constraints and objective term on z can be assumed to be 

simple without loss of generality. For problem (1), when z 

is fixed, the subsystem problems can be separated and 

solved through dedicated nonlinear programming solvers 

(or simpler linear/quadratic programming solvers). 

Therefore, the key question for distributed optimization 

(Boyd, 2011; Yang et al., 2019) is to find a coordination 

scheme to iterate z so that the subsystem solutions approach 

an optimal (in fact, what can usually be guaranteed is 

stationary) solution of the monolithic problem (1).  

The first distributed optimization that guarantees the 

convergence under nonconvex constraints was proposed in 

Sun & Sun (2019), where a two-layer scheme is used to 

guarantee the convergence of x through the inner-layer 

iterations and decay of z through outer-layer iterations. The 

algorithm was further refined in Tang & Daoutidis (2022a) 

to improve the computational efficiency, where an 

Anderson acceleration scheme (Zhang et al., 2020) is used 

to reduce the inner iterations, and adaptive tolerances are set 

to terminate the subsystem solver in a timely manner during 

the intermediate iterations. An alternative single-layer 

algorithm was proposed in Subramanyam et al. (2021), 

where a large penalty parameter for ‖z‖2 is chosen according 

to the desired ultimate error and fixed.  

Noting that the real-time implementation of MPC 

usually cannot allow many iterations but instead must be 

early terminated, the recent work of Tang & Daoutidis 

(2021) proposed a primal algorithm, where suitably defined 

ℓ1 and squared ℓ2 penalty of z are added to the objective 

function to define a robust upper estimation of the control-

Lyapunov function (called the Lyapunov envelope). The 

upper bound property is derived from the incremental 

dissipativity of subsystems. In such a way, the primal 

iterations that reduce the envelope value can guarantee 

closed-loop stability even when early terminated. Evidently, 

there are still only very few algorithms for distributed 

optimization of nonlinear processes, and the development 

of well-performing and efficient algorithms will be an 

important future direction.  

The complexity of these algorithms and the narrowing 

of expertise available to truly understand them may exceed 

industry’s ability to manage them. The self-sustainability of 

these solutions will become a critical factor in industry’s 

ability to get value from these solutions. As a result, 

research direction and funding entities should include the 

adaptability and sustainability of these solutions as key 

research elements. Tesla does not expect the driver to 

continuously retune the algorithm in a self-driving car so 

why should the process industry think differently?  

Network structure analysis for decomposition 

For distributed control and optimization, one first needs 

to decompose the system. By representing the dynamic 

model as a network (i.e., a graph of nodes and edges), 

extensive works have proposed to decompose the network 

through detecting the underlying community structures in 

the network topology (Daoutidis et al., 2018; Daoutidis et 

al., 2019). Specifically, communities refer to the blocks of 

nodes that interconnect densely inside but loosely in-

between (Fortunato & Hric, 2016). Typically, community 

detection is performed by an approximate algorithm to 

maximize a modularity or likelihood index, which captures 

the statistical difference between inter- and intra-

community connection propensities (Newman, 2016).  

The community detection-based decomposition 

approaches have been examined by several case studies to 

benchmark processes (Pourkargar et al., 2019) and extended 

to take into consideration the restriction on subsystems’ 

observability (Yin & Liu, 2019; Masooleh et al., 2022). 

Community detection as an effective method of generating 

high-quality subsystem configurations for distributed 

control is supported by the studies on sparse optimal control 

of Laplacian dynamics associated with networks, where the 

sparsity of the feedback controller is rewarded due to the 

cost on feedback channels (Lin et al., 2013). It was found 

that the community structures of modular networks result in 

lower control cost with a modular controller, and that when 

the control cost is used as the fitness index, modularity 

emerges throughout simulated evolution (Constantino et al., 

2019; Tang et al., 2019). Such decomposition approaches 



  

 

have also been extended to optimization (Mitrai et al., 2022). 

We note that the community detection approach has been 

implemented in the industrial advanced process control 

software of Shell and Yokogawa and was applied to an 

industrial-scale crude distillation process (Tang et al., 2023).  

On the other hand, the community detection-based 

methods, as a tractable simplification of the combinatorial 

problem of finding the decomposition with rigorously 

certifiable optimal performance, neglect the details of the 

dynamics and may not guarantee a clear interpretation of 

the resulting systems. The development of network 

decomposition approaches that can accommodate prior 

process knowledge, process uncertainty and controller 

robustness, user-defined logic rules, or even performance 

specifications, is highly needed.  

Network topology identification 

The modeling of large-scale systems is also not trivial. 

While multi-input-multi-output (MIMO) approaches for 

system identification can usually be directly deployed on 

small-scale systems, for large-scale processes, it is difficult 

to obtain high-quality models without first determining the 

topological structure of the model. Specifically, since each 

output is typically affected by only a few local inputs, it is 

desirable to specify a candidate set of inputs, forcing the 

effect of any other input to be zero, before modeling the 

detailed dynamics of the system. As seen in the previous 

subsection, such topology information is also useful for 

determining the decomposition for distributed control.  

The model structure specification based on engineers’ 

manual selection, however, can be time-consuming and 

error prone. The aim of topology identification algorithms 

is to determine the unknown network structure of the 

dynamics automatically based on data. The typical 

representation of the structure is a linear dynamic graph, i.e., 

the edges between the nodes (variables) xi and xj correspond 

to nonzero transfer functions Hij(z) (Materassi & Salapaka, 

2012).  
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Each node xi is possibly associated with an exogenous 

excitation signal ei.  

Depending on whether the graph is cyclic and whether 

there exist unobservable hidden nodes, a variety of methods 

have been proposed in the literature (Sepehr & Materassi, 

2019; Subramanian et al., 2020; Veedu et al., 2021), and 

theoretical proofs have been given based on conditions on 

graph-theoretic conditions. Process networks are expected 

to be cyclic with hidden nodes, which fit into the recent 

advances in topology identification. However, restrictive 

assumptions are typically made on the excitation of 

variables, which may be necessary to uniquely determine 

the topology but may not be practically satisfied due to the 

correlations between variables that cannot be independently 

manipulated. The incorporation of first-principles prior 

knowledge in topology identification is an important future 

step.  

Nonlinear Model-Based and Model-Free Control 

Chemical processes are intrinsically nonlinear. For 

processes with strongly nonlinear behavior, local linear 

model approximations are not valid and nonlinear control 

methods are needed. An early review of nonlinear control 

algorithms and applications was given in Bequette (1991). 

With the development of NLP algorithms, nonlinear MPC 

has become the most representative method in the recent 

decades (Grüne & Pannek, 2017).  

The development of machine learning and data-driven 

techniques and the integration of them into control theory 

have resulted in novel methods and perspectives for 

nonlinear process control. In the next three subsections, we 

discuss three different types of approaches to handle 

nonlinearity in dynamics and control, respectively. In short, 

the three ideas are (i) to model nonlinearity, (ii) to linearize 

nonlinearity, and (iii) to enclose nonlinearity, with 

decreasing reliance on the direct characterization of 

nonlinearity and increasing commonality with linear 

systems.  

Black-box approximation of nonlinearity 

Since first-principles nonlinear models are difficult to 

establish and guarantee to be accurate, it is then a 

straightforward idea to seek data-driven black-box 

approximations of the nonlinearity in dynamics, e.g., by 

allowing the model to have higher-order expansion terms 

(Doyle III et al., 1995). Neural networks, due to their 

universal approximation property, have been extensively 

used for modeling static nonlinearity appended to linear 

dynamics in Hammerstein-Wiener models (Su & McAvoy, 

1993) or the entire nonlinear dynamics as recurrent neural 

networks (Wu et al., 2019). Many recent works have been 

devoted to enabling optimization solvers to handle neural 

networks (Schweidtmann & Mitsos, 2019; Ceccon et al., 

2022), which are beneficial for online MPC computation. In 

a different vein, Gaussian processes, as nonparametric 

statistical models, can be inferred from data along with an 

accompanying probabilistic quantification of uncertainty, 

and hence have the advantage of providing robust stability 

guarantee in predictive control (Bradford et al., 2020).  

Despite the capacity of function approximation, the 

criticism that black box fitting gives little physical insight 

has become common. However, this may not be entirely 

justified, since these approaches are intended to avoid 

modeling from first principles or keeping the human in the 

loop. We argue that the essential problem is how to 

constrain the input-output behavior of black-box models to 

ensure their stability or robustness, or to reconcile them 

with prior knowledge. Multiple studies (Fazlyab et al., 2019; 

Pauli et al., 2021) have formulated the problem of 

constraining Lipschitz constants (incremental gains) of 

neural networks as semidefinite programming (SDP), 



  

which is non-scalable. The recent work of Revay et al. 

(2021) proposed the recurrent equilibrium network (REN) 

architecture as the feedback interconnection of a linear 

dynamics and element-wise activation functions, which can 

provably incorporate incremental stability and dissipativity 

constraints without invoking SDP; instead, the constraints 

are used to define a new unconstrained parameterization of 

the REN and can be optimized with (stochastic) gradient 

search.  

Linearization of nonlinear dynamics 

The idea of treating nonlinear dynamics as a linear one 

by seeking a global transformation of coordinates was 

extensively used in input-output linearization for nonlinear 

model-based control (Kravaris & Kantor, 1990). In a data-

driven setting, recent control-theoretic research focused on 

the construction of Koopman operators from data (Brunton 

& Kutz, 2022). Specifically, the Koopman operator for an 

autonomous system (assuming to be discrete-time for 

simplicity) x(t + 1) = f(x(t)) is a linear, usually infinite-

dimensional operator K defined on the space of state-

dependent functions: 

.:,)( CX →=  fK    (3) 

In the above definition, X is the set of states, C is the set of 

complex numbers, and ◦ represents composition, i.e., (φ◦f)(x) 

= φ(f(x)).  

To find a tractable, finite-dimensional approximation 

of K, one may use a finite number of linear, polynomial, 

and/or radial basis functions of states x or measurable output 

snapshots y(t), y(t - 1), ..., y(t - L) as the observer functions 

to seek a linear dynamics. The methods using output 

snapshots are called dynamic mode decomposition (DMD) 

or extended DMD if nonlinear transformations are used 

(Williams et al., 2015). Noting that the existence of 

disturbances poses a robustness issue in the identification of 

Koopman operator, Huang & Vaidya (2018) formulated the 

DMD problem under bounded disturbances as a robust 

optimization (min-max) problem and converted it into a 

least-squares one under Frobenius norm regularization. To 

ensure that the finite-dimensional linear dynamics is closed, 

data-driven construction of the eigenfunctions of Koopman 

operator was proposed (Kaiser et al., 2021).  

The data-driven construction of the Koopman operator 

or its eigenfunctions, however, apparently suffers from the 

“curse of dimensionality” due to its goal of linearizing the 

dynamics globally. Despite preliminary discussions for 

systems with special structures (Schlosser & Korda, 2021), 

the practical use of Koopman operator theory on large-scale 

systems remains an open question.  

Model-free characterization of system behavior 

If we consider the question of whether a complete and 

accurate model is indeed necessary for control, the answer 

may be negative. First, correct models barely exist. In a 

famous quote of George E. P. Box that people often refer to, 

“All models are wrong, but some are useful”. Second, in 

terms of validating nonlinear or more complex physical 

models, you’re practically limited by the measurements you 

have available. Does a fully nonlinear model of a distillation 

tower have value if we only have measurements at the top 

and bottom to validate the model? Third, it is possible to 

obtain the controller or control decisions based on some 

properties or information from the system without a full 

model. Such control-relevant information can be learned 

from the analysis of process data that reflects the underlying 

dynamics, possibly complex. We refer to this paradigm of 

learning-based control as model-free control (Tang & 

Daoutidis, 2022b).  

For nonlinear systems, the dynamic behaviors can be 

characterized based on inputs and outputs in terms of L2-

gain, passivity, and in general, dissipativity (Kottenstette et 

al., 2014). Dissipativity refers to the existence of a input- 

and output-dependent supply rate function s(u, y) that 

bounds the rate of change of a storage function V(x), i.e., 

dV(x)/dt ≤ s(u, y). While under suitable input and output 

variable selections, first-principles thermodynamic analysis 

can be used to derive the dissipativity property (Alonso & 

Ydstie, 2001; Hangos et al., 2001), it is more convenient 

and generic to learn dissipativity from data, i.e., trajectory 

samples. Dissipativity learning for linear systems has been 

discussed based on Hankel matrices (Koch et al., 2021). 

Essentially, dissipativity captures an enclosure of the 

system’s nonlinearity. The simplest case of a dissipative 

nonlinear system is a sector nonlinearity as in Lur’e systems 

(Brogliato et al., 2020).  

In Tang and Daoutidis (2019, 2021), the framework of 

dissipativity learning control (DLC) was proposed. DLC 

entails the following steps. 

(i) A linear parameterization of the supply rate is used, 

e.g., by restricting s(u, y) to be a quadratic function so 

that it is parameterized by a symmetric matrix. The 

resulting parameters M are called dissipativity 

parameters and their range M need to be inferred from 

data.  

(ii) The remaining part in s(u, y) depending on u and y, 

integrated on any given trajectory, are called the dual 

dissipativity parameters Γ. With trajectory samples, 

the range of Γ, denoted as G, can be estimated through 

machine learning techniques.  

(iii) According to the definition of dissipativity, M = 

G* (dual cone of G) can be subsequently estimated 

and used as the information for controller synthesis.  

So far, the DLC framework is restricted to small-scale 

processes and simple forms of controllers, and the learning 

of dissipativity requires large offline trajectory samples 

with zero initial conditions. An online estimation scheme 

was recently proposed in Welikala et al. (2022), where the 

dissipativity parameter is in a one-dimensional simplified 

form. We believe that model-free control, due to its 

potential to largely reduce the effort of modeling, is a 

promising direction for further development. Extensions of 

model-free control methods and comparison studies versus 

identification-based control are needed to facilitate their 

practical implementation.  



  

 

Controller Performance Monitoring and Diagnosis 

Monitoring of controller performance and diagnosing 

the cause for performance deterioration is a practically 

important part of control technology, which provides the 

information about controllers under abnormal conditions, 

facilitates in-time controller maintenance, and improves the 

system reliability (Gao et al., 2016). The classical approach 

of Harris (1989) to score the control loops, by comparing 

the variance of the measured data and that under an ideal 

minimum variance controller (MVC) as the benchmark, has 

been widely used in practice. For multivariable systems, Yu 

and Qin (2008) proposed a rigorous statistical approach to 

identify the subspaces of severe performance deterioration 

and correlate them to individual variables or control loops. 

Generally, a wide range of machine learning techniques can 

be used for this purpose (Qin & Chiang, 2019).  

It can be argued that the suitability of monitoring and 

diagnosis approaches depend on the method used by the 

controller to be monitored and diagnosed. As pointed out in 

the review of Gao et al. (2016), for model-based control 

such as MPC, the detection of plant-model mismatch is 

central to monitoring and diagnosis. The key question in 

such a detection task is to distinguish or separate the effect 

of plant-model mismatch from that of disturbances (and 

noises) in the closed-loop data. In the literature, diverse 

approaches have been proposed to this end, e.g., by (i) 

assuming prior knowledge of disturbance characteristics 

and obtaining a statistic that shows significance of a 

nonzero mismatch (Sun et al., 2013) or by (ii) correlating 

the input and output measurements with exogenous setpoint 

signals, thus removing the disturbance terms (Badwe et al., 

2009). The latter type of approach is conceptually close to 

closed-loop identification (Van den Hof, 1998). However, 

in mismatch detection it is usually not required to re-

identify a corrected model; instead, it suffices to judge 

whether the actual dynamics significantly differs from the 

nominal model.  

An accompanying problem with mismatch detection is 

the modeling of disturbances and noises. In addition to their 

use in offset-free MPC (Pannocchia et al., 2015), system 

identification, and filter design, the disturbance and noise 

models are necessary for mismatch detection when the 

exogenous signals to decorrelate disturbances and noises 

are absent. However, the question of how to optimally 

determine their models based on historical data has not been 

well answered, although there exist methods for estimating 

the involved parameters under given model structures 

(Odelson et al., 2006; Rajamani et al., 2009). Recently, 

Caspari et al. (2021) proposed a semi-infinite programming 

formulation for optimizing the structure of disturbance 

models with maximum observable set subject to the rank 

condition for observability, which was applied to a small 

CSTR unit.  

A final point is that the self-tuning and sustainability 

aspects of the developed monitoring methods will be critical 

in order for industry to take full advantage of these methods. 

These systems in practice need to work 99% of the time and 

do so without human intervention.  

Control Technology and Industry Workforce 

We close this paper with some thoughts and open 

questions on the future of control systems technology and 

the role of automation and human involvement in this future. 

• Workforce availability: The COVID-19 epidemic 

has led to major supply chain disruptions and 

changes in workforce modalities. We expect these 

impacts to persist and bring forth challenges in 

workforce availability in industry, both at the level 

of engineers as well as that of operators. A key 

question that is critical to the future of control 

technology development and deployment is 

whether the process industries will be able to 

continue to attract and retain the best engineering 

talent available.   

• Lowering the maintenance burdens: New 

advances in control technology are often justified 

by a demonstrated reduced deviation from the 

setpoint in the face of setpoint changes or 

disturbances. However, there is a need for metrics 

on the maintainability of these solutions in the face 

of changing feedstocks, failing sensors, differing 

demands, and other practical factors that impact 

industrial processes. As part of this, we lack 

concrete measures on the level of human 

intervention required to makes these solutions 

continuously derive value in the field. Yet without 

such measures, there is a risk of letting academic 

advances go to waste.  

• Automation vs. human intervention: As planning 

and scheduling decisions are integrated with 

control systems, human decision-making is 

increasingly brought into the loop (pun intended). 

At the same time, automation and ultimately 

autonomy are major goals of industry. So how do 

we quantify the right balance between automation 

and human intervention? Making the control 

algorithm work symbiotically with the human 

(who is not an MPC expert) will be critical to 

success.  

• The role of AI: Given the hype on big data and the 

increasing penetration of AI and machine learning 

in industry, it is natural to ask how best to take 

advantage of these advancements in control 

technology. In previous sections, we discussed 

aspects of this question, especially related to the 

role of data in deriving models for control and 



  

designing feedback control laws. The development 

of new AI-driven virtual sensors, which take 

advantage of audio, video, and other forms of 

signals as additional information to improve 

performance, and their integration with the control 

algorithms will also be vital.  

• Scaling down APC systems: A lot of the discussion 

in this paper focused on the future of process 

control for established, large companies.  

However, major technological innovation is often 

seen in smaller companies (with a few hundred 

employees). If we want to raise the impact of 

process control, we must scale its deployment 

down to companies beyond the Fortune 500, which 

may not have large teams of control engineering 

experts. The development of APC systems and 

modules that are more portable and easier to 

implement on novel process systems will be 

necessary to make process control a more readily 

accessible technology.   
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