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Abstract 

Process systems engineering relies on modeling tools to screen many alternatives at multiple scales: from 
the molecular, process and supply chain levels to the global level. Here, a review is presented of the 
currently available tools to study molecules, processes and enterprises. From this review, we derive the 
need for their effective integration to support the rapid transition needed for our societies towards sustain-
ability targets. 
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Introduction

The discovery, manufacturing and distribution of 
chemicals and pharmaceutical products is a complex mul-
tiscale process as shown in Figure 1 (Marquardt, et al., 
2000) that starts at the molecular level where new chemical 
or biological products must be discovered or synthesized. 
Subsequent steps aggregate the molecules into clusters, par-
ticles and films as single and multiphase systems that finally 
take the form of macroscopic mixtures. Through scale-up, 
the next step is to select process units that must be integrated 
into a process flowsheet that may operate either in a contin-
uous or batch mode for manufacturing the products. Finally, 
the process flowsheet becomes part of a production site with 
several plants that are connected through suppliers, ware-
houses and distribution centers in a supply chain that ulti-
mately defines the commercial enterprise for the production 
and distribution of chemical or pharmaceutical products. 
The recent trend toward sustainability has expanded the 
scope even further to global impacts (indicated by the globe 
added to the original Figure 1 by Marquardt et al., 2000). 

The resulting need for effective modeling tools that al-
low the screening of many alternatives at the molecular, 
process and supply chain level, and ultimately at the globe 
level, to perform life cycle analysis of processes and prod-
ucts, has become a major research challenge in the area of 
Process Systems Engineering. 

The major goal of this paper is to provide a concise 
state-of-the-art review of modeling tools at the molecular, 
process and supply chain level, identify major research 
challenges and new trends, as well as their multiscale inte-
gration to achieve sustainability targets.  

Molecular level 

Molecules provide the foundation of the chemical in-
dustry and thus our understanding of them is crucial for fur-
ther innovation in the chemical industry. Our ability to un-
derstand and quantify molecular phenomena has increased 
dramatically in recent years using powerful tools provided 
by quantum mechanics, molecular simulations, fluid theory 
and statistical thermodynamics (van Speybroeck, et al., 
2010).  

Traditionally, phase equilibria have been the focus of 
developing predictive thermodynamic models. Here, mod-
els such as the quantum-chemistry-based COSMO-RS/SAC 
(Klamt 2011) along with the fluid-theory-based SAFT mod-
els (Vega and Jackson 2011) have established themselves 
as new standards for complex fluid mixtures. Key assets of 
these models are their availability in user-friendly software 
packages, including open-source implementations, and 



  

their broad applicability. Thereby, these models have be-
come part of the chemical engineering toolbox. 

An important recent development is the extension of 
SAFT models towards transport properties (Mairhofer and 
Gross 2022). This extension is based on entropy scaling: 
Rosenfeld (1977, 1999) found that transport properties are 
a univariate function of the residual entropy. This finding 
has been confirmed to hold for broad classes of fluids and 
enabled the prediction of viscosities (Lötgering-Lin et al. 
2018), heat conductivities (Hopp and Gross 2017) and dif-
fusion coefficients (Hopp et al. 2018). Thereby, both equi-
librium and transport properties can now be predicted effi-
ciently based on a single parsimoniously parameterized mo-
lecular model.  

The physics-based models are complemented by data-
driven approaches. While group-contribution methods and 
quantitative-structure property relationships (QSPRs) have 
a long tradition in chemical engineering (van Speybroeck et 
al. 2010), recent advances in machine learning have already 
led to new approaches towards predicting thermodynamic 
properties. Pioneering work by the Jirasek and Hasse groups 
recognized the similarity between recommender systems 
for movies and solvents by transferring matrix-completion 
methods to predict activity coefficients at infinite dilution 
(Jirasek et al. 2020) and Henry coefficients (Hayer et al. 
2022), outperforming long-established methods like UNI-
FAC. Based on these encouraging results, more advanced 
architectures have been employed such as Graph Neural 
Networks (GNNs) and transformer-based models that are 
able to predict properties for molecules not included in the 
training set (Sanchez Medina et al. 2022; Qin et al. 2022; 
Rittig et al. 2022). These approaches achieve higher accu-
racies than established methods such as COSMO-RS and 
UNIFAC-Dortmund.  

However, data-driven approaches suffer from the lack 
of data, in particular for multicomponent mixtures, and for 
transport properties. Here, the integration of experiments 
with modeling in coordinated learning workflows could en-
able major progress (Pankajakshan et al. 2019). Further-
more, hybrid modeling approaches seem promising that re-
fine insights from physics-based models by data-driven 
modeling. Such an approach has recently been demon-
strated by (Winter et al. 2022a; Winter et al. 2022b) for the 
prediction of thermodynamically consistent activity coeffi-
cients from SMILES codes. A transformer model was used 
which is known to require large sets of training data. To 
overcome the lack of data availability, synthetic data was 
generated using COSMO-RS. The resulting model was then 
refined using the limited experimental data available. This 
combined approach allowed to significantly improve pre-
diction quality. Even more, integrating the NRTL equation 
into the machine learning framework enables thermody-
namically consistent predictions. This hybrid paradigm 
benefit from both available knowledge and data. Overall, 
these improvements in thermodynamic property prediction 
can lead to more efficient process and product design, re-
ducing cost and energy demands. 

However, the ambitions towards sustainability require 
a broader set of performance measures capturing also eco-
nomic, environmental and societal impact (Kleinekorte et 
al. 2020). While methods for social impact assessment are 
still in early stages of development, environmental impact 
assessment has been standardized using the method of life-
cycle assessment (LCA) (DIN EN ISO 14040 2006). Link-
ing molecules to their environmental impacts over the life 
cycle would enable the design of more sustainable pro-
cesses. However, the scope of LCA to cover the full life-
cycle makes it data-intensive, leading to a lack of high-

Figure 1: Multiscale modeling at the molecule, process, and enterprise levels, expanded from Marquardt, et al., (2000). 



  

quality data sets. Thus, the practically unlimited chemical 
design space is only poorly represented in current LCA da-
tabases. To overcome these limitations, predictive methods 
have been developed (Baxevanidis et al. 2022). Physics-
based models usually focus on limited parts of the life-cycle 
such as estimating gate-to-gate energy demands of pro-
cesses (Parvatker and Eckelman 2019). In contrast, data-
driven approaches try to predict cradle-to-gate impacts of 
chemicals directly (Wernet et al. 2008). Due to the limited 
training data, the accuracy is also limited. However, these 
predictive LCA models can also be combined with physical 
models in hybrid approaches to guide molecular design, 
e.g., in solvent selection (Fleitmann et al. 2021). 

Process level 

Conceptual process design is a central pillar of chemi-
cal engineering, concerning the definition, simulation, opti-
mization, and control of chemical processes. This design 
task involves the synthesis of complex chemical processes 
through the integration of simpler unit blocks characterized 
by physical and chemical properties. There are two main 
approaches for conceptual process design: hierarchical de-
composition (Douglas 1985; Siirola et al. 1971) and super-
structure synthesis (Umeda et al. 1972; Chen and Gross-
mann 2017) through the application of mathematical pro-
gramming. Superstructure synthesis is preferred for its sys-
tematic evaluation of a large space of structural alternatives 
(Mencarelli et al. 2020). However, the development of tools 
for superstructure optimization has proved to be a major 
challenge due to the difficulty in solving nonlinear discrete 
and continuous optimization problems, specifically MINLP 
models. To overcome these difficulties, Generalized Dis-
junctive Programming (GDP) (Lee and Grossmann 2000) 
has emerged as a modeling framework to explicitly repre-
sent the relationship between algebraic descriptions and the 
logical structure of a design problem, which in turn increase 
the robustness of the discrete/continuous optimization of su-
perstructures. 

The general form for GDP optimization models is 
given in Problem (GDP) (Grossmann and Trespalacios 
2013). 
min   ݖ =  (ݔ)݂
.ݏ ≥ (ݔ)݃ .ݐ 0 

˅ ௜ ∈ ஽ೖ ൤
௞ܻ௜

(ݔ)௞௜ݎ ≤ 0൨ ݇ ∈  (GDP)  ܭ

⊻ ௜ ∈ ஽ೖ ௞ܻ௜   ݇ ∈  ܭ
(ܻ)ߗ =  ݁ݑݎܶ
௟௢ݔ ≤ ݔ ≤ ௨௣ݔ  
ݔ ∈  ℝ௡ 
௞ܻ௜ ∈ ,݁ݑݎܶ}  ݇  {݁ݏ݈ܽܨ  ∈ ,ܭ  ݅ ∈  ௞ܦ

 
(GDP) seeks to minimize a function of the continuous 

variables (ݔ)݃ .ݔ are the global constraints that need to be 
satisfied independently of the discrete decisions. (GDP) 
contains ݇ ∈ ܭ  disjunctions. Each one involves ݅ ∈  ௞ܦ
terms, linked together by an OR operator (∨). Each disjunc-
tive term is associated with a Boolean variable ܻ ௞௜ and a set 

of inequalities ݎ௞௜(ݔ) ≤ 0. One and only one Boolean vari-
able can be ܶ݁ݑݎ (⊻ ௜ ∈ ஽ೖ ௞ܻ௜). When a disjunctive term is 
selected ( ௞ܻ௜ = ݁ݑݎܶ ), the corresponding inequalities 
(ݔ)௞௜ݎ ≤ 0 are enforced. Otherwise, the constraints are ig-
nored. The logic relations among the Boolean variables are 
represented by Ω(ܻ) =  are (ݔ)௞௜ݎ and (ݔ)݃ ,(ݔ)݂ If .݁ݑݎܶ
convex, the model becomes a convex GDP. 

 There is a recent tool, Pyomo.GDP (Chen et al. 2022), 
that allows the formulation of models in the form of GDP, 
and implements several solution strategies: reformulation to 
MINLP (big-M of hull reformulation), logic-based outer-
approximation, disjunctive branch and bound. The direct 
formulation of process synthesis problems through 
Pyomo.GDP requires a level of expertise from someone 
who has good knowledge of mathematical programming. 
This requirement has motivated the development of Pyosyn 
(Chen et al. 2021), a framework for superstructure-based 
synthesis. It makes use of the Pyosyn Graph (PSG) super-
structure representation, which uniquely supports nested 
units (Figure 2). Nested units, together with formal inter-
faces defined by unit ports, improve complexity handling in 
the PSG and modularize modeling of larger superstructures. 
With PSG, Pyosyn directly models superstructure logic us-
ing Generalized Disjunctive Programming (GDP). Pyosyn 
incorporates logic-based decomposition algorithms tailored 
to process synthesis applications, including a set-covering 
algorithm for logic-based outer approximation, and im-
proved variable range reduction based on disjunctive varia-
ble bounds. The use of Pyosyn has been demonstrated with 
a diverse range of industrially-relevant case studies that in-
clude multi-period modular facility location, synthesis of 
methane to syngas and methanol processes, and Kaibel col-
umn design. Pyosyn also supports optimization models for 
Process Intensification (PI), an area that has received re-
cently significant attention as it helps to support the goal of 
sustainability in chemical processes. 

 

 
Figure 2: Architecture of Pyosyn 

Supply chain level 

Overview. Enterprise-wide Optimization (EWO) is 
concerned with the coordinated optimization of the opera-
tions of a supply chain (Shapiro 2001), namely R&D, sup-
ply of material, manufacturing and distribution of products. 
Process supply chains range from the ones in petroleum in-
dustry (Shah et al. 2011) to the ones in the pharmaceutical 
industry (Shah 2004), and include manufacturing as a major 

Pyosyn:	IDAES	conceptual	design	tools
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component (Ryu and Pistikopoulos 2007). The main objec-
tives in EWO include maximization of profits, responsive-
ness to customers and asset utilization, and minimization of 
costs, inventory levels and environmental impact. Major op-
erational activities include planning, scheduling, real-time 
optimization and control (see Figure 3). 

 

 
Figure 3: Major elements of Enterprise 

One of the key features in EWO is integration of the 
information and decision making among the various func-
tions that comprise the supply chain of the company. Inte-
gration of information is being achieved with modern IT 
tools (e.g. SAP and Oracle) that allow the sharing and in-
stantaneous flow of information along the various organiza-
tions in a company. While IT tools allow many groups in an 
enterprise to access the same information, these tools do not 
provide comprehensive decision-making capabilities for 
optimization that account for complex trade-offs and inter-
actions across the various functions, subsystems and levels 
of decision making. This means that companies are faced 
with the problem of deciding as to whether to develop their 
own in-house tools for integration, or else make use of com-
mercial software from vendors. 

To realize the full potential of transactional IT tools, 
the development of sophisticated decision-support tools 
based on mathematical programming (analytical IT tools) is 
needed to operate the supply chain to yield overall optimum 
economic performance, as well as high levels of customer 
satisfaction. A major challenge in EWO of process indus-
tries is the integrated and coordinated decision-making 
across the various functions in a company (purchasing, 
manufacturing, distribution, sales), across various geo-
graphically distributed organizations (vendors, facilities 
and markets), and across various levels of decision-making 
(strategic, tactical and operational) as seen in Figure 4 
(Shapiro 2001). 

Optimization Models. A large number of optimization 
problems in EWO can be described by Mixed-Integer Lin-
ear Programming (MILP) models. Examples include the op-
timization of production operations including planning and 
scheduling (Méndez et al. 2006; Pochet and Wolsey 2006), 
optimization of supply chains involving logistics and distri-
bution, multiple period optimization (Grossmann 2005). 

 

 
Figure 4: Transactional and Analytical IT (Tayur et al., 

1999). 

In the process industries, real-world problems usually 
lead to large-scale models, due to the size of the system un-
der study, but also because of models that involve multiple 
periods. Furthermore, often new variables and equations are 
introduced to replace nonlinearities by piecewise linear ap-
proximations, or by performing exact linearizations (eg. 
product binary and continuous variables). 

Generally, MILP problems can be solved using Linear 
Programming (LP)-based Branch & Bound (B&B) solvers 
(Wolsey 1998) that provide rigorous lower and upper 
bounds on the solution, which in turn provide information 
regarding the optimality of the solution. MILP solvers like 
CPLEX and Gurobi have implemented more sophisticated 
versions denoted by Branch & Cut (B&C) algorithms. 
These algorithms add valid inequalities, denoted by cutting 
planes, to the linear relaxations to reduce the size of the fea-
sible space without eliminating any feasible integer solu-
tion. In the last 15 years, great progress has been made in 
algorithms and hardware, resulting in an impressive im-
provement of our ability to solve MILPs (Bixby and Roth-
berg 2007) through codes such as CPLEX, XPRESS and 
GUROBI. Capitalizing on theory developed during the last 
20 years, off-the-shelf LP-based branch-and-bound com-
mercial software can now solve in a few seconds MILP in-
stances that were unsolvable 15 years ago. The current com-
putational performance of MILP software is the result of a 
combination of improvements in LP solvers, pre-processing 
techniques for LP and MILP, linear algebra for sparse sys-
tems, cutting planes, heuristics, parallelization and faster 
computers (Bixby and Rothberg 2007).  

Planning under uncertainty is an important problem 
that arises in EWO problems. Modeling and solution of this 
class of problems by stochastic programming directly takes 
uncertainty into account in terms of probability distribution 
functions (Birge and Louveaux 1997; Sahinidis 2004). A 
Stochastic Program is a mathematical program in which 
some of the parameters defining a problem instance are ran-
dom (e.g. demand, yield). The basic idea behind stochastic 
programming is to make some decisions now, stage 1, and 
to take some corrective action (recourse) in the future, stage 
2, after revelation of the uncertainty. If there are only two 
stages then the problem corresponds to a 2-stage stochastic 
program, while in a multistage stochastic program the un-
certainty is revealed sequentially, i.e. in multiple stages 
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(periods), and the decision-maker can take corrective action 
over a sequence of stages. The uncertain parameters are 
commonly assumed to follow discrete probability distribu-
tions and a planning horizon consisting of a fixed number 
of decision points. Using these two assumptions, the sto-
chastic process can be represented with scenario trees. 

Given the large size of many EWO problems, the ap-
plication of decomposition techniques is often required. 
Three common approaches in EWO problems are La-
grangean decomposition, Benders decomposition, bi-level 
decomposition and rolling horizon. Lagrangean Decompo-
sition is perhaps the most common technique used for de-
composing problems so as to make them tractable. An ex-
cellent review on Lagrangean Relaxation and Lagrangean 
Decomposition can be found in Guignard (2003). As de-
scribed in the previous sections, the most common form of 
EWO models take the form of deterministic or stochastic 
MILP or MINLP models. Currently, it is possible to imple-
ment these models in commercial modeling systems since 
the models are expressed in equation form. Therefore, many 
planning, scheduling and supply chain models have been 
implemented in commercial modeling systems such as 
AIMMS, AMPL, GAMS and OPL. Furthermore, the effort 
involved is relatively modest. Finally, the modeling systems 
have capabilities of interfacing with spreadsheet, databases 
or graphics packages, thereby facilitating the deployment of 
the model as a tool with graphical user interface that can be 
used by non-specialist users.  

Three major outstanding challenges remain to be ad-
dressed and are worth of future research efforts. In particu-
lar: 1) optimizing entire supply chains due to the very large 
size of the resulting model. 2) integrating control with plan-
ning and scheduling where a major barrier is the complexity 
and large size of the resulting MIDO optimization problem, 
which will require effective solution methods; 3) incorpo-
rating considerations of sustainability, which is becoming a 
major concern through multi-objective optimization of en-
tire supply chain networks (Galán-Martín et al. 2018). 

Perspective: Hyperscale modeling for sustainability  

The previous sections discussed recent advances and 
challenges on the levels of molecules, processes and supply 
chains. Aiming for sustainability, however, requires the 
multiscale integration across these scales. Life-cycle think-
ing provides such a holistic perspective (Kleinekorte et al. 
2020). Thus, our modeling and optimization tools need to 
be extended to cover and integrate these scales. 

Integration approaches have already been successful 
covering the neighboring levels molecules and processes as 
well as process and supply chains. The simultaneous con-
sideration of molecules and processes is the topic of Com-
puter-Aided Molecular and Process Design (CAMPD) 
(Gertig et al. 2020). The CAMPD problem has for long been 
conceptualized (Gani 2004). However, only recently, suc-
cessful solution approaches have been presented. Applica-
tions range from working fluids (Schilling et al. 2017) to 
solvents (Scheffczyk et al. 2018) and adsorbents (Farmahini 

et al. 2021). The key success factor has been the integration 
of powerful thermodynamic models with advanced solution 
algorithms (Gertig et al. 2020). Integration of predictive 
LCA models then allowed to design molecules that mini-
mize environmental impacts of the full life cycle (Fleitmann 
et al. 2021). 

The further expansion of the scope towards supply 
chains seems highly desirable and needed (Koberg and Lon-
goni 2019). In particular, the required switch to renewable 
feedstocks and energy supply mandates the establishment 
of novel supply chains. Climate-mitigation targets require 
the transition to be rapid, reaching CO2-neutrality mid-cen-
tury. In achieving such a rapid transition to stop harming the 
climate, we need to avoid burden shifting towards other en-
vironmental impacts, e.g. due to increase mining activities. 
Thus, systems tools are needed that enable to rapidly de-
velop environmentally benign industries. Among them is 
carbon capture and storage, which involves challenges at 
multiple scales (Bui et al. 2018). 

Herein, a prominent example is our need to scale up 
direct air capture to provide negative emissions on the giga-
ton-scale (Gasser et al. 2015). This scale-up needs to be 
aligned with the transformation of the energy sector (Qiu et 
al. 2022) and the establishment of the materials supply 
chain, e.g., to produce the large amounts of adsorbents 
needed (Deutz and Bardow 2021).  

The integration of the scales traditionally covered by 
PSE into a joint perspective could guide the way towards 
the fast track to a sustainable future. 
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