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Abstract 

Digital Applications are complex software systems for decision support in process operations and for 

process control. Each such application involves one or more computational modules being executed in an 

arbitrary real-time schedule, and communicating with each other and the external environment within 

which they are deployed. Each module may involve a mathematical computation based on a process model 

derived from first-principles or via machine learning applied to plant data; alternatively, it may have a 

purely statistical basis derived directly from plant data. There has been much progress in the use of such 

digital applications in industrial practice. However, achieving true scalability and sustainability in this 

direction will require general platforms that will allow the essentially code-free development of new 

applications and their large-scale deployments. We describe one such, recently developed, platform. We 

also consider the potential role of digital applications in the context of major trends in process operations, 

such as autonomous plant operation and process plant modularization. 
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Introduction

The digitalization of the process industries has gained 

substantial momentum in recent years. Some of the 

underlying technological basis has been available for a 

relatively long time in a form that could, and arguably 

should, have found industrial application earlier. However, 

there have been additional significant advances in key 

infrastructural areas of Operational Technology (OT) and 

Information Technology (IT). Of particular relevance are 

the hugely increased availability and accessibility of both 

plant data and computing power, and the algorithmic 

developments in machine learning and other areas of 

artificial intelligence. 

Beyond technology, global economic, health and 

geopolitical developments have recently resulted in a 
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visibly increased awareness by industry of the urgent need 

for step improvements in key indicators such as process 

profitability, sustainability, product quality, flexibility and 

time-to-market. This has led to significant financial 

investments. 

The above considerations apply across the entire 

process lifecycle, from early-stage R&D to engineering 

design and process operations. This paper is concerned with 

the digitalization of the latter. One particular area of interest 

is advanced applications that make use of first-principles 

mathematical models for operations decision support and 

control. In a paper originally presented at the 

FOCAPO/CPC 2012 conference, Pantelides and Renfro 

(2013) discussed a range of such applications and analyzed 



  

 

their potential benefits but also the challenges associated 

with their development, deployment and maintenance – all 

of which represented non-negligible barriers to their wider 

adoption. A key objective of the present paper is to review 

the progress made since then towards addressing these 

problems and allowing complex applications to move from 

theoretical concepts to scalable industrial deployment.  

The past decade has also witnessed significant 

developments in data-driven techniques for real-time 

process operations – either via the derivation of 

mathematical models using machine learning applied to 

plant data, or via statistical descriptions derived directly 

from those data. Despite their differences from methods 

based on first-principles models, data-driven techniques 

face many similar challenges, e.g. in terms of resilient and 

reliable operation and maintenance. Moreover, non-trivial 

applications may involve both model-based and data-driven 

computations. This paper will therefore aim to consider all 

of these within a common framework.  

We start by introducing the general concept of a Digital 

Application (DA) as a complex software system and 

identifying its key aspects. We then review specific types of 

DAs with particular focus on their use in current industrial 

practice. Based on this, we argue that, because both of their 

intrinsic complexity and of their technological diversity, the 

wide adoption of DAs across the process industries will 

require the emergence of general platforms that allow the 

development of DAs of arbitrary complexity and their 

large-scale deployment in an essentially code-free manner. 

We outline the software architecture of one such general 

platform that has been developed in recent years. We also 

consider some aspects of the deployment of DAs within a 

plant’s OT/IT system. We conclude with some perspectives 

on the potential role of DAs within major current 

developments in process operations. 

Digital Applications 

Digital Applications are integrated software systems 

that make use of mathematical models of process systems 

coupled with plant data to perform well-defined tasks1. The 

underlying models may be based on equations derived 

either from physical principles and other prior knowledge, 

or from plant data – or from combinations of the two 

approaches within a hybrid modelling framework. 

Alternatively, the models may be purely statistical in nature, 

based exclusively on current and past plant data. 

In general, most non-trivial DAs involve multiple 

instances of one or more calculations being executed in 

parallel or sequentially to each other in real time and 

exchanging information with each other. They also involve 

bi-directional exchange of data with external data servers, 

such data being either inputs to the calculations or their 

results. As an illustration, consider real-time optimization 

 
1 Although in recent times the term “Digital Twin” has been 

extensively used to describe such applications, it is somewhat 

(RTO), a well-established type of DA (Darby et al., 2011). 

In its conventional form, this involves an optimization 

calculation applied to a steady-state model of the process, 

with the aim of determining optimal operational settings for 

the plant’s control system. As the optimization depends on 

the current inputs of the plant and the underlying model’s 

parameters, it is typically preceded by a steady-state data 

reconciliation calculation which aims to obtain reliable up-

to-date values of these quantities from available plant 

measurements. Moreover, since data reconciliation is 

performed on a steady state basis, it is essential to ensure 

that the plant is approximately at steady state before using 

the measurements. Overall, as illustrated in Figure 1, the 

RTO DA involves a sequence of instances of three different 

computations. Typically, one of these (steady-state 

detection) relies on statistical analysis of plant data (see, for 

example, Kelly and Hedengren, 2013) while the other two 

make use of numerical optimization techniques applied to a 

mathematical model of the process. The three computations 

are executed sequentially in a cycle, exchanging data with 

several external software systems such as the plant 

historian, commercial information systems and the plant 

control system. 

Figure 1: A typical Digital Application:  

Steady-state Real-Time Optimization 

DAs in current industrial practice  

The use of DAs for a wide variety of decision support 

and control tasks in process operations is becoming 

increasingly common in industrial practice. This section 

considers some of these recent developments. For ease of 

presentation, they are organized according to the size of the 

process envelope to which they are applied, starting from 

individual major equipment items, moving on to entire 

misleading: the purpose of most DAs is not to mimic the behaviour 

of the process but to use model(s) that represent that behaviour to 

perform specific tasks. 
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plants, and finally to integrated networks of multiple plants 

within the same or different geographical sites. 

DAs for major equipment items/plant units  

Perhaps the most widespread types of DA are those 

used for advanced control of major equipment items or 

process units, such as reactors or distillation columns. The 

application of model-predictive control (MPC) based on 

linear models identified from plant data is now routine in 

this context. MPC based on nonlinear models is also finding 

industrial application, particularly for batch and/or highly 

nonlinear processes, or applications such as polymerization 

(see, for example, Bindlish, 2015) where the large number 

of distinct operating points and the frequent transitions 

between them pose challenges to the linear MPC approach. 

Although the earlier nonlinear MPC technology relied on 

surrogate models based on neural networks or bounded 

derivative networks (Turner and Guiver, 2005), more 

recently the increasing capability to solve nonlinear 

dynamic optimization problems reliably and efficiently, has 

allowed it to be applied directly to physics-based models 

incorporating a significant degree of detail in the 

description both of the distributed nature of the polymer in 

terms of molecular weight and degree of branching, and of 

the associated physical properties (Pfeiffer et al., 2020). 

A closely related type of DA is that of soft sensing used 

to provide real-time estimates of the plant’s key 

performance indicators (KPIs). In addition to allowing real-

time monitoring of the plant’s performance by the 

operators, these KPIs can act as controlled variables in the 

context of the plant regulatory and supervisory control 

system, often leading to much more direct control. Some 

soft sensors make use of physics-based models. An example 

is the real-time estimation of ethylene and propylene yields 

in olefin cracking furnaces based on detailed kinetic and 

heat transfer models; this allows yield to be controlled 

directly instead of relying on proxy quantities such as the 

coil outlet temperature. In the simplest case, the underlying 

computations are dynamic (or, in the case of processes with 

very fast dynamics, steady-state) simulations that attempt to 

emulate the plant performance by subjecting the model to 

measured inputs. More sophisticated methods make use of 

redundant measurements by applying state estimation 

techniques of varying degrees of sophistication (Tatjewski 

and Ławryńczuk, 2020). A significant recent development 

in this context is the incorporation of state estimation 

algorithms, such as Extended Kalman Filters (EKF) and 

Moving Horizon Estimators (MHE), within general process 

modelling environments such as gPROMS® in a manner 

that is applicable directly to wide classes of process models 

described by mixed sets of integral, partial and ordinary 

differential, and algebraic equations. 

Alternatively, soft sensing may be performed using 

statistical models. An early example was presented by 

Casali et al. (1998) who reported results from soft sensing 

of particle size in an industrial grinding plant using an 

ARMAX model with measurements of water addition rate, 

pump speed, and solids concentration as inputs. Kadlec et 

al. (2009) gave a comprehensive review of data-driven soft 

sensing. They surveyed the main methods in use at the time, 

including principal component analysis, artificial neural 

networks, and support vector machines. Subsequent 

additions include Bayesian methods (Khatibisepehr et al., 

2013), autoencoder models (Yuan et al., 2018), and deep 

learning methods (Sun et al., 2021).  

As an example, Stanišić et al., (2015) created a 

nonlinear model using multi-layer perceptrons to estimate 

fineness of cement. They proposed a systematic way for 

selecting the inputs to the network from among all the 

process measurements by eliminating redundancies among 

correlated measurements. Tests of the implemented sensors 

showed good agreement between the soft-sensed estimates 

and laboratory measurement. 

Data-driven soft sensors have their own challenges, 

including data preprocessing issues such as dealing with 

missing values, measurement delays and correlated input 

measurements. Industrial data sets that reflect these real-life 

issues are in short supply. As identified by Sun et al. (2021), 

the cost of generating and disseminating suitable data is not 

trivial, for instance in preparation of plant experiments and 

data collection to generate calibration data sets.  

DAs can also be used to monitor the condition of 

equipment subject to slow degradation processes such as 

fouling in heat exchangers, coke deposition in thermal 

cracking furnaces, catalyst deactivation in catalytic 

reactors, and fouling and mechanical deterioration in 

rotating turbomachinery. In some cases, it is possible to 

incorporate descriptions of such degradation phenomena 

within a physics-based model, linking the instantaneous rate 

of degradation to the transient operating conditions within 

the equipment, and conversely determining the effect of 

cumulative degradation on the equipment’s current 

performance. Such physical descriptions also allow 

forecasting of the future evolution of degradation under 

any number of potential operating scenarios, thus providing 

valuable input to future operating strategies and supporting 

predictive maintenance approaches whereby maintenance 

can be scheduled optimally rather than on a fixed schedule. 

In practice, degradation phenomena are often much less 

well understood and more difficult to characterize than the 

main equipment physics, especially if they depend on 

factors (e.g. the condition of the metal surface) that are not 

normally taken into account by the model. Accordingly, a 

degree of online adaptation of the underlying model is often 

required in this context, typically using both current and 

historical data for the current run of the equipment since the 

time of its last maintenance. This is essentially a parameter 

estimation computation, often incorporating a Bayesian 

element to take account of prior information on the values 

of degradation model parameters obtained from previous 

runs. 

An alternative class of techniques for equipment 

monitoring are those based entirely on process data. These 

are particularly useful, and often necessary, in view of the 

above-mentioned difficulty of establishing reliable physical 

descriptions. An application to the monitoring of the 



  

 

degradation in efficiency of off-shore turbomachines was 

presented by Zagorowska et al. (2020a). The method was 

based on regression fitting of a nonlinear function to 

measurements of efficiency, and its extrapolation into the 

future together with confidence bounds. The function was 

based on empirical knowledge of the form expected for 

degradation as a function of time. Knowledge of the level 

of degradation can also have an impact on the way the 

process is operated. For instance, Zagorowska et al. (2020b) 

presented a practical application from BASF in which 

degradation was inferred from measurements of pressure 

drop across a heat exchanger in a polymer production 

facility. The estimates were then used in supporting 

decisions about the scheduling of batches. Parameters in the 

calculation depended on the polymer recipe and were 

calibrated using measurements from previous batches (Wu 

et al., 2019).  

DAs for supporting plant-wide operations  

At the level of managing plant-wide operations, typical 

DAs include data reconciliation and RTO (cf. earlier 

discussion in this paper). Although the focus of RTO is 

often presented as optimizing continuous plant operational 

settings in the face of continuous disturbances (e.g. feed 

availability and/or composition; ambient temperature) or 

objectives (e.g. production rates), in industrial practice a 

major benefit is in handling discrete events (e.g. planned or 

unplanned changes in equipment availability), often by 

effecting discrete changes to the plant operation (e.g. 

switching equipment items or trains on or off; re-routing 

material flows). This poses computational challenges 

relating to the solution of the underlying large-scale mixed-

integer optimization problems.  

A more fundamental and well-known issue with RTO 

is its steady-state basis and its assumption that it is sufficient 

for the optimal set-points to be updated at periods that are 

much longer than the process time constants. This is 

unrealistic in many practical situations, especially as plants 

are increasingly being operated in a more dynamic fashion 

to respond more effectively to changes in the external 

environment. However, despite two decades of academic 

work on dynamic RTO (Kadam et al., 2003; Biegler, 

2009), hybrid RTO2 (Krishnamoorthy et al., 2018) and the 

related areas of economic MPC (Ellis et al., 2017) and 

integrated production scheduling and control (Tsay et 

al., 2019; Tsay and Baldea, 2020), currently full 

applications of this technology to industrial practice are 

mostly limited to those where the site-wide model is derived 

by integrating the linear models used for MPC of individual 

process units.  

Another class of plant-wide DAs is that concerned with 

the on-line analysis of alarm data, particularly aiming at 

 

2 Hybrid RTO combines dynamic estimation techniques for 

determining the current plant state with a steady-state optimization 

step. 

mitigating the impact of alarm floods during which the 

alarm rate is greater than what the operator can effectively 

manage. Some of those methods aim at rationalizing the 

alarm systems while others offer online support to the 

operator during the alarm floods. Lucke et al. (2019) 

provided a structured hierarchical review of this area.  

Alarm rationalization involves removing redundant 

alarms to make sure that the operator receives only alarms 

that require an operator response. For instance, chattering 

alarms will be identified (Wang et al., 2016).  

An important aspect of online support is the correct 

classification of an alarm flood. In online operation, 

probabilities are assessed that a developing alarm flood 

belongs to a class already seen by the off-line classifier, or 

to a left-over class that has been seen before but was not 

explained, or to a new type of alarm flood. 

Other researchers have proposed methods for 

investigating the root causes of the alarm floods making use 

of alarms alongside or as an alternative to process 

measurements. Yu et al. (2015) and Hu et al. (2017) have 

used the methods of transfer entropy to infer causality.  

A related area is that of anomaly detection which aims 

to identify that a fault is developing in the process. Such 

methods face challenges when applied to processes that 

have varying production regimes, for instance when making 

a variety of grades of polymer. In that case, an anomaly 

might be due either to a fault in the process or to a transition 

to a new operating mode. 

Early methods for addressing this problem typically 

involved identification of each expected operating mode 

and construction of a linear model for monitoring it. More 

recently, researchers have been developing the theory for 

nonlinear methods such as kernel principal component 

analysis and its monitoring statistics. For industrial 

implementation, it is useful if the calibration method can 

detect the various modes in historical data even if they are 

not labelled according to the mode of operation. It is also 

necessary to distinguish between a fault and a new mode of 

operation. To this end, Tan et al. (2020) demonstrated a 

system for operator support that would recalibrate the 

model if the operator confirmed a new normal mode of 

operation, or report a fault if the anomalous results could 

not be so explained.  

DAs beyond the single plant boundaries 

DAs can also be used to coordinate the production in 

systems involving integrated multiple plants and to 

optimize the operations of supply chains potentially 

involving more than one organization. One example in this 

context is production optimization for groups of two or 

more olefin plants situated relatively near each other, 

sharing a common, and often limited, feedstock supply, and 



  

aiming to satisfy product demands that are aggregated 

across all plants. More complex situations may involve 

multiple plants distributed over wide geographical areas and 

connected via pipelines, something which introduces a 

significant temporal element in the optimization and an 

additional complexity in the design of the DA. Although in 

the past, such coordination problems were treated using 

simple, often linear, models of the individual plants, there 

is now substantial evidence that the use of more accurate 

plant models that would allow these large systems to be 

operated confidently nearer their constraints can result in 

large economic benefits. An early assessment of the 

potential of this approach was provided by Aluma et al. 

(2016). Since then, the emergence of general DA platforms 

(see below) has enabled the development of DAs that can 

handle the optimization of these ultra-large systems in a 

reliable and efficient manner. These have recently reached 

the stage of full-scale deployment, providing further 

confirmation that the expected benefits are realizable. 

The need for general Digital Applications Platforms  

The above discussion illustrates two key characteristics 

of DAs: 

• Complexity: even ostensibly simple and well-

understood DAs such as RTO (cf. Figure 1) are 

complex software systems combining model-

based calculations with plant data in real time. 

The complexity is compounded by the need to 

handle abnormal, but all too common, situations 

such as temporary interruptions in the availability 

of data, erroneous data, and failures in model-

based calculations. 

• Diversity: there is a very wide range of existing 

and potential DAs which differ from each other in 

terms of intended function, underlying 

calculations and the external data servers with 

which they exchange information. 

The complexity of DAs places stringent requirements 

on the testing and validation that is required to ensure that 

they can operate faultlessly, continuously and with little 

human intervention over extended periods of time. The 

complexity has also made many DAs difficult to maintain 

in the longer term despite their successful initial 

development and deployment. 

In principle, DA complexity can be, and has been, 

addressed by systematic software engineering. However, 

this comes at a non-negligible cost in terms of both the 

money and the time required for the development of large 

amounts of customized computer code that is involved in 

even relatively simple applications such as RTO. Combined 

with the diversity of potentially useful DAs, this poses a 

serious impediment to their large-scale development. This 

difficulty is reflected by the current situation where 

commercially available DAs are limited to very few well-

established classes (such as linear Model-Predictive Control 

and steady-state Real-Time Optimization), with each one of 

them being implemented on a customized code base.  

The above considerations naturally lead to the idea of 

general Digital Applications Platforms (DAPs), i.e. 

integrated software frameworks for developing, validating, 

deploying and supporting DAs that conform to a given 

abstract model. The key objectives of a DAP would include 

minimizing the effort required for error-free development 

of new classes of DAs; ensuring efficient real-time DA 

execution within given software and hardware 

infrastructures; and ensuring resilience in abnormal 

situations such as those mentioned above. Overall, this 

would be analogous to the emergence of multipurpose 

process modelling environments (Pantelides and Britt, 

1995): by supporting the efficient, code-free, development 

of process models within a particular class of mathematical 

problems (e.g. mixed sets of differential and algebraic 

equations), these tools have been instrumental in the rapid 

dissemination of advanced process modelling and process 

systems engineering methodologies within the process 

industries – including diverse sectors, such as 

pharmaceuticals and food & beverage, which did not have 

a strong tradition of making use of these technologies.  

A software architecture for a Digital Applications 

Platform  

One possible architecture for a DAP is outlined in 

Figure 2. A major element of any DA is a set of 

computational modules (CMs), each performing a 

different, usually but not always model-based, computation. 

For example, in the case of the RTO DA illustrated in Figure 

1, there would be three such CMs, namely steady-state 

detection, data reconciliation, steady-state optimization. 

However, an important difference from the rigid 

architecture shown in Figure 1 is that neither the scheduling 

of the execution of these three CMs in time nor the 

exchange of data between them are hardcoded. Instead, this 

information is provided in a soft form in a DA Metafile. 

This allows the DA execution to be managed automatically 

by two generalized software modules, namely the 

Scheduler that orchestrates the execution of the modules, 

and the Resource Manager that allocates computational 

resources (e.g. computer cores or processors) to these 

executions. These modules allow significantly more 

sophistication in DA architecture than the conventional 

paradigm of a strict sequence of calculations being executed 

in a cycle, all on a single computer processor. For example, 

the occurrence or timing of each CM’s execution may 

depend on the outcome of the execution of other CMs 

and/or events received from External Data Servers (see 

below); and multiple CMs may be executing 

asynchronously in parallel, making use of multiple 

computer cores or nodes. 

As has already mentioned, another aspect of DAs is 

their communication with external software systems, such 

as the plant historian, commercial databases and plant 

control system (cf. the RTO example of Figure 1). To 



  

 

accommodate this requirement, the DAP architecture 

shown in Figure 2 incorporates the concept of generalized 

External Data Servers that can comprise an arbitrarily 

wide range of software systems and associated data 

exchange protocols, such as the Data Access (DA), 

Historical Data Access (HDA) and Unified Architecture 

(UA) standards of Open Platform Communications (OPC), 

SQL database access, and web services. All communication 

is handled via the platform’s generalized Data Manager 

module. 

Figure 2: The gPROMS Digital Applications Platform 

A major determining factor for DA resilience and 

robustness is ensuring the quality of any data used as inputs 

by the CMs. In general, neither the availability nor the 

correctness of data obtained from External Data Servers can 

be guaranteed. For example, data may become temporarily 

unavailable or corrupted due to communication problems; 

and even when available, the actual values may be wrong 

due to sensor faults. For the DA to continue operating 

reliably in all such circumstances, it needs to be able to 

identify faulty data (e.g. by considering the value or the rate 

of change over time of each individual item; and the relative 

values of multiple data items) and then take appropriate 

action (e.g. by replacing an invalid value with a previously 

obtained valid one, or by temporarily skipping the CM 

execution altogether). Within the DAP, this is the 

responsibility of the generalized External Data Validation 

module. The criteria used for validating data items of 

different types and the actions to be taken in handling 

invalid ones are not hardcoded but are also part of the DA 

Metafile. This is important as a large part of the software 

code of traditional DAs is dedicated to ensuring data 

integrity. 

The Data Manager is also responsible for 

communicating the results of the DA to appropriate 

External Data Servers. For instance, in the RTO example of 

Figure 1, the optimal control set points need to be sent to 

the plant control system. Ensuring the integrity of such 

results is particularly important in the case of DAs operating 

in closed-loop mode. Accordingly, a separate Results 

Validation module has the responsibility of performing a 

set of final validity checks on these results, as a protection 

against errors arising from any unanticipated deficiencies in 

input data validation and model-based computations. 

Again, the rules and criteria used for this validation are part 

of the DA’s Metafile. Finally, in view of the potential 

complexity of DAs, it is important to monitor their 

execution and take appropriate action in real time if this 

deviates from the expected performance (the Execution 

Monitor module) and also to maintain a record of this 

performance to enable later troubleshooting of any 

problems that may arise (the Archiver module). 

Each class of DA (RTO, MPC, etc.) comprises the 

software components mentioned above, as delineated by the 

thick light blue line in Figure 2. Most of these components 

(shown in dark blue in Figure 2) are identical irrespective 

of the DA class and can, therefore, form part of a 

generalized software platform (DAP). The only DA class-

specific elements (shown in light blue in Figure 2) are the 

DA Metafile and the CMs. In fact, most CMs required by 

typical DA classes correspond to common forms of model-

based computations (e.g. dynamic simulation, state or 

parameter estimation, steady-state or dynamic optimization 

etc.) and can themselves be standardized. Overall, this 

significantly reduces or even eliminates the need for 

customized computer code, thereby facilitating both the 

development of new types of DAs and the maintenance of 

existing ones. Moreover, any improvement in functionality 

or performance in the underlying DAP is immediately 

reflected in all DA classes built on it.  

Deployment of Digital Applications within the plant  

The deployment of a DA at a given plant or other 

physical asset requires the provision of additional 

information relating to this specific instance, as illustrated 

by the elements shown in grey on the right part of Figure 2. 

These includes the mathematical or statistical plant models 

required by the CMs and an identification of the specific 

External Data Servers with which the DA will interact. 

Configuration information that maps a subset of the model’s 

variables and other attributes onto quantities of relevance to 

the DA must also be provided. For example, in the case of 

a DA used for process control, it would typically be 

necessary to identify the manipulated, controlled, measured 

and disturbance variables among the (usually much more 

numerous) model variables. The mapping of some of these 

variables to data items on the External Data Servers must 

also be provided. 

In general, configuring, validating and tuning a DA 

instance to be deployed at a specific plant or other system is 

a non-trivial engineering task. The generalized DA concepts 

and associated software framework presented here also 

allow the development of general-purpose software tools to 

support these off-line activities, as well as taking DA 

instances to online service and managing their execution 

over their lifetime. All this can be achieved without the need 

for any customized computer code. However, automatic 

techniques for tuning complex DAs involving multiple 

algorithmic parameters and adjustment factors (see, for 
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example, Forgione et al., 2020 and Lu et al., 2021) can have 

a large impact in this context. 

Finally, there are several options regarding the 

hardware and software environment used for DA execution. 

In conventional arrangements, DAs are deployed on 

dedicated industrial computers often situated within the 

plant control room, or in virtual machines within existing 

hardware. This provides maximum speed of response and 

arguably a higher guarantee of cyber security but may incur 

potentially higher costs of installation and maintenance. At 

the other extreme, DAs may be deployed on the Cloud, 

which provides maximum flexibility but may be unable to 

guarantee the required response times; it may also involve 

the transfer, processing and storage of very large amounts 

of data. A compromise between the two is provided by Edge 

Computing where the processing is performed locally, with 

only small amounts of data and/or results being 

communicated externally. By providing secure network 

connectivity, Edge devices allow DAs to be installed and 

maintained remotely by suitably authorized personnel (e.g. 

centrally-located corporate advanced control or 

digitalization teams). They also provide a degree of 

standardization for the external environments experienced 

by the DAs (e.g. in terms of access to plant data or 

mechanisms for interaction with plant personnel operator 

dashboards and other displays). These considerations are 

crucial for any large-scale development and deployment of 

DAs in the future. 

Future perspectives for Digital Applications 

We conclude this paper by considering DAs within the 

wider context of major ongoing trends and developments in 

process operations practice. 

Autonomous plant operation 

Autonomous plant operation is widely recognized as a 

major future milestone in the digital transformation of the 

process industries (see, for example, Gamer et al. (2019), 

Yokogawa Electric Co. (2020), and Georgiou and Sheth 

(2022)). According to the definition provided by Watson 

and Scheidt (2005), autonomy denotes the ability to develop 

a well-defined, yet modifiable, plan towards the 

achievement of high-level goals, making use of all available 

resources and taking account of all relevant constraints; 

execute the plan, modifying it if necessary; react 

appropriately, if not optimally, to unexpected events; and 

coordinate with human controllers. To achieve this 

objective, the physics- and data-based models described 

earlier in this paper need to be complemented by semantic 

models that encompass all available data and their relations 

in formal representations such as knowledge graphs. 

Another important pre-requisite is that any operational 

plans derived automatically (e.g. via artificial intelligence 

algorithms) can be described in a formal, high-level manner 

and then be executed reliably. We believe that the flexible 

Digital Applications Platforms described in this paper will 

be an essential ingredient of any such solution. Of particular 

importance in this context is the ability to define complex 

DAs “on-the-fly” (cf. the metafile in Figure 2) involving a 

potentially complex execution schedule of computational 

modules and other microservices. 

Heterogeneous plant data 

Data from operating plants take diverse forms, 

including process measurements sampled at various rates 

and intervals using a variety of online sensors, laboratory or 

at-line measurements of product quality, and logs of alarms, 

events and actions of operators. The enhanced availability 

of data in recent years has been an important enabling factor 

in the digital transformation of digital operations. Key 

improvements include more accurate determination of 

compositions via combinations of multiple spectroscopic 

techniques, complex measurements including video and 

acoustic imaging, electronic noses for detecting specific 

chemicals, and disposable sensors (Baldea and Zavala, 

2022). Data have also become more accessible via the more 

extensive use of sophisticated plant historians and data 

aggregation software. 

Bringing in data from a wide variety of sources can 

have a large impact on the scope and performance of the 

DAs discussed in this paper. For instance, accessing and 

analyzing a video image of a flare could be helpful in 

managing process alarms. However, for this to be realized, 

novel techniques need to be developed to generate 

actionable information from an analysis of heterogeneous 

data. In particular, an additional stage of feature extraction 

and feature classification is needed to render the 

information from very different data sources in a form that 

can be compared and fused. An example in the area of fault 

detection has been provided by Stief et al. (2019a) where 

measurements from disparate data sources were combined 

using Bayesian sensor fusion after preprocessing, feature 

extraction and classification.  

Testing and comparison of advanced data analysis 

algorithms requires benchmark datasets. One such dataset 

is the PRONTO heterogeneous benchmark dataset (Stief et 

al., 2019b, 2019c). Data were collected from heterogeneous 

sources, including process measurements, alarm records, 

high-frequency ultrasonic flow and pressure measurements, 

and video. 

Modular production 

Modular production (ZVEI et al., 2019) represents a 

new paradigm for the process industries. Conventional 

plants are usually designed on a one-off basis to achieve 

specific production objectives in an optimal manner. In 

contrast, modular plants are assembled from standardized 

modules which are already designed, automated and 

fabricated. Although the final outcome may not necessarily 

deliver the (theoretically) best achievable performance, in 

practice significant benefits may be realized in terms of 

flexibility of production, reduced engineering effort and 

risk, and shorter time to market.  



  

 

The modularization of production hardware is 

paralleled by the modularization of the associated 

automation and control systems. The information required 

to integrate an instance of a particular module within a 

modular plant is supplied in the form of a Module Type 

Package (MTP) conforming to a standardized vendor-

independent format (NAMUR, 2013). Within the module 

itself, sophisticated DAs of the type considered in this paper 

can play a key role in ensuring safe operation and 

optimizing performance in the diverse contexts within 

which the module may be deployed. As in the case of the 

equipment hardware, standardization is a key consideration: 

the fact that the module is likely to be produced in large 

numbers, instead of being a one-of-a-kind design, provides 

the economic justification for the investment required for 

building reliable and efficient DAs. 
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